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Abstract

A smart camera is a vision system capable of extracting application-specific information from the captured
images. The paper proposes a decentralized and efficient solution for visual parking lot occupancy detection
based on a deep Convolutional Neural Network (CNN) specifically designed for smart cameras. This solution
is compared with state-of-the-art approaches using two visual datasets: PKLot, already existing in literature,
and CNRPark-EXT. The former is an existing dataset, that allowed us to exhaustively compare with previous
works. The latter dataset has been created in the context of this research, accumulating data across various
seasons of the year, to test our approach in particularly challenging situations, exhibiting occlusions, and
diverse and difficult viewpoints. This dataset is public available to the scientific community and is another
contribution of our research. Our experiments show that our solution outperforms and generalizes the best
performing approaches on both datasets. The performance of our proposed CNN architecture on the parking
lot occupancy detection task, is comparable to the well-known AlexNet, which is three orders of magnitude
larger.

Keywords: Machine Learning, Classification, Deep Learning, Convolutional Neural Networks, Parking
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1. Introduction

A smart camera is a vision system that has an im-
age capture circuitry and enough computing power
to process and extract application-specific informa-
tion from the captured images. Smart cameras are
also able to generate event descriptions or make de-
cisions that are used in intelligent and automated
systems (Belbachir, 2010).

Recently there has been a growing interest in
developing smart camera solutions able to detect
parking lot occupancy. The approach that we pro-
pose performs this task in real-time directly on
smart cameras, without using a central server. It is
a decentralized, effective, efficient, and scalable ap-
proach, based on deep learning techniques (Bengio,
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2009). It relies on a deep Convolutional Neural Net-
work (CNN) specifically designed to be executed on
smart cameras.

The clear advantages of the decentralization are
the reduction of the communication overhead and
the elimination of computing bottleneck. As a con-
sequence, the system scales better when the number
of monitored parking spaces increases.

We believe that the proposed approach is also ad-
vantageous with respect to those using ground sen-
sors (e.g. magnetic sensors) placed on every park-
ing space. Indeed, a single smart camera can si-
multaneously monitor several parking lots at a cost
that is significantly lower than the cost required to
install and maintain sensors in every parking lot.

The usage of video to monitor occupancy of park-
ing lots is not new, see for instance (Dan, 2002),(Wu
et al., 2007), (del Postigo et al., 2015), (de Almeida
et al., 2015). However, vacant parking space detec-
tion using only visual information is still an open
problem. Many techniques using video cameras are
tailored and fine-tuned to specific contexts and sce-
narios. However, these techniques cannnot be easily
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generalized, and even the adaptation of one solution
to a different parking lot is not easy.

Thanks to the use of deep CNN, the proposed so-
lution is robust to disturbances created by partial
occlusions, by the presence of shadows and by the
variation of light conditions. Moreover, it exhibits a
good generalization property: in fact, the quality of
the results is maintained when we consider parking
lots and scenarios significantly different from the
ones used during the CNN training phase. Further-
more, the classification phase needs fewer compu-
tational resources than the training phase, making
it possible to run it on distributed, embedded, and
low computing-power frameworks.

To validate our approach, we built a dataset,
called CNRPark-EXT, collecting images from the
parking lots in the experimentation area, which
is the campus of the National Research Council
(CNR) in Pisa.

The images in the CNRPark-EXT dataset are
taken by 9 smart cameras with different point of
views and different perspectives, in different days
with different weather and light conditions, and in-
cludes occlusion and shadow situations that make
the occupancy detection task more challenging.
The dataset has been exhaustively, manually anno-
tated, and is available to the scientific community.
More details about the CNRPark-EXT dataset will
be given in Section 4.

In addition, we tested our method on PKLot, a
dataset for parking lot occupancy detection, so as
to be able to compare our method against the state-
of-the-art methods discussed in (de Almeida et al.,
2015).

The usage of datasets coming from different park-
ing lots and scenarios allowed us to test the gener-
alization property of our approach. To this end,
we trained the CNN on one scenario and tested it
in a completely different one. To the best of our
knowledge, there are no other experiments where
this type of generalization property has been tested.

The paper is organized as follows. Section 2 in-
troduces other works related to our proposal. Sec-
tion 3 describes the convolutional neural network
implied in the classification process. Section 4
presents the datasets used to evaluate and compare
our approach. Section 5 discusses the experiments
and the obtained results. Section 6 discusses how
the framework was deployed in a real scenario and
gives an overview of the overall system. Finally,
Section 7 concludes the paper.

2. Related Work

One of the earliest attempts of using machine learn-
ing to approach the problem of parking lot monitor-
ing was due to (Dan, 2002) who used colour vector
features on a support vector machine (SVM) clas-
sifier to distinguish car regions from space regions
inside the parking lot. Wu et al. (Wu et al., 2007)
tried to overcome the occlusions problem of this ap-
proach by classifying the state of three neighbouring
spaces as a unit and defining the colour histogram
across three spaces as the feature in their SVM clas-
sifier.

To deal with the problem of light changes, Tsai
et al. (Tsai et al., 2007) trained a Bayesian clas-
sifier to verify the detection of vehicles based on
corners, edges, and wavelet features. Huang et al.
(Huang et al., 2013) used a Bayesian hierarchical
framework to build a vacant parking space detec-
tion system that operates day and night based on a
3D model for parking spaces. Similarly, the method
presented in (Delibaltov et al., 2013) models every
parking space as a volume in the 3D space, and
thus is able to account for occlusions when esti-
mating the probability of a vehicle being present in
a parking space. Jermsurawong et al. (Jermsura-
wong et al., 2014) used specially trained customized
neural networks to determine occupancy status and
parking demand based on visual features extracted
from parking spaces. They present robust results
for night and day classifiers in a one-day long eval-
uation based on 126 parking spaces.

A recent work that approaches the problem by
machine learning techniques is (de Almeida et al.,
2015). The authors use a dataset of roughly 700.000
images of parking spaces coming from three dif-
ferent cameras to train SVM classifiers on multi-
ple textural features, such as LBP, LPQ, and their
variations. They also improve the detection perfor-
mance using ensembles of SVMs, applying simple
aggregation functions, such as maximum or aver-
age, to the confidence values given by the classifiers.

The work proposed in (del Postigo et al., 2015)
is based on a temporal analysis of the video frames
to detect the occupancy variation of the parking
areas. It combines background subtraction using a
mixture of Gaussians to detect and track vehicles,
and the creation of a transience map to detect the
parking and leaving of vehicles.

(Masmoudi et al., 2014) tackles the problem of
occlusions between parking spaces, where one or
more space of a parking can be hidden by another
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parked vehicle. To this end, vehicle tracking is per-
formed to detect the events of entering and leaving
of a car in a parking space.

In addition to approaches using visual techniques
and ground sensors, there are techniques that use
sensors installed on cars or carried by car drivers.
For instance, (Caicedo et al., 2012) proposes a
framework for predicting parking occupancy by in-
teracting with in-vehicle navigation systems. In
(Lan & Shih, 2014), a crowdsourcing solution, lever-
aging on sensors in smart-phones, was proposed to
collect real-time parking availability information.

In the context of vehicle detection, the only work
of which we are aware of using CNN is the one pre-
sented in (Chen et al., 2014), which uses a multi-
scale CNN to detect vehicles in high-resolution
satellite images.

To the best of our knowledge, ours is the first
work that employs deep Convolutional Neural Net-
works in the context of parking lot monitoring.

2.1. Deep Learning

Deep Learning (DL) (Bengio, 2009) is a branch of
Artificial Intelligence that aims at developing tech-
niques that allow computers to learn complex per-
ception tasks, such as seeing and hearing, at hu-
man level of accuracy. It provides near-human level
accuracy in image classification, object detection,
speech recognition, natural language processing, ve-
hicle and pedestrian detection, and more. The
traditional approaches to the classification prob-
lem use ad-hoc functions to extract from an im-
age specific features that are considered to be in-
dicative of certain objects. For example, hard cor-
ners and straight edges might be believed to indi-
cate the presence of man-made objects in the scene.
The outputs of these feature extraction functions
are then given in input to a classification function,
which determines whether or not a particular ob-
ject has been detected in the image. However, this
approach leads to weak and false-alarm prone de-
tectors. In addition, it presents the following prob-
lems:

• it is hard to think of general, robust, reliable
features, which map to specific object types;

• it is a huge task to find the right combination
of features for every type of object to classify;

• it is difficult to design functions that are robust
to translations, rotations and scaling of objects
in the image.

All these problems make developing high accu-
racy object detectors and classifiers for a broad
range of objects very hard .

The Deep Learning approach, on the other hand,
exploits a large number of ground-truth labeled
data to discover which features and combinations
of features are most discriminative for each class of
objects to be recognized, and builds a combined fea-
ture extraction and classification model. The model
thus obtained can be employed not only to classify
the specific objects it was trained on, but also to
recognize previously unseen objects that are simi-
lar to them.

A Deep Learning approach particularly effective
for vision tasks exploits Convolutional Neural Net-
works (CNN) (Krizhevsky et al., 2012; Simonyan &
Zisserman, 2014; Girshick et al., 2014). A CNN is
composed of a possibly large number of hidden lay-
ers, each of which performs mathematical compu-
tations on the input provided by the previous layer
and produces an output that is given in input to the
following layer. A CNN differs from classical neu-
ral networks for the presence of convolutional lay-
ers, which can better model and discern the spatial
correlation of neighbouring pixels than normal fully
connected layers. For a classification problem, the
final outputs of the CNN are the classes which the
network has been trained on. The training phase is
usually extremely expensive from a computational
point of view, and may take a long time to com-
plete. Once the network has been trained and the
classifier has been initialized accordingly, the run
time phase of prediction is quite fast and efficient.

3. Deep embedded Convolutional Neural
Networks for Occupancy Detection

One of the objectives of our proposal is to run
the occupancy detection software entirely on smart
cameras, i.e. cameras capable of processing the ac-
quired images and of transmitting just the result
to a remote server. As a reference, we considered
Raspberry Pi 2 model B 1 equipped with the stan-
dard Raspberry Pi camera module 2 as smart cam-
era.

A very popular deep convolutional neural net-
work, used as reference in many works, is the so

1https://www.raspberrypi.org/products/raspberry-pi-2-
model-b/

2https://www.raspberrypi.org/documentation/hardware/camera.md
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Figure 1: CNN Architecture: for convolu-
tional layers conv1-3, parameters are specified
as “size/stride num”. For max-pooling, param-
eters are specified as “size/stride”. For fully
connected layers we report their dimensional-
ity. The last fully connected layer is followed
by a 2-way soft-max classifier.

called AlexNet (Krizhevsky et al., 2012). The ar-
chitecture of an AlexNet consists of 60 million pa-
rameters and 500,000 neurons. It is organized into
five convolutional layers, some followed by max-
pooling layers, and two fully connected layers with
a 1000-way softmax (more details can be found
in (Krizhevsky et al., 2012)).Using such an archi-
tecture directly on a low-computing power device,
poses a very difficult challenge, especially in light of
the fact that a single camera might need to monitor
several parking places simultaneously and that each
parking place needs one independent occupancy de-
tection task to be executed.

In order to make the detection software able to
efficiently run directly on the smart cameras, we
defined a smaller deep CNN architecture and we
compared its performance with respect to the use
of the AlexNet architecture. This simplification of
the network is also justified by the fact that the
original AlexNet architecture was designed for vi-
sual recognition tasks much more complex than our
binary classification problem. Originally, AlexNet
was trained on a one million images dataset to rec-
ognize 1000 different classes. In our case, we just
have to distinguish two classes. In fact, the experi-
ments reported in Section 5 show that our proposed
architecture can cope easily and effectively with the
car parking occupancy detection problem.

The deep CNN architecture that we defined is in-
spired to the AlexNet. We called the new network
mAlexNet, as mini AlexNet. Details of the archi-
tecture are reported in Figure 1. In the mAlexNet,
we used three convolutional layers and two fully
connected layers, including the output layer. The
first and the second convolutional layers (conv1-2 )

are followed by max pooling, local response normal-
ization (LRN), and linear rectification (ReLU). The
third convolutional layer (conv3 ) does not use LRN.
The number of filters of conv1-3 and the number of
neurons in the fully connected layer (fc4 ) are drasti-
cally reduced to fit the problem dimension, obtain-
ing an architecture with roughly 1

1340 parameters
than AlexNet. In fc4 and fc5 (the output layer),
no dropout regularization is used. The mAlexNet
takes a 224x224 RGB image, corresponding to a
crop representing one single parking space as in-
put. The cropped image might need to be resized
if its size is different than what needed.

The mAlexNet has a number of layers that makes
the detection task executable in real-time on an em-
bedded device. On average, occupancy detection
of 50 parking spaces takes around 15 seconds on a
Raspberry Pi model B.

Our CNN was trained to directly decide about
the occupancy status of the individual parking
spaces seen by the video cameras. During the train-
ing phase, we used random cropping and horizontal
flipping techniques of the training images for data
augmentation: images are squashed to a resolution
of 256x256, then are horizontally flipped with a 0.5
probability, and finally a random 224x224 crop is
taken as input of the neural network. Further de-
tails on the training phase are given in Section 5.
At prediction time, images are resized to 224x224
resolution and no flip takes place.

4. Datasets

A contribution of this paper is also the publica-
tion of CNRPark-EXT, a dataset of roughly 150.000
labeled images of vacant and occupied parking
spaces, built on a parking lot of 164 parking spaces.
CNRPark-EXT includes and significantly extends
CNRPark(Amato et al., 2016), a smaller dataset of
roughly 12.000 labeled images, which we also used
to perform some of the experiments.

The smaller CNRPark dataset contains images
of the parking lot collected in different days of July
2015, from 2 distinct cameras A and B, (see Fig-
ure 2, top row), which were placed in order to have
different perspectives and angles of view. The CN-
RPark dataset is also available for downloading3.

The full CNRPark-EXT extends CNRPark with
images collected from November 2015 to February

3http://claudiotest.isti.cnr.it/park-datasets/CNRPark
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(a) Overview of CNR-
Park CAM A

(b) Overview of CNR-
Park CAM B

(c) Overview of
CNRPark-EXT CAM 1

(d) Overview of
CNRPark-EXT CAM 8

Figure 2: Parking space patches are seg-
mented and numbered as shown in the images.
Top images belong to the small dataset CNR-
Park, while bottom images belong to the full
CNRPark-EXT dataset.

2016 under various weather conditions by 9 cameras
(see Figure 2, bottom row) with different perspec-
tives and angles of view. It captures different situa-
tions of light conditions, and it includes partial oc-
clusion patterns due to obstacles (trees, lampposts,
other cars) and partial or global shadowed cars (see
Figure 3). This allows training a classifier that is
able to distinguish most of the difficult situations
that can be found in a real scenario.

We built masks that allow cropping the full pic-
tures taken by the camera in smaller pictures, each
containing one single parking space. In the re-
minder of the paper we refer to such smaller pic-
tures as patches (see Figure 3 for some examples).
A patch is a square of size proportional to the dis-
tance from the camera, the nearest patches are big-
ger than the farthest. Finally, we manually labeled
all the patches according to the occupancy status of
the corresponding parking space, 0 for vacant and
1 for occupied.

Patches of the CNRPark-EXT dataset are
grouped together into subsets corresponding to dif-
ferent weather conditions (Sunny, Overcast, Rainy),
days of capture, and camera IDs. Patches are also
grouped into training, validation, and test sub-
sets, to provide a common and objective ground

Figure 3: Training set patches segmented from
the camera view. Images show four parking
spaces in both status: busy (first row) and free
(second row). They also present some occlusion
and shadow situations that we faced.

for training and testing classification algorithms.
CNRPark-EXT is composed of 4287 screen-shots
acquired in 23 different days, resulting in a dataset
of 144.965 labeled parking space patches.

The CNRPark-EXT dataset is made available for
downloading4. Table 1 reports detailed information
about the composition of CNRPark, CNRPark-
EXT, and PKLot(de Almeida et al., 2015). PKLot
is an additional dataset, existing in literature,
which we also used to perform evaluation of the
proposed techniques. More information on PKLot
can be found in Section 5, and discussion on its
grouping into subsets can be found in (de Almeida
et al., 2015).

5. Evaluation

In this section, we present the methodology and
the results of the experimental evaluation. We per-
formed different experiments to investigate different
aspects of the proposed solution:

1. How does the proposed solution compare
against state-of-the-art approaches?

2. How much the generalization performance de-
grades when using a reduced CNN instead of
state-of-the-art ones?

3. How robust the proposed solution is to weather
and viewpoint changes?

We used two datasets in our experiments:
CNRPark-EXT, the dataset generated by us, and

4http://claudiotest.isti.cnr.it/park-datasets/CNR-EXT/
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datasets free
spaces

busy
spaces

total

CNRPark 4181 8403 12584
CNRPark-EXT 65658 79307 144965
PKLot 337780 358119 695899

subsets free
spaces

busy
spaces

total

CNRParkOdd 2201 3970 6171
CNRParkEven 1980 4433 6413

CNRPark-EXT TRAIN 46877 47616 94493
CNRPark-EXT VAL 5232 13415 18647
CNRPark-EXT TEST 13549 18276 31825

CNRPark-EXT SUNNY 25665 37513 63178
CNRPark-EXT OVCST 21067 23176 44243
CNRPark-EXT RAINY 18926 18618 37544

CNRPark-EXT C1 6407 9308 15715
CNRPark-EXT C2 1454 2641 4095
CNRPark-EXT C3 4101 5370 9471
CNRPark-EXT C4 7219 9357 16576
CNRPark-EXT C5 9582 11256 20838
CNRPark-EXT C6 9462 10646 20108
CNRPark-EXT C7 10595 10519 21114
CNRPark-EXT C8 11237 12847 24084
CNRPark-EXT C9 5601 7363 12964

PKLot2Days 27314 41744 69058
PKLotNot2Days 310466 316375 626841

PKLot UFPR04 TRAIN 25894 23266 49160
PKLot UFPR04 TEST 33824 22859 56683
PKLot UFPR05 TRAIN 45759 48196 93955
PKLot UFPR05 TEST 22600 49230 71830
PKLot PUC TRAIN 114424 106334 220758
PKLot PUC TEST 115616 87895 203511

PKLot TRAIN 27314 41744 105843
PKLot VAL 54909 47453 165785
PKLot TEST 275894 248583 424269

Table 1: Details of datasets used in the exper-
iments, with the various proposed subsets. Val-
ues refer to the number of patches contained in
every dataset or subset

PKLot(de Almeida et al., 2015). The two datasets
are significantly different. Besides the fact that they
contain pictures taken from different parking lots,
it is worth highlighting the following differences:

a) in CNRPark-EXT parking spaces masks are
non-rotated squares; often images do not cover pre-
cisely or entirely the parking space volume, whereas
in PKLot images are extracted using rotated rect-
angular masks, which are subsequently straight-
ened, resulting in a more precise coverage of the
parking space;

b) CNRPark-EXT is composed also of heavily
occluded spaces (almost entirely covered by trees
and lampposts) which are not included in the set of
segmented spaces of PKLot ; moreover in CNRPark-
EXT images are taken from lower point of views
with respect to PKLot, resulting in more occlusions
due to adjacent vehicles.

These aspects makes the classification of PKLot
an easier challenge with respect to CNRPark-EXT,
which shows higher variability between images, and
include more noisy factors.

The usage of two completely different datasets
allowed us to extensively validate and compare the
proposed approach. We performed our experiments
using several subsets drawn from the datasets, per-
forming training and test on subsets coming from
the same dataset, and also training on subsets from
one dataset while testing on the other one.

The performed experiments are described in the
following subsections, and all the details of the sub-
sets used are summarized in Table 1. All trained
models produced are available for download5.

5.1. Comparisons with the State of the Art

We have compared mAlexNet against the method
proposed in (de Almeida et al., 2015), a state-of-
the-art approach for car parking occupancy de-
tection that relies on RBF kernel SVMs trained
on histograms of textural features. The authors
specifically used LBP, LPQ features and their vari-
ations (Ojala et al., 2002; Ojansivu & Heikkilä,
2008; Rahtu et al., 2012) as input of the SVM. In
their experiment, they show that there is no ab-
solute best among those textural features for this
task. However, we noticed that in most of the cases,
LPQu and LPQg (Local Phase Quantization with
respectively uniform and Gaussian initialization),

5http://claudiotest.isti.cnr.it/park-datasets/CNR-
EXT/models/
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give better performance. They also tested ensem-
bles of classifiers, fusing the confidence values com-
ing from SVMs applied to different selections of the
above features. Confidence values were fused us-
ing simple aggregation functions, such as Max and
Mean. We noticed in their results that taking the
mean of the confidence coming from different clas-
sifiers (to which we refer with Mean Ensemble) usu-
ally improves the performance.

Tests were performed by using both CNRPark
and PKLot datasets. CNRPark was split into even
and odd parking spaces (CNRParkEven and CN-
RParkOdd). Training was executed on one of the
two and testing on the other.

For PKLot, we used the same configuration re-
ported in (de Almeida et al., 2015), splitting each
of the three subsets of PKLot (corresponding to dif-
ferent cameras UPFR04, UFPR05, and PUC, see
(de Almeida et al., 2015) for details) in training
and test sets with a 50-50 proportion. We made
sure that images captured the same day do not ap-
pear simultaneously in the train and in the test sets.
We trained our proposed model mAlexNet on each
of the three training sets individually, and at the
end of the training phase, we tested each trained
model on all three testing sets.

All the models were trained with gradient descent
for at most 18 epochs, with a learning rate of 0.01
halved every 6 epochs, a batch size of 64, a mo-
mentum of 0.9, and a weight decay of 0.0005. We
computed two evaluation metrics as in (de Almeida
et al., 2015). The first one is the accuracy on the
test set when choosing the most confident class as
output (which is using a threshold of 0.5 for a bi-
nary classification problem). The second one is the
Area Under the Curve (AUC) of the Receiver Op-
erating Characteristic (ROC) curves. ROC curves
show how True Positive Rate (TPR), on y-axis, and
False Positive Rate (FPR), on x-axis, vary as its
score threshold is varied. AUC measures how much
a curve leans near the perfect classification point,
that is the point (0,1) on the ROC plot. AUC values
range from 0 (perfect misclassification) to 1 (perfect
classification), where 0.5 indicates a classifier that
performs like the random guessing classifier. This
measure gives us a threshold-independent evalua-
tion of the classifier.

5.1.1. Results

Results are reported in Table 2. For simplic-
ity, for each experiment we report only the vari-
ant of LBP or LPQ that yielded the best perfor-

mance. We notice that our solution generally per-
forms much better than the other compared meth-
ods in terms of both accuracy and AUC. In partic-
ular, mAlexNet outperforms the other techniques
by 3% to 10%, when it is tested on images taken
from a subset different from the training set. In
fact, mAlexNet reaches accuracy values of 98.27% in
the UFPR04/PUC training/test set configuration.
This is roughly 10% more accurate than the best
compared method, that is Max Ensemble, which
reaches 88.40 %.

Experiments on CNRPark revealed that classi-
fication on this dataset is more challenging than
PKLot. This is probably due to the high variability
of views and occlusion patterns. In this dataset,
again, mAlexNet still outperforms the other com-
pared classifiers in terms of accuracy. Our ap-
proach is roughly 3% better than the best of the
others. In fact, it reaches 90.13 % in the CN-
RParkOdd/CNRParkEven configuration and 90.71
% in the CNRParkEven/CNRParkOdd one. The
other compared methods reach respectively 87.65
% and 87.21%.

5.2. Evaluation of the generalization property

Here we compare the generalization performance of
our network architecture mAlexNet against the ap-
proach proposed in (de Almeida et al., 2015) and
the full architecture of the AlexNet (Krizhevsky
et al., 2012). To do so, we perform different ex-
periments where we train with a dataset and we
test with a different one. Details about the subsets
used in these experiments are reported in Table 1,
while the performed experiments are summarized
in Table 3.

To compare generalization performance of
mAlexNet and (de Almeida et al., 2015), we first
trained on PKLot and tested on CNRPark, then
viceversa. In order to reduce training times for
the SVMs, training was performed on a subset
of PKLot, called PKLot2Days. This subset is
formed choosing from PKLot the images of the
first two days, in chronological order, for each
camera (UFPR04, UFPR05, and PUC) and for
each weather condition (SUNNY, OVERCAST,
RAINY).

We also compared the generalization perfor-
mance of mAlexNet and AlexNet. In this case, we
trained separately with CNRPark, CNRPark plus
cameras C1 and C8 of CNRPark-EXT, the whole
CNRPark-EXT, and PKLot. Validation was per-
formed on the corresponding validation sets. Test
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with accuracy and AUC evaluation were performed
on all available test sets.

Experiments with CNRPark plus cameras C1
and C8 of CNRPark-EXT were performed in order
evaluate with a training set containing a balanced
set of different viewpoints. In fact, the majority of
the images in CNRPark-EXT TRAIN are captured
from a frontal viewpoint. C1 and C8 have very dif-
ferent viewpoints of the parking lot. As depicted in
Figure 2, C1 has a side view of the parking lot,
while C8 has a pure front view.

All the models have been trained for at most 6
epochs, with a learning rate of 0.0008, which is
multiplied by 0.75 every 2 epochs. Other hyper-
parameters are the following: batch size 64, mo-
mentum 0.9, and weight decay 0.0005. The final
models were chosen as the models with the best
performance on validation sets.

5.2.1. Results

Table 3 reports the accuracy values obtained by
the various methods for each experiment. We can
state that our architecture has comparable perfor-
mance with respect to AlexNet when trained and
tested with data coming from the same dataset. In
fact, the accuracy values of both models differ at
most of 1% in all experiments where training and
test subsets are taken from the same dataset.

When training and test is performed on different
datasets, AlexNet reaches slightly higher accuracy
values. Note that when using a viewpoint-balanced
training set (i.e. when using CNRPark), we always
obtain performance higher than 90%. In the best
case, there is practically no difference between the
two methods. In the worst case, we measured a
difference of ∼ 9% with respect to mAlexNet.

Remember that AlexNet is three orders of mag-
nitude more complex than mAlexNet. Obviously, a
bigger model offers a greater generalization perfor-
mance at the cost of more resources needed.

Finally, we report that mAlexNet generalizes
always better than the approach proposed in
(de Almeida et al., 2015). Accuracy of our methods
is respectively 15% and 35% better than the others.

5.3. Inter-Camera and Inter-Weather evaluation

Errors in the occupancy detection of parking
spaces are due to many reasons. For instance, the
lighting condition changes during different periods
of the year; moreover, occlusions and reflection pat-
terns might introduce a fixed source of error. The

weather condition might produce significant illumi-
nation changes as well. During a rainy weather,
puddles and wet floor create textural patterns that
may lead to a misclassification. Sunbeams can cre-
ate reflections on the car’s windscreen or on water,
covering the majority of the images with saturated
patterns. As we discussed in previous experiments,
errors might also be due to low generalization prop-
erties of the classifier. When a classifier does not
generalize well, it works well just in the conditions
where it was trained. For instance, a bad classifier
trained on a certain point of view of the parking
lot, does not work well when tested with images
coming from a camera seeing the parking lot from
a different point of view.

To measure the robustness of our approach to
these scenarios, we performed two types of ex-
periments: inter-camera and inter-weather experi-
ments.

In the former, we trained our neural network us-
ing images from one single camera of the CNRPark-
EXT dataset. Then we measured the accuracy ob-
tained with the trained network on pictures cap-
tured by another camera. To give maximum em-
phasis to robustness to viewpoint changes, we per-
formed two different trainings with pictures coming
respectively from C1 and C8. C1 is a side view of
the parking lot, while C8 has a front view of the
parking lot. Examples of images taken from these
two cameras are depicted in Figure 2.

In the latter experiment, we trained on images
taken during one particular weather condition, and
we measured the accuracy obtained on images with
different weather conditions. We performed three
experiments, training respectively on CNRPark-
EXT SUNNY, OVERCAST, and RAINY subsets.

We used the same training hyper-parameters
used in the experiments described in Subsection 5.2.

5.3.1. Results

Results of inter-camera and inter-weather exper-
iments are reported in Figure 4 and 5, respectively.
The histograms compare the accuracy of a classi-
fier trained on a specific scenario (a specific camera
or a specific whether condition) when tested on all
other possible scenarios.

In inter-camera experiments, we noticed that the
best accuracy is given by the model trained on C8.
This is reasonable because it has a front view of
the parking lot, which is common to most of the
cameras and to other parking lots scenarios (like
PKLot). C1 often captures only partial images of
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Figure 4: Results of inter-camera experiments
in terms of accuracy obtained when training on
camera 1 (in blue), and on camera 8 (in red).

Figure 5: Results of inter-weather experiments
in terms of accuracy obtained when training on
a sunny (in blue), overcast (in red), or rainy (in
yellow) weather.

parking spaces, and it has a very skewed view of a
portion of the parking lot. In fact, it reaches a lower
accuracy on PKLot, which is mainly composed by
images with no occlusions, with a central and verti-
cal view of the parking lots. Nevertheless, it reaches
accuracy values over 90% when tested with pictures
coming from all other cameras of CNRPark-EXT.

A very good generalization is achieved even in
inter-weather experiments. We noticed that the
amount of error made by our model is related
with the difference between the training and test-
ing weather conditions. For example, our model
trained on “sunny” images performs better on
“overcast” images than “rainy” ones. The same
goes for the model trained on “rainy” images, which
is more accurate on “overcast’ images than “sunny”
ones. However, performance differences are small.
Rainy training is the winner when tested with the
PKLot dataset. This is probably due to a bias in
the PKLot dataset where most images seems to be

(a) Inside of a camera
box

(b) The complete cam-
era box

Figure 6: Each Raspberry Pi is mounted inside
a outdoor camera box (Figure A on the left)
and it is mounted on top of the roof of the
building, attached to a steel pole (Figure B on
the right).

similar to “rainy” images.

6. Deployment of the proposed solution in a
real scenario

As we already said, smart cameras were built
around Rasbperry Pi 2 model B, equipped with
standard Raspberry Pi camera modules. Each
smart camera has been mounted in an outdoor cam-
era box and has been installed on the roof of a build-
ing in front of the parking lot (see Figure 6).

The entire framework was deployed in the park-
ing lot of the research campus of the CNR in Pisa
as a Smart City application. The monitored park-
ing lot consists of 164 parking spaces, organized in
five rows, four of which are composed of about 35
parking spaces each, and one row is composed of
18 parking spaces. Although a single Raspberry Pi
equipped with the standard camera module is able
to monitor more than 50 parking spaces (i.e. with
the given height and distance of the cameras from
the parking lot), due to the conformation of the
parking lot monitored, we had to deploy 9 smart
cameras in order to monitor all the parking spaces.
Some cameras monitor about 20 parking spaces,
while some others more than 50.

Due to the angle of view and the perspective of
the camera module used, and the position of the
smart cameras, most of the parking spaces closest
to the building are monitored by just one camera,
while the parking spaces farthest from the build-
ing are monitored by more cameras. We used the
redundancy of the overlapping parking spaces to
reduce occlusion problems (for examples trees).

In particular, we assigned a weight value to
each pair 〈parking space, camera〉, representing
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Figure 7: Example of classification of a portion
of the parking lot.

how good is the view of that parking space seen
by that camera. A high value of this parameter
means that the parking space is in the center of
the image and that there is no obstacle between
the camera and the parking space. The confidence
returned by the CNN for a given parking space is
weighted with this value and, in case of a park-
ing space monitored by more cameras, the highest
weighted confidence value is selected at server side.
In this way, we are able to correct classification er-
rors on parking spaces occluded for some cameras,
by choosing the confidence value of another camera
that has a clearer view of that parking space.

Using smart cameras, rather than ground sen-
sors, has two relevant advantages: lower cost per
parking space and versatility. The cost of a Rasp-
berry Pi equipped with a camera module is about
80e, and the outdoor camera box with pole support
has about the same price. These are very limited
costs, and, as shown in (Amato et al., 2016) and
in Section 5, the accuracy of this approach is very
good, and it is comparable to the accuracy of a
ground sensor. Therefore, it is possible to monitor
a large parking lot with a cost per parking space
which is an order of magnitude lower than ground
sensors, and still achieving comparable accuracy re-
sults.

Moreover, with smart cameras we are not lim-
ited solely to parking lots monitoring applications.
We could exploit the smart camera to perform ad-
ditional activities like, for example, video surveil-
lance activities, such as face/people recognition, or
tracking and logging of people and moving vehicles.

6.1. Implementation

The software running on the smart cameras period-
ically captures the image of a portion of the parking
lot and, for each parking space, determines the oc-
cupancy status by using a CNN trained offline.

Pictures captured by cameras are filtered by a
mask that identifies the various parking spaces.
The mask was built manually once and for all.
Examples of masks built for different cameras are
shown in Figure 2. At run time, each frame is au-
tomatically segmented in patches (we recall that
a patch is the portion of the original image con-
taining a single parking space) corresponding to the
parking spaces monitored by that camera, by using
the generated masks. Every patch is then classi-
fied using the trained CNN, to decide whether the
corresponding parking space is empty or busy. On
the Raspberry Pi 2, the classification of 50 park-
ing spaces and the transmission of the results to a
web server takes about 15 seconds. Figure 7 shows
an example of the classification of a portion of the
parking lot monitored by a smart camera. As can
be seen in figure, our approach deals very well with
common challenging visual classification problems
such as shadows, obstacles (trees or lamps) or even
people occupying the parking spaces. We prepared
a website6 to access the live view of all the cameras
by authorized people.

A key aspect of the proposed solution is its decen-
tralized strategy and the delegation of the parking
decision to the smart cameras themselves. This so-
lution has the clear advantage of being scalable, as
it requires no additional elaboration on the server
side. In a centralized solution, images of the park-
ing lot acquired at high resolution (of about 3MB
each) are sent to the server which would thus be-
come a bottleneck and a single point of failure.

Hardware and software details are briefly re-
ported for completeness. The smart cameras are
equipped with an ARM Cortex-A7 CPU, 1GB
RAM DDR2, and a 32GB micro SD card for stor-
age. The camera module is a 5MP fixed-focus
camera that supports 1080p30, 720p60 and VGA90
video modes, as well as still captures. The view
angles of the camera are 53.50◦ horizontally and
41.41◦ vertically. We capture still pictures at a res-
olution of 2592x1944 pixels.

We used the OpenCV7 library to elaborate the

6http://claudiotest.isti.cnr.it/telecamere.html
7http://opencv.org/
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frames acquired by the cameras, and Caffe (Jia
et al., 2014) to train and use neural networks.

7. Conclusions

A decentralized and efficient solution for visual
detection of the parking status was presented,
which exploits deep Convolutional Neural Networks
(CNNs) to classify the parking space occupancy.
The solution employes smart cameras built using
Raspberry Pi platform equipped with a camera
module. Each smart camera can simultaneously
monitor up to fifty parking spaces.

A deep CNN architecture designed to run on em-
bedded systems such as smart cameras, is used to
classify images of parking spaces as occupied or va-
cant directly on board of the smart camera. In this
way, the only information that is sent to a central
server for visualization is the binary output of the
classification.

As a further contribution, we collected and made
publicly available CNRPark-EXT, a dataset con-
taining images of a real parking lot taken by nine
smart cameras, in different days, with different
weather and light conditions. CNRPark-EXT con-
tains images with high variability related to oc-
clusions, point of views, illumination and weather
conditions. This makes the dataset more compati-
ble with a real scenario of an outdoor parking lot,
and represents a good complement to other publicly
available datasets, for more reliable assessments.

Using both CNRPark-EXT and PKLot, another
publicly available dataset for parking occupancy de-
tection, we performed experiments to compare the
performance and generalization capabilities of our
approach against other state-of-the-art techniques.
These experiments show that our approach outper-
forms other ones based on shallow models, such as
SVMs. Specifically, our CNN exhibits very high
accuracy, even in presence of noise due to light con-
ditions variation, shadows, and partial occlusions.
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Method Test set Accuracy AUC

Train on UFPR04

mAlexNet UFPR04 99.54 % 0.99
LPQu* UFPR04 99.55 % 0.99
Mean
Ensemble*

UFPR04 99.64 % 0.99

mAlexNet UFPR05 93.29 % 0.99
LPQg* UFPR05 84.92 % 0.94
Max En-
semble*

UFPR05 88.33 % 0.95

mAlexNet PUC 98.27 % 0.99
LPQg* PUC 84.25 % 0.94
Max En-
semble*

PUC 88.40 % 0.95

Train on UFPR05

mAlexNet UFPR04 93.69 % 0.98
LPQgd* UFPR04 85.76 % 0.93
Mean
Ensemble*

UFPR04 85.53 % 0.95

mAlexNet UFPR05 99.49 % 0.99
LPQu* UFPR05 98.90 % 0.99
Mean
Ensemble*

UFPR05 99.30 % 0.99

mAlexNet PUC 92.72 % 0.98
LPQu* PUC 87.74 % 0.94
Mean
Ensemble*

PUC 89.83 % 0.97

Train on PUC

mAlexNet UFPR04 98.03 % 0.99
LPQg* UFPR04 87.15 % 0.94
Mean
Ensemble*

UFPR04 88.88 % 0.95

mAlexNet UFPR05 96.00 % 0.99
LBPri* UFPR05 82.78 % 0.91
Mean
Ensemble*

UFPR05 84.20 % 0.91

mAlexNet PUC 99.90 % 0.99
LPQu* PUC 99.58 % 0.99
Mean
Ensemble*

PUC 99.61 % 0.99

Train on CNRParkOdd

mAlexNet CNRParkEven 90.13 % 0.94
LPQgd* CNRParkEven 87.65 % 0.95
Train on CNRParkEven

mAlexNet CNRParkOdd 90.71 % 0.92
LBP* CNRParkOdd 87.21 % 0.92

Table 2: Comparison with state-of-the-art ap-
proaches.
*(de Almeida et al., 2015)
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Method Test set Accuracy AUC

Train on CNRPark
mAlexNet CNRPark-

EXT TEST
93.52 % 0.9838

AlexNet CNRPark-
EXT TEST

93.63 % 0.9877

mAlexNet PKLot
TEST

95.28 % 0.9916

AlexNet PKLot
TEST

95.60 % 0.9910

Train on CNRPark+EXT TRAIN C1-C8
mAlexNet CNRPark-

EXT TEST
95.88 % 0.9937

AlexNet CNRPark-
EXT TEST

96.85 % 0.9957

mAlexNet PKLot
TEST

90.48 % 0.9738

AlexNet PKLot
TEST

96.51 % 0.9937

Train on CNRPark+EXT TRAIN
mAlexNet CNRPark-

EXT TEST
97.71 % 0.9967

AlexNet CNRPark-
EXT TEST

98.00 % 0.9974

mAlexNet PKLot
TEST

84.53 % 0.9699

AlexNet PKLot
TEST

93.70 % 0.9923

Train on PKLot TRAIN
mAlexNet PKLot

TEST
98.07 % 0.9967

AlexNet PKLot
TEST

98.81 % 0.9984

mAlexNet CNRPark-
EXT TEST

83.83 % 0.9139

AlexNet CNRPark-
EXT TEST

90.52 % 0.9684

Train on PKLot2Days
mAlexNet CNRPark 82.88 % 0.899
LBP* CNRPark 65.31 % 0.580

Train on CNRPark
mAlexNet PKLot 90.38 % 0.989
LBP* PKLot 52.88 % 0.391

Table 3: Experiments performed to test the
generalization performance of mAlexNet and
AlexNet. Accuracies on test sets are reported,
for each combination of (model, training set,
test set).
*(de Almeida et al., 2015)
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