
Future Generation Computer Systems 25 (2009) 64–76
www.elsevier.com/locate/fgcs

Distance browsing in distributed multimedia databases

Fabrizio Falchia,∗, Claudio Gennaroa, Fausto Rabittia, Pavel Zezulab

a ISTI-CNR, Pisa, Italy
b Masaryk University, Brno, Czech Republic

Received 31 August 2007; received in revised form 7 February 2008; accepted 20 February 2008
Available online 26 February 2008

Abstract

The state of the art of searching for non-text data (e.g., images) is to use extracted metadata annotations or text, which might be available as
a related information. However, supporting real content-based audiovisual search, based on similarity search on features, is significantly more
expensive than searching for text. Moreover, such search exhibits linear scalability with respect to the dataset size, so parallel query execution is
needed.

In this paper, we present a Distributed Incremental Nearest Neighbor algorithm (DINN) for finding closest objects in an incremental fashion
over data distributed among computer nodes, each able to perform its local Incremental Nearest Neighbor (local-INN) algorithm. We prove that
our algorithm is optimum with respect to both the number of involved nodes and the number of local-INN invocations. An implementation of our
DINN algorithm, on a real P2P system called MCAN, was used for conducting an extensive experimental evaluation on a real-life dataset.

The proposed algorithm is being used in two running projects: SAPIR and NeP4B.
c© 2008 Elsevier B.V. All rights reserved.

Keywords: Distributed; Incremental; Nearest neighbor; Similarity search; Peer-to-peer; MCAN; Content addressable networks; Metric spaces
1. Introduction

A large component of the web content nowadays consists of
non-text data, such as images, music, animations, and videos.
Current search engines index web documents by their textual
content. For instance, web tools for performing image searching
(such as the ones provided by Google, Yahoo! or MSN Live
Search) simply index the text associated with the image and the
ALT attribute of the IMG tag used to provide a description of
an image.

Image indexing methods based on content-based analysis
or pattern matching (which for instance analyzes the
characteristics of images, i.e., features, such as colors and
shapes) are usually not exploited at all. The problem is that
these processes are significantly more expensive than text
analysis. Nevertheless, what is more important is that the
search on the level of features exhibits linear scalability with
respect to the data search size, which is not acceptable for

∗ Corresponding author. Tel.: +39 0503153139; fax: +39 0503153464.
E-mail addresses: fabrizio.falchi@isti.cnr.it (F. Falchi),

claudio.gennaro@isti.cnr.it (C. Gennaro), fausto.rabitti@isti.cnr.it (F. Rabitti),
zezula@fi.muni.cz (P. Zezula).

0167-739X/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2008.02.007
the expected dimension of the problem. The reason is that for
this kind of data the appropriate search methods are based on
similarity paradigms that typically exploit range queries and
nearest neighbor queries. These queries are computationally
more intensive than the exact match, because conventional
inverted indexes used for text are not applicable for such data.

Besides multimedia information retrieval, there are other
applications, such as bioinformatics, data mining, pattern
recognition, machine learning, computer vision, that can take
advantage of the similarity search paradigm. However, different
applications have in general different similarity functions. A
convenient way to address this problem and achieve one
solution for several purposes is to formalize the similarity
by the mathematical notion of the metric space. Here data
elements are assumed to be objects from a metric space where
pairwise distances between the objects can be determined
and where any distance satisfies the properties of symmetry,
non-negativity, identity, and triangle inequality [16]. In this
respect, the metric space approach to similarity searching
is highly extensible. However, our Distributed Incremental
Nearest Neighbor (DINN) algorithm does even not require the

http://www.elsevier.com/locate/fgcs
mailto:fabrizio.falchi@isti.cnr.it
mailto:claudio.gennaro@isti.cnr.it
mailto:fausto.rabitti@isti.cnr.it
mailto:zezula@fi.muni.cz
http://dx.doi.org/10.1016/j.future.2008.02.007


F. Falchi et al. / Future Generation Computer Systems 25 (2009) 64–76 65
objects to be metric — we only suppose that the distance is
non-negative.

To address the problems of scalability, P2P communication
paradigm seems to be a convenient approach, and several
scalable and distributed search structures have been proposed
even for the most generic case of metric space searching (see [3]
and [4] for a survey). A common characteristic of all these
existing approaches is the autonomy of the peers with no need
of central coordination or flooding strategies. Since there are no
bottlenecks, the structures are scalable and high performance is
achieved through parallel query execution on individual peers.

Since the number of closest objects is typically easier
to specify than establishing a search range, users prefer the
nearest neighbors to the range queries. For example, given an
image, it is easier to ask for 10 most similar ones according
to an image similarity criterion than to define the similarity
threshold quantified as a real number. However, nearest
neighbors algorithms are typically more difficult to implement,
and in P2P environments the situation is even worse. The
main reason is that traditional (optimum) approaches [10] are
based on a priority queue with a ranking criterion, which
sequentially decides the order of accessed data buckets. In fact,
the existence of centralized entities and sequential processing
are completely in contradiction with decentralization and
parallelism objectives of any P2P search network. Things
are further complicated by the natural necessity of some
applications to retrieve the nearest neighbor in an incremental
fashion, because the number of desired neighbors is unknown
in advance. By incremental, we mean that such an algorithm
computes the neighbors one by one, without the need to re-
compute the query from scratch.

An important example of the application of Incremental
Nearest Neighbor is processing of complex queries, that is
queries involving more than one feature overlay, such as: find
all images most similar to the query image with respect to
the color and the shape at once. In this situation, we do not
know how many neighbors must be retrieved in individual
layers before the best object is found that satisfies the complex
condition. In fact, the widely used A0 (also called Fagin’s
Algorithm) [5] as well as the threshold algorithm [6] suppose
that each single source for a specific feature is able to perform
an INN algorithm.

In this paper, we present a first attempt to approach
the Incremental Nearest Neighbor problem for P2P-based
systems. Our proposed solution, based on a generalization
of the algorithm proposed in [10] for hierarchical centralized
structures, is optimal and independent of any specific P2P
architecture — it can be applied to any Scalable and Distributed
Data Structure (SDDS), P2P system, and Grid-based similarity
search infrastructure. We implemented our algorithm on a
real P2P system called MCAN [8,9] and we conducted an
extensive experimental evaluation on a real-life dataset of
1,000,000 objects. MCAN is a scalable distributed similarity
search structure for metric data (for a survey see [3]) which
extends the Content-Addressable Network (CAN) (a well-
known Distributed Hash Table).
The DINN algorithm is being used in two running projects:
SAPIR1 and NeP4B.2 The European project SAPIR (Search on
Audiovisual content using peer-to-peer Information Retrieval)
aims at finding new ways to analyze, index, and retrieve the
tremendous amounts of speech, image, video, and music that
are filling our digital universe, going beyond what the most
popular engines are still doing, that is, searching using text
tags that have been associated to multimedia files. SAPIR
is a three-year research project that aims at breaking this
technological barrier by developing a large-scale, distributed
peer-to-peer infrastructure that will make it possible to search
for audiovisual content by querying the specific characteristics
(i.e. features) of the content. SAPIR’s goal is to establish a
giant peer-to-peer network, where users are peers that produce
audiovisual content using multiple devices (e.g., cell phones)
and service providers will use more powerful peers that
maintain indexes and provide search capabilities

NeP4B (Networked Peers for Business), is an Italian
project aiming at innovative ICTs solutions for Small and
Medium size Enterprises (SMEs), by developing an advanced
technological infrastructure to enable companies of any
nature, size and geographic location to search for partners,
negotiate and collaborate without limitations and constraints.
The infrastructure will base on independent and interoperable
semantic peers which behave as nodes of a virtual network.
The project vision is towards an Internet-based structured
marketplace where companies can access the huge amount of
information already present in vertical portals and corporate
databases and use it for dynamic, value-adding collaboration
purposes. In the NeP4B P2P infrastructure the semantic peers
represent aggregations of SMEs with similar activities and
the multimedia objects are descriptions/presentations of their
products/services extracted from the companies’ web sites.

The rest of the paper is organized as follows. Section 2
presents the related work. Section 3 provides an overview
of our proposed solution while the formal definition is given
in Section 4. In Section 5 we report the results of an
extensive experimental evaluation of the DINN over the MCAN.
Conclusions and future work are discussed in Section 6.

An earlier version of this paper has been presented at
the Second International Conference on Scalable Information
Systems (INFOSCALE 2007) [7].

2. Related work

Our proposed solution is based on a generalization of the
algorithm proposed in [10]. The incremental nearest neighbor
algorithm defined in [10] is applicable whenever the search
space is structured in a hierarchical manner. The algorithm
starts off by initializing the queue of pending requests with
the root of the search structure — since the order of entries
in this queue is crucial, they refer to it as the priority queue.
In the main loop, the element closest to the query is taken off

1 http://www.sapir.eu/.
2 http://dbgroup.unimo.it/nep4b/.

http://www.sapir.eu/
http://dbgroup.unimo.it/nep4b/


66 F. Falchi et al. / Future Generation Computer Systems 25 (2009) 64–76
the queue. If it is an object, it reports it as the next nearest
object. Otherwise, the child elements of the element in the
search hierarchy are inserted into the priority queue.

In [15] an efficient algorithm to perform k-NN in a P2P
system (specifically the Chord [14]) is proposed. The algorithm
uses the same priority queue-based approach of [10]. As far as
we know, it is the first attempt to extend [10] to the distributed
environment making use of the parallelism of the P2P network.

They define their algorithm for a hierarchical index (as
in [10]). To provide distributed hashing of spatial data they
use a distributed quadtree index they developed, although they
say that other indices can be utilized as well (e.g., P2P R-
trees [11]). The query is first initiated on a single peer in
the P2P network. This peer maintains the priority queue of
quadtree blocks (mapping to a control point each) that are being
processed for the query. To process a block, they have to contact
from this query initiating peer, the peer that owns that block,
i.e., the control point. Hence, in their parallel algorithm, they
contact, rather than just the top entry of the priority queue, a
multiple number of these peers.

3. DINN outline

The INN algorithm [10] was defined for a large class
of centralized hierarchical spatial data structures. Instead our
DINN algorithm is distributed and not limited to hierarchical
structures. Thus it can be used over SDDSs, P2P systems and
Grid infrastructures. Our algorithm is built over nodes which
are able to perform locally an INN between the objects they
store (this will be formalized in Assumption 1).

In particular, we reformulate the definition of priority queue
(Queue) given in [10] by considering as elements of Queue,
objects and nodes (or peers). We prove that our algorithm is
optimal, in terms of both number of involved nodes and local-
INN invocations. The elements of Queue are ordered according
to a key which is always associated with both objects and nodes.
The key associated with each object is the distance between
the query and the object itself. Instead the key associated with
each node is a lower bound for the distance between the query
and the next result coming from the node. While for an already
involved node this lower bound can be simply the distance from
the query of the last object retrieved by its local-INN, for the
not yet involved nodes a naive solution could be to always use
0 as lower bound. However, this would imply all nodes to be
involved for every similarity query. To avoid this, we suppose
that each node is able to evaluate this lower bound for every
node it knows (in P2P systems they are called neighbors).

Furthermore, in P2P systems there is no global knowledge of
the network. Thus, we make an assumption (see Assumption 2)
regarding the ability to find the next most promising node
(by considering the lower bound mentioned before). This
assumption replaces the consistency condition used in [10]
for hierarchical data structures. We prove that our assumption
can be satisfied under one of two simpler conditions (see
Section 4.3.3) which are common for data structures able to
perform similarity search.
During the DINN algorithm execution, Queue contains a
certain number of entries sorted in order of decreasing key.
Entries can be both nodes and objects. Because of the values
used as key, when a node is after an object we are sure that no
better results than the object itself can be found in the node.
The algorithm proceeds by processing Queue from the top.
Basically if the first entry of the queue is an object, this object
is the result of the DINN. In case the first entry is a node, we
invoke its local-INN. The resulting object of this invocation is
placed in Queue and its distance from the query allows us to
update the entry with a more accurate (greater) lower bound
which moves the node backward in Queue.

This outlined implementation is intrinsically sequential,
since a single step of the algorithm involves only the first
element of Queue at a time. In the second part of the paper,
we straightforwardly generalize the algorithm introducing
parallelism by invoking the local-INN algorithm of more
than one node simultaneously. The precise definition of the
algorithms is provided in the next section. Examples are given
to help understanding the algorithm.

4. The DINN algorithm

4.1. Definitions and notation

In this subsection we provide a number of definitions and
notations required to define the DINN algorithm.

Notation:

• N is the set of the nodes participating in the distributed
system

• D is the objects domain
• Xi ⊂ D is the set of the objects stored in a given node

Ni ∈ N
• X =

⋃
i Xi is the set of the objects stored in the whole

network.

As in [10], our DINN is based on a priority queue:

Definition 1. A priority queue (Queue) is a set of pairs
〈element, ϑ〉 ordered according to key ϑ ∈ R+. An element
can be either an object or a node.

In order to avoid involving all the nodes in the DINN
execution, we suppose there is the possibility to evaluate a
lower bound (δ) for the distances between the objects stored
in a certain node and any given object in D.

Definition 2. Given a node Ni ∈ N and an object x ∈ D we
define δ : N × D → R+ as a lower bound for the distances
between x and all the objects stored in Ni (i.e., Xi ):

δ(Ni , x) ≤ min{d(y, x), y ∈ Xi }.

Note that this lower bound could even be 0 for every node.
Thus we do not strictly require this lower bound to be evaluable,
but we use it for efficiency in case it can be given. In case each
node Ni ∈ N of a given distributed data structure is responsible
for a portionDi of the domainD we will say that δ is strong iff:

∀Ni ∈ N , δ(Ni , x) = 0 ⇔ x ∈ Di .



F. Falchi et al. / Future Generation Computer Systems 25 (2009) 64–76 67
Fig. 1. Downward closed set of nodes with respect to object .
In defining our DINN algorithm we will use the general
notion of downward closed set. We will limit this notion to a
set of nodes with respect to a given object (making use of the
lower bound δ defined above).

Definition 3. A set of nodes Nx is downward closed with
respect to an object x ∈ D iff ∀N j , Ni ∈ N :

Ni ∈ Nx ∧ δ(N j , x) < δ(Ni , x) ⇒ N j ∈ Nx .

In other words, if a set of nodes is downward closed with
respect to an object x ∈ D, there are no nodes, out of the set,
with a lower bound lesser to those of the nodes in the set. In
Fig. 1 we give an example of downward closed sets of nodes.
The position of each node Ni on the axis is determined by
δ(Ni , x). The nodes are grouped in all the possible downward
closed sets. Note that, by Definition 3, each set contains N1
which has the minimum δ from x . Moreover, each downward
closed set of nodes contains any node between N1 and the
furthest away node in the set itself. Obviously, the position on
the axis of the nodes depends on the particular object x .

Another special set of nodes we will refer in the algorithm
definition is the set of nodes whose lower bound δ is less than a
given r ∈ R+:

Definition 4. Let x be an object in D and r ∈ R+. Nx,r is the
set of nodes inN that could have objects closer to x than r , i.e.,

Nx,r = {Ni : Ni ∈ N ∧ δ(Ni , x) ≤ r}.

In Table 1, we report the list of symbols used in this paper
with their corresponding meaning. Please note that in this table
also symbols that will be defined and used in the next section
can be found.

4.2. Assumptions

Our DINN algorithm is based on two assumptions.

Assumption 1. Each node Ni ∈ N is able to perform a local-
INN algorithm over the objects Xi ⊆ Di it stores.

Assumption 2. Let x ∈ D be an object in the domain. Let
Nx ⊆ N be a subset of nodes which is either downward closed
(with respect to x) or empty. Let Nn ∈ (N \Nx ) be the closest
node to x in (N \Nx ), i.e.,

Nn = arg min
Ni

{δ(Ni , x), Ni ∈ (N \Nx )}.

Whenever an arbitrary node Nc ∈ N knows Nx (i.e., would be
able to contact all the nodes inNx ), Nc must be able to check if
Nn exists (i.e., (N \Nx ) 6= ∅) and, eventually, to contact it.
Table 1
Notation

Symbol Meaning

N The set of the nodes participating in the distributed system
Ni A node participating in the distributed system (Ni ∈ N )
D The objects domain
x An object in the domain (x ∈ D)
d(x, y) The distance between x and y (x, y ∈ D)
r A value in R+

Xi Xi ⊂ D is the set of the objects stored in a given node Ni ∈ N
X The set of the objects stored in the whole network (X =

⋃
i Xi )

δ(Ni , x) The lower bound for the distances between x ∈ D and all the objects
stored in Ni (i.e., Xi )

Nx,r The set of nodes inN that could have objects closer to x than r
Nx A subset of nodesN which is either downward closed (with respect

to x) or empty
Nn The closest node to x in (N \Nx )

N ∗ The set of nodes that already performed a local-INN
e An element, either an object or a node, in Queue
ϑ ϑ ∈ R+ is the key used for ordering the elements of Queue
Queue The set of pairs 〈element, ϑ〉 ordered according to key ϑ

k The number of objects already retrieved by the previous invocations
of the DINN

k+ The number of next neighbors we want to retrieve
kans The number of results already found by the DINN during the current

invocation
k̂ k̂ = k+

− kans
xk̂ xk̂ ∈ X is the k̂-th object in Queue
p p ∈ [0, 1] is the parameter used to set the degree of parallelization of

the DINN
li li ∈ Xi is the last object returned by Ni

Assumption 1 is needed because our DINN algorithm is built
over nodes which are able to perform a local-INN.

Assumption 2 is necessary for engaging the nodes in the
DINN algorithm execution as it progresses. Basically, given the
lower bound δ defined in Definition 2, we require a mechanism
for adding the nodes to Queue in order of increasing δ from
a query q. In case there is some replication in the distributed
system, there could be two or more nodes N j ∈ N for which
δ(N j , x) = 0. However, we only need to find one of them.

When Nx 6= ∅, Assumption 2 means that the distributed
system must be able to search for the next most promising node
(Nn) given that we already know a set of nodes (Nx ) which are
more, or equally, promising (by considering δ) than the next one
(i.e., Nx is downward closed).

The role of the downward closed subset Nx will be clarified
in the next section which will extensively discuss the algorithm.
However, we can anticipate that, because of the algorithm
definition, it is a subset of the nodes that, at any given time
during the algorithm execution, has already been asked for a
local-INN execution. In particular, if Nx = ∅, Assumption 2
means that any node Nc ∈ N must be able to find (using some



68 F. Falchi et al. / Future Generation Computer Systems 25 (2009) 64–76
routing mechanism provided by the distributed system), a node
Nn ∈ N for which the distance δ(Nn, x) is minimum.

If, for a specific data structure, it is not possible to evaluate
the lower bound δ, we can consider δ(Ni , q) = 0 for every node
Ni ∈ N . In this case the order in which the nodes are added to
Queue is undefined. However in this case, we will involve all
the nodes in (almost) every execution of the DINN algorithm. In
fact, given that there is no lower bound for the distance between
the objects stored in a given node and the query, we cannot
exclude any node a priori.

Please note that we do not suppose that in the distributed
system there is a global knowledge of the network. We only
assume that there is a way (usually a routing mechanism) to find
the most promising node for the algorithm progress. It can also
be noted that if δ is strong, the first node added to Queue is the
node Nn that would contain x (i.e., δ(Nn, x) = 0). Therefore,
in this case, the problem of finding the most promising node
becomes similar to the lookup problem in Distributed Hash
Tables.

While Assumption 2 is the most generic one, there
are simpler assumptions that can substitute it. In fact, in
Section 4.3.3, we illustrate two sufficient conditions for
Assumption 2. Condition 1 guarantees that the next most
promising node is always in Queue by just collecting
information about neighbors of yet involved nodes. On the other
hand, Condition 2 is easily satisfied by data structures able to
perform similarity search because it basically makes use of the
capability of a system to perform range queries.

4.3. The algorithm

In this section we present the definition of our DINN
algorithm for retrieving objects in order of decreasing similarity
with respect to a given query q . In particular, we will define the
process of retrieving the next closest object to q at each DINN
invocation. In Section 4.4 we will present a message reduction
optimization in case we want to retrieve more than one object
at each DINN invocation. Finally in Section 4.5 the proposed
algorithm will be extended to parallelize the operations made
by distinct nodes.

To perform the DINN we need to define a node that takes
the role of coordinating node (Nc). A good candidate for this
role is the initiating node (i.e., the node requesting the search).
Another good candidate, in case δ is strong (see Definition 2)
is the node that would store the query (i.e., δ(Nc, x) = 0).
However, the definition of our DINN algorithm is independent
of the particular choice of the coordinating node. This choice
only affects the number of messages exchanged during the
query execution.

As in [10] we need a Queue (see Definition 1) in which
elements are ordered according to their key (see Definition 5).
Moreover, when an object and an element have the same key,
the object comes before the node in Queue. In Queue nodes will
be assigned a different key (ϑ) depending on whether they have
already returned objects or not. Thus, we will use the following
notation:
Notation 1. N ∗
⊂ N is the set of nodes that already performed

a local-INN.

An important part of the DINN algorithm definition is the
definition of the keys used to order elements in Queue.

Definition 5. Given a query object q ∈ D we define the key
ϑ as:

• ϑx = d(x, q), for any object x ∈ D;
• ϑNi = δ(Ni , q), for any node Ni that has not yet been asked

for a local-INN (i.e., Ni 6∈ N ∗);
• ϑNi = d(li , q), for any Ni ∈ N ∗, where li ∈ Xi is the last

object that Ni returned when performing its local-INN.

Note that both keys used for nodes are lower bounds for the
distance between the query q and the next result coming from
the local-INN invocation on node Ni .

The DINN algorithm consists of a loop in which:

1. If Queue is empty, the closest node (Nn) to q that has not yet
performed a local-INN is added to Queue. In case Nn does
not exist, the DINN terminates (there are no more objects in
the distributed data structures);

2. Else, if the first element in Queue is a node (Ni ), this node
is asked to perform a local-INN. Then the returned result
li ∈ Xi is added to Queue and the key of Ni is updated with
ϑNi = d(li , q). In case Ni did not return any object (i.e., it
has already returned all its objects), the Ni is removed from
Queue;

3. Else, if the first element in Queue is an object x : let Nn be
the closest node to q that has not yet performed a local-
INN and has δ(Nn, q) < d(x, q); if Nn exists, add it to
Queue, otherwise the loop is exited returning x as the next
result. Note that if N ∗ is downward closed Nn can be found
because of Assumption 2. We prove N ∗ to be downward
closed in Corollary 1 (Section 4.3.1).

Queue must be kept alive for future request of more results.
Obviously, the requester can close the session asserting that no
more results will be asked. In this case Queue can be discarded.

In Algorithm 1 we give a definition of the DINN algorithm
using a pseudo language. The functions and procedures used in
Algorithm 1 are defined as follows:

• FIRST(Queue): returns the first element in Queue.
• LOCALINN(q, Ni ): asks node Ni to return the next result

according to its local-INN with respect to the query q.
• ENQUEUE(Queue, 〈e, ϑ〉): adds element e, either an object

or a node, to Queue with key ϑ .
• UPDATEKEY(Queue, 〈Ni , r〉): updates the key of node Ni in

Queue with the value r ∈ R+.
• EXQUEUE(Queue, e): removes element e and its key from

Queue.
• GETNEXTNODEINR(q, N ∗, r ): returns arg minNi {δ(Ni , q),

Ni ∈ (Nq,r \N ∗)}.
• GETNEXTNODE(q, N ∗): returns arg minNi {δ(Ni , q), Ni ∈

(N \N ∗)}.



F. Falchi et al. / Future Generation Computer Systems 25 (2009) 64–76 69
Fig. 2. Snapshot of the priority queue at a given time during the execution of the DINN algorithm.
Algorithm 1 Distributed Incremental Nearest Neighbor
Algorithm

loop
if Queue is empty then

Ni ⇐ GETNEXTNODE(q , N ∗)
if Ni = NULL then

Return NULL
end if
ENQUEUE(Queue, 〈Ni , δ(Ni , q)〉)

else if FIRST(Queue) is an object then
x ⇐ FIRST(Queue)
Ni ⇐ GETNEXTNODEINR(q , 〈N ∗, d(x, q)〉)
if Ni = NULL then

Return x
end if
ENQUEUE(Queue, 〈Ni , δ(Ni , q)〉)

else if FIRST(Queue) is a node then
Ni ⇐ FIRST(Queue)
x ⇐ LOCALINN(q , Ni )
N ∗

⇐ N ∗
∪ Ni

if x 6= NULL then
ENQUEUE(Queue, 〈x , d(x, q)〉)
UPDATEKEY(〈Ni , d(x, q)〉)

else {node Ni has no more objects}
EXQUEUE(Queue, Ni )

end if
end if

end loop

Note that if N ∗ is always downward closed with respect
to q , because of Assumption 2 it is possible to implement the
function GETNEXTNODE(q , N ∗). We prove this in Corollary 1
(Section 4.3.1). Please note also that GETNEXTNODEINR(q,
N ∗, r ) can be implemented using GETNEXTNODE(q, N ∗).
On the other side, using GETNEXTNODEINR, we can realize
GETNEXTNODE increasing r until a node is found. However,
GETNEXTNODEINR(q, N ∗, r ) can be more efficiently
implemented considering that it does not need to return a node
if it is farther away than r from q .

In Fig. 2 we give an example of Queue at a given time
during the DINN execution. The dotted lines show from which
node every object comes from. Let us suppose that we are
searching for the next nearest object to the query q and we have
already found some results which are no more in Queue. In fact,
whenever a result is found it is moved out of Queue. The next
element in Queue is N3. Thus, we have to to invoke the N3
local-INN to retrieve its next result. Let w be the next result
retrieved by N3. Once w is retrieved, both w and N3 are put
in the Queue with the same key d(w, q). However, because w

is an object, it will be before N3 in Queue (see the algorithm
definition). If d(w, q) < d(z, q) then w is the first element in
Queue and thus it is also the next result of the DINN. Otherwise
z is the first element in Queue and also the next result.

4.3.1. Correctness
In this section we prove that our DINN algorithm is correct,

i.e., it returns objects in order of increasing distance (decreasing
similarity) from the query q (Theorem 1).

First of all, to guarantee that it is possible to define GET-
NEXTNODEINR and GETNEXTNODE for a given distributed
system under Assumption 2, we must prove that N ∗ is always
downward closed with respect to q:

Corollary 1. At any time during the DINN algorithm
execution, the set of nodesN ∗ (i.e., the set of nodes that already
performed a local-INN ) is downwardclosed with respect to the
query q.

Proof. We prove the corollary using induction. When the
algorithm starts Queue is empty and a node Ni is added to
Queue using GETNEXTNODE(q, ∅) (usually δ(Ni , q) = 0).
After Ni has been asked for a result, N ∗ contains only Ni and
is downward closed by definition of GETNEXTNODE. At any
given time during the algorithm execution, let Nn be the node, if
it exists, returned either by the function GETNEXTNODEINR(q,
r , N ∗) or by the function GETNEXTNODE(q, N ∗). Because of
the functions definitions, if Nn exists, there is no other node
N j ∈ N ∗ for which δ(N j , q) < δ(Nn, q). Then (N ∗

∪ Nn) is
still downward closed with respect to q. �

Theorem 1 (Correctness). Let R be the set of objects already
returned by the DINN algorithm. Whenever DINN returns an
object x there are no objects nearer to the query:

∀y ∈ X , d(y, q) < d(x, q) ⇒ y ∈ R.

Proof. By definition of X there must be a node N j ∈ N
for which y ∈ X j . Using Definition 4, d(y, q) < d(x, q) ⇒

N j ∈ Nq,d(x,q). Because of the algorithm definition,
GETNEXTNODEINR(x , d(x, q), N ∗) did not return any node.
Then, by GETNEXTNODEINR definition, (Nq,d(x,q) \N ∗) = ∅

and then N j ∈ N ∗ (i.e., y belongs to a node which has already
been asked for a local-INN). If Ny ∈ N ∗ has some not returned
objects by algorithm definition N j is in Queue with key d(li , q)

(where li ∈ Xi is the last object it returned). Because x is
first, d(li , q) ≥ d(x, q) > d(y, q). Then y must be between
the objects Ni already returned, which are either in R or in
Queue. But y cannot be in the priority because x is first and
objects are ordered according to their distance from the query,
then y ∈ R. �

4.3.2. Optimality
In this section we prove that our DINN algorithm is optimal

in terms of number of involved nodes (Theorem 2) and number
of local-INN invocations (Theorem 3).



70 F. Falchi et al. / Future Generation Computer Systems 25 (2009) 64–76
Theorem 2. The DINN is optimal with respect to the number
of involved nodes given the lower bound δ.

Proof. The theorem can be rewritten as follows. Let N ∗ be the
set of involved nodes, x ∈ X the last object returned by the
DINN and q ∈ D the query object. Whenever the local-INN of
Ni is invoked, the lower bound δ of the distance between q and
the objects in Ni is less than the distance between q and x , i.e.,

Ni ∈ N ∗
⇒ δ(Ni , q) ≤ d(x, q).

Because of the algorithm definition (see Algorithm 1), the
last returned object x was at the head of Queue and each node
is requested to perform a local-INN result only when they
are at the head of Queue. Because δ(Ni , q) and d(x, q) are
used as key for not yet involved nodes and objects respectively
(see Definition 5), the last equation always holds. In fact, both
objects and nodes are ordered in Queue according to their
keys. �

Theorem 3. The DINN is optimal with respect to the number
of local-INN invocations given the lower bounds δ for the not
yet involved nodes, and d(li , q) for the yet involved nodes.

Proof. In Theorem 2 we proved that the DINN is optimal in
terms of number of involved nodes. Thus, DINN is optimal in
terms of local-INN first invocations. Moreover, being ϑNi =

d(li , q) the key (used to order the elements in Queue) for a
node Ni that already performed a local-INN (see Definition 5),
whenever Ni is asked to retrieve its next result (using its local-
INN) we are sure that the DINN next result will be further away
than d(li , q). In fact, we are using as key in Queue d(x, q) for
every object x and a lower bound for d(yi , q) for every node Ni
(see Definition 5). �

4.3.3. Sufficient conditions for Assumption 2
In this section we give two conditions which are sufficient

for Assumption 2. Condition 1 guarantees that the next most
promising node is always in Queue just collecting information
about neighbors of yet involved nodes (i.e., without generating
more messages) and is satisfied by MCAN which we used in our
experiments. On the other hand, Condition 2 makes use of the
capability to perform range queries and is thus easily satisfied
by data structures able to perform similarity search (as the ones
presented in [3,4]).

Condition 1. Let Nq be a downward closed set of nodes
with respect to an object q ∈ D. For any given Ni ∈

N , let Ni ⊆ N be the set of nodes which Ni is able to
contact directly independently from the execution of the current
DINN algorithm. Let Nn ∈ N be the closest node to the
query (according to δ) which is not in Nx (as defined in
Assumption 2). If Nn exists, it is in the union of the set of nodes
known by the nodes in Nx :

Nn = arg min
Ni

{δ(Ni , q), Ni ∈ (Nq,r \Nx )}

∈

⋃
{Ni , Ni ∈ Nx }.
Theorem 4. Condition 1 is sufficient for Assumption 2.

Proof. By Condition 1, Nc can ask each node Ni ∈ N ∗ which
are the nodes it has knowledge about (Ni ). Sorting the union
of them (

⋃
{Ni , Ni ∈ Nx }) Nc is able to find Nn . Thus,

Assumption 2 is satisfied. �

Condition 1 basically says that it is always possible to
pass from one node Nn−1 to the next one (Nn) just using the
information we found in the previous nodes. The information
we need is the knowledge they have about other nodes
(typically neighbors). This condition is very useful to efficiently
implement GETNEXTNODE and it is satisfied by MCAN which
is used in our experiments.

Condition 2. For any given object q ∈ D and r ∈ R+, every
node Ni ∈ N is able to know all the nodes (their addresses) in
Nx,r .

Theorem 5. Condition 2 is sufficient for Assumption 2.

Proof. By Condition 2, Nc can ask for all the nodes in Nq,r . If
(Nq,r \Nx ) 6= ∅ , the next node Nn is the nearest to the query
in (Nq,r \ Nx ). Otherwise, if (Nq,r \ Nx ) = ∅ , Nc can try
again increasing r until r ≤ dmax. In this last case Nn does not
exist. �

Please note that all distributed data structures able to per-
form a range query, should be able to satisfy Condition 2 (and
then Assumption 2). Under Condition 2 GETNEXTNODEINR is
efficiently implemented while GETNEXTNODE can be real-
ized increasing r until either a node is found, using GET-
NEXTNODEINR, or r exceeds the maximum possible value of
d (i.e., dmax = max(d(y, x), y, x ∈ D)).

4.3.4. Considerations
The major differences between our DINN algorithm and the

INN defined in [10] are:

• Once a node comes at the head of the queue we do not ask it
to return all its objects ordered according to their distances
from the query. This would be the natural extension for
the INN algorithm, but, in a distributed environment, such
an algorithm could not be scalable. Therefore, we ask it to
return its next object using its local-INN;

• Whenever a node returns an object, we move it back in the
queue using d(li , q) as new key (li is the last object the
Ni returned as a result). Please note that d(li , q) is a lower
bound for the distance between q and the next result coming
from the local-INN of Ni ;

• The original INN algorithm requests a consistency condition
(Definition 1 of [10]) to ensure that once a node reaches the
head of the queue no other nodes can return objects with a
distance smaller than the head node key. This condition has
been defined for hierarchical data structure thus limiting the
use of their INN algorithm. In our DINN we replaced the
consistency condition with Assumption 2.



F. Falchi et al. / Future Generation Computer Systems 25 (2009) 64–76 71
4.4. Message reduction

In this section we give an extension of our DINN to reduce
the number of messages when we want to retrieve the next
k+

≥ 1 objects. The price to be paid for the messages reduction
is the possibility to ask a node to retrieve more objects than what
is strictly necessary. At any given time during the execution of
the DINN:

Notation 2. Let k be the number of objects already retrieved by
the previous invocations of the DINN,

Notation 3. Let k+ be the number of objects more we want to
retrieve, and

Notation 4. Let kans ≤ k+ be the number of results already
found by the DINN during the current invocation.

If a node Ni is first in Queue we ask this node to retrieve
the next k̂ results where:

k̂ = k+
− kans .

Because k̂ represents the number of objects we need to end the
given task (i.e., retrieving the next k+ objects) we are sure that
we will never involve Ni again before the current task will be
completed. Note that, by definition, k̂ ≥ 1 always holds until
the current task is completed.

Furthermore, we can reduce the number of unnecessary
objects retrieved, by considering the distance of the k̂-th object,
if it exists, in Queue.

Definition 6. At any given time during the DINN algorithm
execution, let xk̂ ∈ X be the k̂-th object, if it exists, in Queue.
To guarantee that node Ni will be involved only once during the
current task, we ask node Ni to perform a sequence of local-
INN invocations until at least one of the following conditions is
true:

• k̂ more objects have been retrieved (k̂ = k+
− kans);

• d(li , q) ≥ d(xk̂, q), where li is the last object retrieved;
• all the objects stored in Ni have been retrieved.

The results coming from Ni are added to Queue. If all the
objects stored in Ni have been retrieved Ni is removed from
Queue, otherwise its key is updated with ϑNi = d(li , q) and
then ϑNi ≥ d(xk̂, q). At this stage there are two possibilities:

either the k̂ enqueued objects are before Ni or Ni is after xk̂ . In

both cases at least k̂ objects are before Ni in Queue. Thus, we
will not involve Ni again in retrieving the next k̂ results.

In Fig. 2 we give an example of Queue at a given time during
the DINN execution. The dotted lines show from which node
every object comes from. Let us suppose that we are searching
for the next k+

= 5 objects and we have already found the next
kans = 2 results (they are no more in Queue). We still have
to search for the next k̂ = k+

− kans = 5 − 2 = 3 results.
The k̂-th object xk̂ in Queue is z. Using the proposed extension,
the DINN will ask node N3 to retrieve objects (using its local-
INN) until either 3 objects have been found or the last object l3
retrieved by N3 has distance d(l3, q) ≥ d(z, q).
4.5. Parallelization

The DINN algorithm presented in Section 4.3 always
involves only the most promising node — the first in Queue.
In this section we give a parallelized version of our DINN.

Generally speaking, the k-NN operation, is not an easy
operation to parallelize as the RangeQuery is. To execute a
RangeQuery, every single node can perform the search among
its objects without considering the results coming from other
nodes. Given the query and the range, each node can search
among its objects regardless the results found in other peers. To
parallelize the DINN algorithm we must accept the possibility
to ask a node to give its next result even if it could be not
necessary. Furthermore, in a parallelized DINN it is possible
to involve nodes which would not be involved by the serial
execution.

Let us assume that at a given time during the algorithm
execution x1 is the first object in Queue. In principle it is
possible that we will ask all the nodes before x1 in Queue to
invoke their local-INN(e.g., if all these nodes return results
further away from q than x1). To parallelize the DINN
execution, we can decide to ask all the nodes before x1 to
retrieve the next object.

We now give a definition of DINN parallelization which
can be also used in combination with the message optimization
given in Definition 6.

Definition 7. Let xk̂ ∈ X be the k̂-th object in Queue and
d(xk̂, q) its distance from the query. Let p ∈ [0, 1] be the
parallelization parameter. We parallelize the DINN asking all
the nodes Ni ∈ Queue whose ϑNi ≤ p d(xk̂, q). In other words,
using Definition 5, a node Ni ∈ Queue is involved iff:

• ϑNi = δ(Ni , q) ≤ p d(xk̂, q), in case Ni ∈ N \N ∗ (i.e., Ni
has not yet been asked for a local-INN);

• ϑNi = d(li , q) ≤ p d(xk̂, q), otherwise (i.e., Ni ∈ N ∗)
where li ∈ Xi is the last object that Ni returned invoking its
local-INN.

Any involved node is asked to retrieve its next object
invoking its local-INN. However, using the DINN optimization
for k-INN search (see Definition 6), any node can be asked
to perform more than one local-INN with a single message.
However, in this case, there are nodes that are not at the top
of Queue, asked to retrieve objects. We can then consider the
case in which there are objects before them in Queue. Let k̃Ni

be the objects in Queue before node Ni . The maximum number
of objects we are interested in retrieving from Ni is no more k̂
but k̂ − k̃Ni .

In Fig. 2 we give a snapshot of Queue at a given time during
the DINN execution. As said before, the dotted lines show from
which node each object comes from. As before, let us suppose
that we are searching for the next k+

= 5 objects and we have
already found the next kans = 2 results. We still have to search
for the next k̂ = 3 results. Using the proposed extension, the
DINN will ask node N3, N5 and N7 to invoke their local-INN
and they all will work in parallel. If we also use the message
reduction optimization, N3 will be asked to retrieve at most 3



72 F. Falchi et al. / Future Generation Computer Systems 25 (2009) 64–76
objects, while N5 and N7 will be asked to retrieve at most 2
objects. All of them will stop the iteration of their local-INN if
d(l, q) ≥ d(z, q), where l is the last object they retrieved.

Unfortunately, there could be some nodes (Ni ) not yet in
Queue for which ϑNi ≤ p d(xk̂, q). In fact, the DINN algorithm
does guarantee only that the next most promising node is
present in Queue before asking the first node in Queue to
perform a local-INN. In this case the DINN algorithm will
continue to be correct, but the parallelization would be reduced.
To better parallelize the DINN algorithm it is useful to put more
nodes in Queue than necessary. As said before, parallelizing the
DINN can increase the total cost. For this reason a parametrized
parallelization is useful to find the desired trade-off between
total and parallel cost.

Definition 8. Let k̂ ∈ N+, and xk̂ ∈ X the k̂-th object, if it
exists, in Queue which is, by definition, ordered. Let p ∈ [0, 1]
be the parallelization parameter. We ask all the nodes in Queue
whose ϑ ≤ p d(xk̂, q) until at least one of the following
conditions is true (as in Definition 6):

• k̂ more objects have been retrieved (k̂ = k+
− kans);

• d(li , q) ≥ d(xk̂, q), where li is the last object retrieved;
• all the objects stored in Ni have been retrieved.

Note that, since k̂ ≤ k+, the degree of parallelization does
depend on k+. In other words, the more objects we request at
each invocation of the DINN algorithm, the greater the degree
of parallelization we obtain with the same p.

In case xk̂ does not exist (i.e., there are less than k̂ objects
in Queue), we involve just the first node (which is at the top of
Queue). Once xk̂ appears in Queue, the parallelization is used
again.

Another choice, in case xk̂ does not exist, is to use, in place
of d(xk̂, q), the distance from the query of the last object in
Queue. In this case the operation would became more parallel
but also more expensive considering its total cost. The degree
of parallelization of the DINN is also related to the number of
nodes present in Queue. Thus, it is important to have more than
only the next most promising node Nn (see Assumption 2) in
Queue. Different strategies can be used to efficiently put nodes
in Queue depending on the specific data structure that is used.
In our implementation of the DINN over the MCAN, we decided
to put in Queue the neighbors of every involved node.

5. DINN over MCAN

The MCAN [8,9] is a scalable distributed similarity search
structure for metric data. Extending the Content-Addressable
Network (CAN), which is a well-known Distributed Hash
Table, MCAN is able to perform distributed similarity searches
between objects assuming that the objects, together with the
used distance, are metric. For a complete description of MCAN
see [8]. A comparison of MCAN with similar distributed
similarity search structure for metric data can be found in [3].

MCAN satisfies Condition 1 which guarantees Assumption 2
as demonstrated in Theorem 4 (see Section 4.3.3). In fact, it can
be proved that in MCAN if a node Ni is neighbor of a node N j
Fig. 3. N. of nodes as dataset grows.

that is closer to the query than Ni and δ(N j , q) > 0, then N j
is also neighbor of at least one other node which is closer to
the query than N j . In other words MCAN satisfies Condition 1
and thus also Assumption 2. In fact, given a set of nodes N ∗

downward closed with respect to q, the node Nn is always
between the neighbors of at least a node N j ∈ N ∗ (Theorem 4).

5.1. Experimental results

Experiments have been conducted using a real-life dataset
of 1,000,000 objects using real nodes in a LAN network. Each
object is a 45-dimensional vector of extracted color image
features. The similarity of the vectors was measured by a
quadratic-form distance [13]. The same dataset has been used
for [9,3,12,1,4]. The dimensionality used for the MCAN is 3 as
in [9]. All the presented performance characteristics of query
processing have been taken as an average over 100 queries with
randomly chosen query objects.

To study scalability with respect to the number of objects,
we limited the number of objects each node can maintain (the
same has been done in [2,8,9,3,12,4]). When a node exceeds
its space limit it splits by sending a subset of its objects to a
free node that takes the responsibility for a part of the original
region. Note that, limiting the number of objects each node can
maintain, we simulate the simultaneous growing of dataset and
number of nodes. In Fig. 3 we show the number of nodes as the
dataset grows.

The parallelization and the number of messages reduction
are tuned varying respectively parameter p, defined in
Definition 8, and k+ (i.e., the objects requested at each
invocation of the DINN algorithm). As described in Section 4.4,
the more the objects (k+) we request at each invocation, the
greater degree of parallelization we obtain with the same p.

Usually evaluation methodologies of metric space access
methods are based on the number of distance computations.
However, to give a fair performance evaluation, we base
our evaluation on the number of local-INN invocations. This
evaluation approach has the advantage to be independent of the
particular local-INN implementation. Furthermore, different
nodes could even have different local-INN implementations.
We use the following two characteristics to measure the
computational costs of a query:

• total number of local-INNs — the sum of the number of
local-INN invocations on all involved nodes,



F. Falchi et al. / Future Generation Computer Systems 25 (2009) 64–76 73
Fig. 4. N. of local-INN invocations for different k+ (parallelization parameter
p = 0).

Fig. 5. N. of messages for different k+ (p = 0).

• parallel computations — the maximum number of local-
INN invocations performed in a sequential manner during
the parallel query processing.

Note that the total number of local-INNs corresponds to the
cost on a centralized version of the specific structure while the
parallel computations, together with the number of messages,
directly effects the response time.

In Fig. 4 we show the total number of local-INNs for p = 0
(i.e., no parallelization) for different k+ as function of the
number of results k. Note that, to obtain the same number
of results k varying k+, we need

⌈
k/k+

⌉
DINN invocations.

While increasing k+ does not seem worthwhile since the total
number of local-INNs increases, the advantage of greater k+ is
evident observing the number of messages exchanged during
the DINN execution in Fig. 5. In fact, as said in Section 4.4,
increasing k+, we can reduce the number of messages.

Since obtaining the first result from a local-INN in an
arbitrary node is significantly more expensive than obtaining
the next ones, a more realistic approach is to consider the cost
of the first result of a local-INN as several times the cost of
subsequent local-INN invocations. In Fig. 6 we report the same
result of Fig. 4, but assuming that the first invocation cost of
a local-INN is 10 times the cost of subsequent invocations. In
this case the gap between the graphs for different k+ remains
but it decreases. Note that, since in this case there is no
parallelization, there is no difference between the parallel and
total cost.

In Fig. 7 we show the estimated cost for retrieving up to 500
objects, 10 by 10 (i.e., k+

= 10) comparing the defined DINN
Fig. 6. Estimated cost for different k+ (p = 0).

Fig. 7. Total estimated costs (p = 0, k+
= 10).

Fig. 8. Parallel and total estimated costs for different k+ (p = 1).



74 F. Falchi et al. / Future Generation Computer Systems 25 (2009) 64–76
(a) k+
= 1.

(b) k+
= 10.

(c) k+
= 50.

Fig. 9. Parallel and total Estimated Costs for obtaining 500 results for various values of the parameter p. Each subfigure reports the result presented obtained using
different k+.
with a stateless execution of the DINN in which after searching
first 10 objects we destroy Queue and then we ask for the next
10 objects (thus requesting a 20-NearestNeighbor search from
scratch) and so on. Here we want to underline that the use of
an Incremental Nearest Neighbor algorithm when the number
of desired neighbors is unknown in advance is mandatory to
preserve efficiency. In fact the cost of retrieving the next k+
once a given number of results has already been retrieved using
a stateless approach is prohibitive.

Let us now consider the parallelized version of the DINN
defined in Section 4.5. In Fig. 8 we compare the total and
parallel cost when p = 1 (i.e., maximizing the parallelization).
The graph of the parallel cost demonstrates the advantage of
the parallel execution. Observing for instance k = 100 for the



F. Falchi et al. / Future Generation Computer Systems 25 (2009) 64–76 75
case k+
= 10, the parallel cost is slightly larger than 100, while

for the same case the sequential cost (Fig. 6) is about 1300.
k+

= 10 seems a good trade off between the total and the
parallel cost. In fact, the total cost is almost the same as of the
sequential case.

Another set of experiments were conducted by varying p
from 0 to 1 for a growing dataset. In these experiments we fixed
k = 500 and used various k+.

In Fig. 9(a) we report the costs for growing dataset, number
of results k = 500 and k+

= 1. The total cost does not
significantly vary with p, i.e., parallelization, for k+

= 1, is
obtained without increasing the total cost. Another important
aspect is that parallel cost is slightly influenced by the dataset
size when the parallelization degree is maximum (p = 1).

In Fig. 9(b) we report the costs for growing dataset, k = 500
and k+

= 10. We can see that increasing k+ the differences
between the parallel costs of different degree of parallelism
(p) are more relevant. However, the total cost for different p
are very similar and almost the same of the ones obtained for
k+

= 1 in Fig. 9(a). It is also important to observe that for
p = 1 the parallel cost scale.

Finally, in Fig. 9(c) we report the costs for k = 500 and
k+

= 50. In this case the parallel cost is better than for the k+
=

1 case but the total cost does depend on p. However, the most
important result is that the parallel cost not only scales with
respect to the dataset size, but it slightly decreases. Obviously,
this is possible because we are adding more resources (nodes)
as the dataset size increase (proportionally), but this should be
common in a P2P environment where typically more nodes
means more data and vice-versa.

In Fig. 10 we report the percentage of involved nodes
for k+

= 10 as the dataset grows. As expected, the more
the parallelism, the greater the percentage of involved nodes.
However, it is interesting to notice that results for p = 0.5 and
p = 1 are almost the same. Considering scalability with respect
to the dataset size, it is important that the percentage of involved
nodes does decrease with the number of objects, i.e., with the
number of nodes.

6. Conclusions and future work

Distributed incremental nearest neighbor search is a big
challenge for at least two reasons. It is quite handy to have a
possibility to easily increment the number of nearest neighbors
at a low cost instead of being forced to an expensive solution
of specifying high values of k to ensure having enough objects
in all situations or starting the nearest neighbor search over and
over again whenever the value of k grows. Second, distributed
environments do not allow application of existing centralized
solutions and completely new solutions are needed.

In this paper, we have defined a distributed incremental
nearest neighbor especially suitable for structured P2P
similarity search networks. The proposed algorithms have been
implemented in a large network of computers using MCAN and
extensively tested on a real-life data collection: color features
of images. We proved our algorithm to be optimal in terms of
both the number of involved nodes and the number of local-
INN invocations when executed in a serial way. However, our
Fig. 10. Average percentage of involved nodes for obtaining 50 results for
k+

= 1 and various values of the parameter p.

algorithm also allows controlling the degree of parallelism and
the number of messages by using two special parameters.

As a next step of our research, we plan to apply this
distributed incremental nearest neighbor search to other
distributed similarity search structures, such as GHT* [2], VPT*
[3], or M-Chord [12]. Naturally, this incremental approach
will vitally be important in developing multi-feature similarity
search execution strategies which are needed by the top k multi-
feature queries.

Acknowledgments

This work has been partially supported by the SAPIR
(Search on Audiovisual content using P2P IR) project,
funded by the European Commission under IST FP6 (Sixth
Framework Programme, Contract no. 45128) and by the NeP4B
(Networked Peers for Business) FIRB project, funded by the
Italian Council.

References

[1] Michal Batko, Vlastislav Dohnal, Pavel Zezula, M-Grid: Similarity
searching in grid, in: P2PIR ’06: Proceedings, ACM Press, New York,
NY, USA, 2006, pp. 17–24.

[2] Michal Batko, Claudio Gennaro, Pavel Zezula, Similarity grid for
searching in metric spaces, in: In 6th Thematic Workshop of the EU
Network of Excellence DELOS. Revised Selected Papers, in: LNCS, vol.
3664, Springer-Verlag, Berlin Heidelberg, 2004, pp. 25–44.

[3] Michal Batko, David Novak, Fabrizio Falchi, Pavel Zezula, On scalability
of the similarity search in the world of peers, in: InfoScale’06:
Proceedings, ACM Press, New York, NY, USA, 2006, p. 20.

[4] Michal Batko, David Novak, Fabrizio Falchi, Pavel Zezula, Scalability
comparison of peer-to-peer similarity-search structures, Future Genera-
tion Computer Systems, in press (doi:10.1016/j.future.2007.07.12).

[5] Ronald Fagin, Combining fuzzy information from multiple systems,
Journal of Computer and System Sciences 58 (1) (1999) 83–99.

[6] Ronald Fagin, Amnon Lotem, Moni Naor, Optimal aggregation
algorithms for middleware, in: Proc. ACM Symp. Principles of Database
Systems, pp. 102–113, 2001.

[7] Fabrizio Falchi, Claudio Gennaro, Fausto Rabitti, Pavel Zezula, A
distributed incremental nearest neighbor algorithm, in: InfoScale ’07:
Proceedings of the Second International Conference on Scalable
Information Systems, ACM Press, New York, NY, USA, 2007.

http://dx.doi.org/http://dx.doi.org/doi:10.1016/j.future.2007.07.12


76 F. Falchi et al. / Future Generation Computer Systems 25 (2009) 64–76
[8] Fabrizio Falchi, Claudio Gennaro, Pavel Zezula, A content-addressable
network for similarity search in metric spaces, in: In DBISP2P ’05:
Proceedings, in: LNCS, vol. 4125, Springer, 2005, pp. 98–110.

[9] Fabrizio Falchi, Claudio Gennaro, Pavel Zezula, Nearest Neighbor Search
in Metric Spaces through Content-Addressable Networks, Information
Processing & Management 43 (3) (2007) 665–683.

[10] Gı́sli R. Hjaltason, Hanan Samet, Distance browsing in spatial databases,
ACM Transactions on Database Systems (TODS) 24 (2) (1999) 265–318.

[11] Anirban Mondal, Yi Lifu, Masaru Kitsuregawa, P2PR-tree: An r-tree-
based spatial index for peer-to-peer environments, in: EDBT 2004
Workshops. Revised Selected Papers, in: LNCS, vol. 3268, Berlin
Heidelberg, 2004, pp. 516–525.

[12] David Novak, Pavel Zezula, M-chord: A scalable distributed similarity
search structure, in: In InfoScale’06: Proceedings, ACM Press, New York,
NY, USA, 2006, p. 19.

[13] Thomas Seidl, Hans-Peter Kriegel, Efficient user-adaptable similarity
search in large multimedia databases, in: VLDB ’97: Proceedings, Morgan
Kaufmann Publishers Inc, San Francisco, CA, USA, 1997, pp. 506–515.

[14] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger,
M. Frans Kaashoek, Frank Dabek, Hari Balakrishnan, Chord: A scalable
peer-to-peer lookup protocol for internet applications, IEEE/ACM
Transactions on Networking (TON) 11 (1) (2003) 17–32.

[15] Egemen Tanin, Deepa Nayar, Hanan Samet, An efficient nearest neighbor
algorithm for p2p settings, in: dg.o2005: Proceedings, pages 21–28.
Digital Government Research Center, 2005.

[16] Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, Michal Batko,
Similarity Search. The Metric Space Approach, in: Advances in Database
Systems, vol. 32, Springer Science + Business Media, Inc, 233 Spring
Street, New York, NY 10013, USA, 2006.

Fabrizio Falchi is a Ph.D. student in Information
Engineering at University of Pisa and in Informatics
at the Faculty of Informatics of Masaryk University of
Brno. From 2006 he has a Research Fellowship with
the NMIS Laboratory of the ISTI-CNR in Pisa. His
research interests include similarity search, distributed
indexes, multimedia content management systems,
content-based image retrieval, peer-to-peer systems.
Claudio Gennaro received the Ph.D. degree in Com-
puter and Automation Engineering from Politecnico di
Milano in 1999. He is now researcher at ISTI, an insti-
tute of the National Research Council (CNR) situated
in Pisa. His current main research interests are Perfor-
mance Evaluation, Similarity Search, Information Re-
trieval, Distributed and Parallel Systems, Multimedia
Content Management Systems and Multimedia Docu-
ment Modeling.

Dr. Fausto Rabitti is Research Director at Institute
for Information Sciences and Technologies (ISTI) of
the National Research Council (CNR) in Pisa. He is
now leading the Networked Multimedia Information
Systems Lab. In 1980–81 he was at the University of
Toronto and in 1987–88 at the Microelectronics and
Computer Corporation in Austin. In 1982 he became
Staff Researcher at the IEI-CNR in Pisa. In 1995
he became Research Director at the CNUCE-CNR
in Pisa, where he was managing the Multimedia and

Networking Department. Since 2002 he is at ISTI-CNR in Pisa and where since
2006 he has been managing the Networked Multimedia Information Systems.
He has been working in the area of distributed database management systems
office information systems, multimedia databases, object oriented databases
and digital libraries. He is actually involved in several international and national
projects in the area of multimedia digital libraries, similarity-based searching
and multimedia Web services (SAPIR, NeP4B, etc.).

Pavel Zezula is a professor of computer science at
the Faculty of Informatics, Masaryk University, Brno,
Czech Republic. His professional interests concentrate
on storage structures and algorithms for content-
based retrieval in non-traditional digital data types
and formats, such as the similarity search and the
exploration of XML structured data collections. He has
a long history of co-operation with the CNR in Pisa,
Italy, and has participated in numerous EU projects —
the most recent project, SAPIR, explores the search on

audiovisual content using Peer-to-Peer information retrieval. He has been a
Program Committee Member of several prestigious international conferences
(EDBT, VLDB, ACM SIGMOD, and CIKM). His research results appear in
major journals such as ACM TOIS, ACM TODS, and VLDB Journal, and in
the proceedings of leading conferences such as ACM PODS, VLDB, and ACM
SIGIR.


	Distance browsing in distributed multimedia databases
	Introduction
	Related work
	DINN outline
	The DINN algorithm
	Definitions and notation
	Assumptions
	The algorithm
	Correctness
	Optimality
	Sufficient conditions for Assumption 2
	Considerations

	Message reduction
	Parallelization

	DINN over MCAN
	Experimental results

	Conclusions and future work
	Acknowledgments
	References


