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Abstract In this paper we tackle the problem of image search when the query
is a short textual description of the image the user is looking for. We choose to
implement the actual search process as a similarity search in a visual feature
space, by learning to translate a textual query into a visual representation.
Searching in the visual feature space has the advantage that any update to
the translation model does not require to reprocess the (typically huge) image
collection on which the search is performed. We propose various neural network
models of increasing complexity that learn to generate, from a short descriptive
text, a high level visual representation in a visual feature space such as the
pool5 layer of the ResNet-152 or the fc6-fc7 layers of an AlexNet trained on
ILSVRC12 and Places databases. The Text2Vis models we explore include (i)
a relatively simple regressor network relying on a bag-of-words representation
for the textual descriptors, (ii) a deep recurrent network that is sensible to word
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order, and (iii) a wide and deep model that combines a stacked LSTM deep
network with a wide regressor network. We compare the models we propose
with other search strategies, also including textual search methods that exploit
state-of-the-art caption generation models to index the image collection.

Keywords image retrieval; cross-media retrieval; text representation

1 Introduction

Using a textual query to retrieve images is a very common cross-media search
task, as text is the most efficient media to describe the kind of image the user is
searching for. Each media has its own representation space, which is modeled
on a collection of representative content for that media. For example, text
can be represented by means of a simple bag-of-words feature space, with the
feature space being defined by a dictionary of observed words; or by means of
more complex distributional semantic models, such as those based on neural
networks, e.g., Word2Vec [33]. Similarly, a visual space can be modeled by
identifying a set of relevant visual features in a collection on images, e.g., as
those extracted by the deeper layers of Convolutional Neural Networks (CNN)
[27].

In cross-media retrieval, the actual retrieval process can be implemented
in a number of ways, depending on how the two feature spaces are joined. The
cross-media search space can be a textual feature space, i.e., a space whose
definition is determined exclusively by observing textual content; a visual fea-
ture space, i.e., a space whose definition is determined exclusively by observing
visual content; or a common latent space in which textual and visual features
are projected into.

Using textual features is the most common solution. Each image is associ-
ated with a set of textual features extracted from its context of use (e.g., the
text surrounding the image in the Web page, description fields in metadata),
and eventually enriched by means of classifiers that assign textual labels re-
lated to the presence of certain relevant entities or abstract properties in the
image. The textual search space model can exploit the actual visual content of
the image only when classifiers for the concepts of interest are available, thus
requiring a relevant number of classifiers; this also requires to reprocess the
entire image collection whenever a new classifier is made available.

Searching in a common latent space requires learning two projections (i.e.,
from text-to-latent and from image-to-latent). The main advantage of search-
ing in a common latent space lies on the freedom the system has to jointly
model reciprocal relations between the two media, while other strategies can
only learn the relations from the source media to the target media, but not
vice versa. However, as in the textual space, projecting into a common latent
space also requires to reprocess all the images whenever the textual model is
updated, since the latent space where images are projected into is also influ-
enced by the textual model part. It also requires managing and storing the
additional latent representations that are used only for the cross-media search.
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A last, less explored, possibility is to use a visual space to convert any tex-
tual query into a visual representation. A key advantage of this model is that
the representation of images remains unaltered regardless of the projection
model being developed. This means that any improvement in the projection
model, e.g., in the underlying language model, has immediate effects on the
image retrieval process, without requiring to reprocess the (typically huge)
whole image collection, and to rebuild the similarity search data structures re-
quired for efficient retrieval. Another advantage is that, since the visual space is
language-independent, multiple models, e.g., for multiple languages or special-
ized on different domains, can be used independently on the same collection of
images, without requiring multiple instances of representations for the images
and multiple instances of similarity search data structures.

In this paper we explore the use of a visual space for cross-media retrieval.
Methods that use a common space projection may be able to produce better
results because they can exploit cross-correlations between the two media,
while the other two approaches are constrained to leverage on correlations that
come from one single direction. However, we deem that the ability of using
a single static collection of visual representations for images, irrespectively
to how many text-to-visual projection models are used and how often they
change, is a practical advantage of visual space-based methods that counters
such possible loss of quality in results.

We present Text2Vis, a family of neural network models that convert
textual descriptions into visual representations in the same space of those ex-
tracted from deep CNN such as the AlexNet [27] or ResNet-152 [17] trained
on ILSVRC12 [38] and Places [47] datasets. We first offer an overview of rel-
evant cross-media retrieval in section 2. We propose different neural network
models of increasing complexity in section 3, including (i) S-Text2Vis, a
simple regressor network relying on sparse representations (bag-of-words and
bag-of-bigrams) for the textual descriptors; (ii) D-Text2Vis, a deep recurrent
network relying on a continuous dense representations (word embeddings); and
(iii) W&D-Text2Vis, a wide and deep architecture relying on both sparse
and dense representations. We report experimental results in section 4, com-
paring with other methods that use different projection approaches. Section 5
concludes and outlines possible directions for future research.

2 Related Work

Deep Learning and Deep Convolutional Neural Networks (DCNNs) in partic-
ular, have recently shown impressive performance on a number of multimedia
information retrieval tasks [27,41,17]. Deep Learning methods learn represen-
tations of data with multiple levels of abstraction. As a result, the activation
of the deeper hidden layers has been used in the context of transfer learn-
ing and content-based image retrieval [9,37] as high-level representations of
the visual content. Somewhat similarly, distributional semantic models, such
as those produced by Word2Vec [33], or GloVe [36], have been found useful
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in modeling semantic similarities among words by establishing a connection
between word meaning and position in a vector space.

In order to perform cross-media retrieval, the two feature spaces (text and
images in our case) should be made comparable, typically by learning how
to properly map the different media. This problem has been attempted in
different manners so far, which could be roughly grouped into three main
variants, depending on whether the mapping is performed into a common
latent space (Section 2.1), a textual space (Section 2.2), or a visual space
(Section 2.3).

2.1 Mapping Into a Common Space

The idea of comparing texts and images in a common latent space has been
investigated by means of Cross-modal Factor Analysis and (Kernel) Canon-
ical Correlation Analysis in [7,15]. In a similar vein, Corr-AE was proposed
for cross-modal retrieval, allowing the search to be performed in both direc-
tions, i.e., from text-to-image and vice versa [12]. The idea is to train two
autoencoders, one for the image domain and another for the textual domain,
imposing restrictions between the two. Similarly, in [24] the authors propose an
encoder-decoder architecture, in which the encoder part, formed by a LSTM
(for textual input) and a CNN (for visual input), is trained to project both
inputs into near points in a common multimodal space, and the decoder part
generates new text from a point in this new space. As will be seen, one of the
architectures we are presenting in the following (S-Text2Vis, Section 3.2)
bears resemblance to one of the architectures investigated in [12], the so-called
Correspondence full-modal autoencoder (which is inspired by the multimodal
deep learning method [34]). However, the two networks have a fundamental
difference, since the Correspondence full-modal autoencoder takes examples
from both media as the inputs. The DeViSE [13] method jointly trains a pre-
trained instance of the convolutional neural network of [27] (with its last layer
replaced with a linear mapping into the final embedding space), and a textual
embedding space pre-trained as a skip-gram model [33]. Even though DeViSE
uses a final space which is of the same size of the textual space, the pre-trained
word embeddings are only used as initial parameters and then they are adapted
jointly with visual embeddings during the training. The training is made on
image and label pairs, where the labels are not a full description of the scene,
indicating only the presence of certain entities in the image.

2.2 Mapping Into the Textual Space

The BoWDNN method [1] trains a deep neural network to map images di-
rectly into a bag-of-words (BoW) space, where the cosine similarity between
BoWs representations is used to generate the ranking. Somehow similarly, a
dedicated area of related research is focused on generating captions describing
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the salient information of an image (see, e.g., [22,11,44]). The m-RNN method
[31] trains a multimodal recurrent neural network to generate a caption de-
scription for a given image. The model consists of a recurrent sub-network
(operating on text data) and a convolutional sub-network (operating on im-
age data) which combine into a multimodal layer where the recurrent state
interacts with the image representation. In [30], authors propose m-CNN, a
multimodal architecture in which convolutions are used on both the image
and textual inputs to directly output a match score between them. Models
like m-CNN, which do not explicitly learn a projection but a distance function
on a latent projection, are not fit for retrieval on large collections. Given a
query, such models need to perform a forward pass through the network for
every image in the collection in order to compute the distances. This entails
a much higher cost with respect to traditional metrics, such as the Euclidean
distance or the cosine similarity. The ConSE [35] method adopts a very simple
approach, inspired by DeViSE, that uses the classification labels of the con-
volutional neural network of [27] to select and combine, by their classification
probability, the set of textual embeddings related to the top assigned labels.

2.3 Mapping Into the Visual Space

Our Text2Vis variants belong to this group where, to the best of our knowl-
edge, the only other proposal up to now is a method dubbed Word2VisualVec
[10], which was reported just very recently. There are some fundamental points
where their method and ours differ, though. Word2VisualVec takes combina-
tions of Word2Vec-like vectors as a starting point, thus reducing the dimen-
sionality of the input space, whereas we directly take the bag-of-words vector
encoding of the textual space as the input (S-Text2Vis), or learn the word
embeddings (D-Text2Vis, Section 3.3) during the training process, as we
did not observe any improvement in pre-training the textual part. Moreover,
Word2VisualVec builds a deep regressor on top of the textual representation
that are aggregations of word embeddings, which thus discard word order in-
formation. Contrarily, we observed that, when disregarding word order, yet a
shallow regressor (S-Text2Vis) produces effective mappings of textual vec-
tors into the visual space. We also observed that taking word order into account
helps to improve results (D-Text2Vis and W&D-Text2Vis, Section 3.4).

3 Generating Visual Representations of Text

Our goal is to map textual descriptions to high-level visual representations.
As the visual space we used the pool5 layer of the ResNet-152 [17] trained
on ILSVRC121, and the fc6 and fc7 layers of the Hybrid network [47] (i.e.,
an AlexNet [27] trained on both ILSVRC12 and Places2 datasets). Principal

1 http://image-net.org/challenges/LSVRC/2012
2 http://places.csail.mit.edu/index.html

http://image-net.org/challenges/LSVRC/2012
http://places.csail.mit.edu/index.html
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Component Analysis (PCA) and whitening are commonly used in retrieval pro-
cesses based on vector similarity to reduce the dimensionality and to improve
the retrieval effectiveness of visual features. Projecting the dataset onto the
eigenvectors results in no correlation between the components, while whiten-
ing normalizes the vectors to have unit variance for all components. This is
done by simply dividing each component by the square root of its eigenvalue.
Originally proposed for local features aggregations such as VLAD [21], PCA
and whitening are also largely used for processing the activation of neurons
[40,14,16]. As reported in Section 4.6, we observed relevant improvement by
applying PCA and whitening to the visual features.

In this section we describe the experimental activities we have carried out
in order to achieve our goal. We take a simple feedforward regressor as a
starting point (Section 3.1) to then propose three different architectures of
increasing complexity: a regressor learning from unordered sparse features,
called S-Text2Vis (Section 3.2); a deep recurrent network learning from or-
dered dense features, called D-Text2Vis (Section 3.3); and a wide & deep
neural network which jointly learns from both types of representations, called
W&D-Text2Vis (Section 3.4).

3.1 VisReg

As a reference baseline we started with a simple feedforward regressor model
with a hidden layer trained on the sparse one-hot representation of the textual
input to directly predict the visual representation of the image (Figure 1, left).
We observed a strong tendency to overfit (Figure 1, right), thus degrading the
applicability of the method to unseen images.

We explain this overfitting with the fact that a visual representation keeps
track of every element that appears in the image, regardless of their semantic
relevance within the image, while a (short) textual description is more likely
focused on the visually relevant information, disregarding the secondary con-
tent of the image. For example, the relevant images for the query “a person
doing jogging” will likely share a subset of common features that denote the
presence of a person with a posture that is associated to the action of gentle
running, and then have many other features related the different compositions
of colors, perspective, background elements each image may contain. As the
learning iterations proceed, the simple regressor model starts capturing these
secondary elements of the images that are not relevant for the main repre-
sented concept, but are somewhat characteristic to the specific set of images
that compose the training data.

This preliminary experiment suggests that text-to-image mapping must be
somehow regularized. In the following we propose various strategies aiming at
constraining the mapping to better model the textual part.
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Fig. 1: Left: Architecture of a simple regressor model with one hidden layer
of size 1024. Right: The training and validation loss (on y-axis) in function of
the training iteration (on x-axis). Notice the model overfits in the early phase
of the training process.

3.2 S-Text2Vis

The first model we propose, dubbed S-Text2Vis, is based on forcing the hid-
den representation to be representative not only for the visual reconstruction,
but also for reconstructing the sparse textual signal.

S-Text2Vis thus contrasts the overfitting by adding a text-to-text au-
toencoding branch to the hidden layer (Figure 2, left), constraining the model
to jointly satisfy two different losses: one visual (text-to-visual regression) and
one linguistic (text-to-text autoencoder). The linguistic loss works at higher
level of abstraction than the visual one, acting as an additional constraint on
the model, and preventing (as confirmed by our experiments) overfitting on
the visual loss (Figure 2, right).

S-Text2Vis consists of two overlapped feedforward neural nets with a
shared hidden layer. The feedforward computation is described by the following
equations:

z = ReLU(W1tin + b1) (1)

t′ = ReLU(W2z + b2) (2)

v′ = ReLU(W3z + b3) (3)

where tin represents the sparse one-hot encoding for the textual descriptor
given as input to the net, z is the hidden representation, v′ and t′ are the visual
and textual predictions, respectively, obtained from the hidden representation
z, Θ = {Wi, bi}i∈{1,2,3} are the model parameters to be learned, and ReLU is
the activation function, defined by ReLU(x) = max{0, x}.

Both predictions v′ and t′ are then compared with the expected outputs,
i.e., the visual embedding representation v, and a textual descriptor tout that
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Fig. 2: Left: Architecture of our proposed S-Text2Vis which controls over-
fitting by adding an autoencoding constraint on the hidden state. Right: The
training and validation loss (on y-axis) in function of the training iteration
(on x-axis).

is either tin or semantically equivalent to tin (we expand on this below). We
used the mean squared error (MSE – Equation 4) as the loss function both for
the visual loss and the textual loss, denoted by Lv and Lt, respectively.

MSE(y, y′) =
1

n

n∑
i=1

(yi − y′i)2 (4)

where y, y′ are a pair of target description and prediction either in the tex-
tual (t, t′, left part of the network in Figure 2) or in the visual (v, v′, right
part of the network in Figure 2) space. The model is thus multi-objective,
and many alternative strategies could be followed at this point in order to
set the Θ parameters so that both criteria are jointly minimized. A simple
strategy to jointly optimize the two losses consists of defining a single loss as
a parametrized aggregation (Equation 5), with typically one single parameter
controlling the relative contribution of the losses [12]. We also add a regular-
ization parameter to further counter overfitting.

Θ̂ = argminΘ (Lt(tout, t′) + αLv(v, v′) + λ||Θ||2) (5)

Note that the net is fed with a triplet 〈v, tin, tout〉 at each iteration. When
tout = tin the text-to-text branch is an autoencoder. It is also possible to have
tin 6= tout, with the two pieces of text being semantically equivalent (e.g.,
tin =“a woman cutting a pizza with a knife”, tout =“a woman holds a

knife to cut pizza”). The text-to-image branch is, in any case, a regres-
sor. Notwithstanding, since our final goal is to project the textual descriptor
into the visual space, the text-to-text branch might be though as an addi-
tional constraint (of linguistic nature) to the visual reconstruction (and, more
specifically, to its internal encoding).



Generating High Level Visual Representations From Textual Descriptions 9

The main strength of S-Text2Vis regards its simplicity, specially in the
use of the most simple representation for the input (the sparse encoding); yet
it produces effective results (as discussed bellow). That being said, the model
presents some flaws too, i.e., (i) the sparse encoding results in a high dimen-
sionality, thus constraining the net to optimize a large number of parameters,
and (ii) the model is agnostic to word order, thus losing relevant informa-
tion from text, e.g.: “a white cat and a black dog” vs “a black cat and

a white dog”.

3.3 D-Text2Vis

The second model we propose, dubbed D-Text2Vis, is meant to overcome
the limitations of S-Text2Vis.

In order to reduce the amount of parameters of the net, we resort to dense
representations (i.e., word embeddings) for the terms in the description. Be-
sides the mere reduction in the number of dimensions, the main reason that
motivates operating in a dense embedding space concerns with the gain in gen-
eralization. Words with similar meanings end up being represented by similar
vectors (in the sense of the inner product), which allows the model to better
generalize, i.e., the patterns discovered become descriptive for an embedding
region (and to the greater or lesser extent to words with nearby embeddings)
rather than descriptive for a single word.

In order to make the model become sensible to word order, we adopt an
LSTM [18] architecture, a special kind of recurrent neural network which is
particularly robust to learn from sequential data (such as textual data). Con-
cretely, we train an LSTM on the task of language modeling (that is, the task
of predicting the most likely following term given the sequence of preceding
terms – see e.g., [42]) with backpropagation through time [46]. We constrain
the internal memory state of the last memory cell to be a good representation
to predict the visual embedding (Figure 3).

The computation is described by the following equations:

weti = lookup(WE, ti) (6)

oi, si = LSTMcell(weti , si−1) (7)

t′i = softmax(W1oi + b1) (8)

v′ = ReLU(W2sf + b2) (9)

where lookup() returns the word-embedding weti from the (trainable) matrix
WE for the ith word in the textual descriptor with index ti, LSTMcell is the
memory cell, oi and si represent the output and state signals produced after
processing weti and si−1 (the state signal produced in the precedent step), and
sf is the state of the last memory cell. The softmax function transforms the
output signal into a probability distribution on the vocabulary-length space.
Finally, v′ and t′i are the visual vector and term predictions, respectively.
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Fig. 3: Architecture of D-Text2Vis.

Note that in addition to the parameters WE, W{1,2} and b{1,2}, the LSTM-
cell internally maintains an input, output, and forget gates with their own
parameters; as the memory cell we used the implementation described in [39].

The sequence of term vectors predictions t′i and the visual prediction v′

are then compared to the expected textual and visual outputs. For the visual
loss Lv we use the MSE (Equation 4), as before. Each predicted term t′i is
a |V |-dimensional vector that could be though as a probability distribution
over the term indexes, where V is the vocabulary. Analogously, each term w
can be codified as a one-hot vector, i.e., a |V |-dimensional vector with all zero
values except the dedicated dimension indexing ti, which is set to one. Note
that a one-hot encoding could be interpreted as a probability distribution as
well. (When not confusing, we use ti both to refer to the term symbol and to
its one-hot encoding.) The error between both distributions is compared via
the cross-entropy error (Equation 10). Given the sequence t of expected terms
ti and the sequence t′ of predicted signals t′i outputted by the net, the textual
loss is computed as the averaged cross-entropy (Equation 11).

CrossEntropy(y, y′) = −
n∑
i=1

y′i log(yi) (10)
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Lt(t, t′) =
1

n

n∑
i=1

CrossEntropy(ti, t
′
i) (11)

where y, y′ represent any pair of true and predicted distributions. As be-
fore, the net is fed with a triple 〈v, tin, tout〉 where, given a caption [t0 . . . tL],
the input ant output textual sequences are defined as tin = [t0 . . . tL−1] and
tout = [t1 . . . tL], being tL = EOS a special symbol delimiting end of the
sequence. That is, the expected sequence corresponds to the input sequence
shifted one position since the LSTM part is trained to predict the next term in
the sequence. As the model is, again, multi-objective, we apply the weighted
aggregation described by equation 5 to set the optimization problem.

3.4 W&D-Text2Vis

Our last proposal, dubbed W&D-Text2Vis, combines the sparse and dense
representations by following the recently proposed Wide & Deep Learning
strategy [4].

W&D-Text2Vis combines the deep LSTM (borrowed from D-Text2Vis)
with a wide regressor. Linear models with nonlinear feature transformations
are known to be useful for large-scale regression problems with sparse inputs
(as is the case for short text descriptions). This model emerged from the belief,
discussed in [4], that the deep part contributes to model generalization while
the wide part contributes to model memory and therefore their combination
might be beneficial.
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The fundamental difference with respect to [4] is that we use a recur-
rent neural network as the deep part (instead of a feedforward network) since
LSTMs are particularly fit to learn from sequential data such as our textual
descriptions.

The computations reuse Equations 6–8 from D-Text2Vis and incorporate
the following set of equations for the wide part:

deep = W2sf + b2 (12)

wide = W3

(
L∑
i=0

onehot(ti)

)
+ b3 (13)

v′ = ReLU(wide+ deep) (14)

where onehot(ti) returns the one-hot encoding vector for term ti. As in D-
Text2Vis, we used the MSE (Equation 4) for the visual loss Lv and the
averaged cross-entropy (Equation 11) for the textual loss Lt. The optimization
problem is set as in equation 5.

4 Experiments

In this section we describe the set of experiments we have carried out in order
to test our methods.

4.1 Datasets

We used the Microsoft COCO dataset (MsCOCO3 [29]). MsCOCO was orig-
inally proposed for image recognition, segmentation, and caption generation.
Although other datasets for image retrieval exist (e.g., the one proposed in
[19]), they are more oriented to keyword-based queries. We believe MsCOCO
to be more fit to the scenario we want to explore, since the captions associated
to the images are expressed in natural language, thus semantically richer than
a short list of keywords composing a query.

MsCOCO contains 82.783 training images (Train2014 ), 40.504 validation
images (Val2014 ), and about 40K and 80K test images corresponding to
two different competitions [3] (Test2014 and Test2015 ). Because MsCOCO
was proposed for caption generation, the captions are only accessible in the
Train2014 and Val2014 sets, while they are not yet released for Test2014 and
Test2015. We have thus taken the Train2014 set for training, and randomly
split the Val2014 into two disjoint sets of 20K images each for validation and
test.

Each image in MsCOCO has five different captions associated4, each of
which written by a different individual. Let 〈I, C〉 be any labeled instance in

3 Publicly available at http://mscoco.org/
4 Actually in the dataset there are few images with more than five captions available for

processing. In such cases we took the first five listed.

http://mscoco.org/
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MsCOCO, where I is an image and C = {c1..c5} is a set of captions describing
the content of I. Given a 〈I, C〉 pair, we define a training labeled instance in
our model as 〈v, tin〉 where v ∈ R2048 is the visual representation of the im-
age I taken from the pool5 layer, or v ∈ R4096 when the representation comes
from the fc6 or fc7 layer (each representation has been tested in distinct exper-
iments), and tin is a textual descriptor randomly chosen from C representing
the input descriptor for the model. In the exceptional case of S-Text2Vis a
training label instance is defined as 〈v, tin, tout〉, where tout is the output tex-
tual descriptor randomly chosen from C (the meanings for v and tin remain
untouched). Note that, in this case, tin and tout are not imposed to be differ-
ent, thus leading to a total of 25 possible combinations of training instances
one could extract from a single pair 〈I, C〉; this increases the variability of the
training set a lot along the different epochs. The training triplet 〈v, tin, tout〉 for
D-Text2Vis and W&D-Text2Vis models are extracted from the instance
〈I, C〉 by randomly choosing tin from C and then defining tout as tin shifted
one position (as explained above, see section 3.3).

4.2 Visual similarity search

We evaluated the visual similarity between any two images by comparing their
visual descriptions obtained as described in Section 3. In particular, given the
improvement in performance in Content-Based Image Retrieval task reported
in [40,14,16], the Euclidean distance is used to compare the vectors obtained
applying PCA and whitening [6] to the neurons activation. The resulting vec-
tors have components which are both not correlated and have unit variance. In
our experiments, we considered the first 256 components obtained after PCA
(while the original dimension was 2,048 in the pool5 layer, and 4,096 in fc6-fc7
layers).

4.3 Training

We tackle the optimization problems using the Adam optimizer [23] with de-
fault parameters (learning rate 0.001, β1 = 0.9, β2 = 0.999, and ε = 1e−0.8)
in all cases.

We set the size of the training batch to 64 examples; each of which was
extracted from a different image. Each training example in the batch corre-
sponds to the visual features v of a different image I, and a textual descriptor
tin picked at random from the set C of captions associated to I in MsCOCO. As
explained above, S-Text2Vis requires an additional tout which is also picked
at random from C during training. (During test, we consider all captions as
different queries.) We set the maximum number of iterations to 300.000 in S-
Text2Vis, and to 50.000 in D-Text2Vis and W&D-Text2Vis, but apply
an early stop when the model starts overfitting (as reflected in the validation
error). The training set is shuffled each time a complete pass over all images
is performed.
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The word embedding matrix for D-Text2Vis and W&D-Text2Vis has
been initialized at random according to an uniform distribution ranging from
−1.0 to 1.0. In preliminary experiments, we investigated on the use of pre-
trained word embeddings, i.e., representing the textual description as the av-
erage of the embeddings of the words composing the description (see Equation
1 in [10]), but we have not observed any improvement. Pre-training the word
embeddings is an additional cost, and the fitness of the embeddings for the
task depends on the type of documents they are learned from. For example, an
11% improvement in MAP is reported in [2] from learning embeddings from
Flickr tags compared to learning them from Wikipedia pages.

The rest of the Θ parameters for all models (with the sole exception of
the word embedding matrix) have been initialized at random according to a
truncated normal distribution centered in zero with standard deviation of 1√

n
,

where n is the number of columns. The biases have all been initialized to 0.

Following previous approaches to multimodal learning [12,34], we adopted
an aggregated loss which depends on one single parameter α (Equation 5). In
[12] it was found that unbalancing aggressively the loss pressure towards one
or the other extremes tends to degrade the performance. For the α hyperpa-
rameter we have tried the values {0.01, 0.1, 1.0, 10.0, 100.0}, choosing the best
one for each visual embedding layer as reflected in the validation error. For
the parameter λ determining the impact of the L2 regularization we tried the
values 10i, i ∈ {1,−2,−4,−6}.

For S-Text2Vis we tested two different vectorial representations of text:
S-Text2Vis-U uses a simple bag-of-words vectors that marks with a value
of one the positions that are relative to words that appear in the textual de-
scription and leave to zero all the others; S-Text2Vis-N adds a little bit
of information on the text structure by considering also N-grams for a selec-
tion of part-of-speech patterns5. The resulting vocabulary size is 10,358 for
S-Text2Vis-U after removing terms appearing in less than 5 captions. For
S-Text2Vis-N we considered the 23,968 uni-grams and N-grams appearing
at least in 10 captions. We set the number of nodes of the hidden layer to 1024
which was experimentally confirmed as the best value among the candidates
{256, 512, 1024, 2048}; we omit those experiments for the sake of conciseness.

In order to efficiently train the LSTM part in D-Text2Vis and W&D-
Text2Vis we make use of padding and bucketing. That is, to avoid construct-
ing as many graphs as different caption lengths there are in the dataset, we fix
a number of buckets (i.e., sequences of fixed length – we considered {15, 20, 40}
in our experiments) and apply padding to the captions (i.e., repeatedly adding
the ‘PAD’ token at the beginning of the tokens sequence, and the special ‘EOS’
token announcing the end of the sequence) to fit in the corresponding bucket
(the smallest one that could allocate the caption).

For D-Text2Vis and W&D-Text2Vis we have also considered stacking
LSTM cells as a mean to give the model a greater expressive power. We denote

5 We considered the part-of-speech patterns: ‘NOUN-VERB’, ‘NOUN-VERB-VERB’,
‘ADJ-NOUN’, ‘VERB-PRT’, ‘VERB-VERB’, ‘NUM-NOUN’, and ‘NOUN-NOUN’.
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those variations by the suffix ‘-〈n〉’ where n indicates the height of the stack.
E.g., D-Text2Vis−1 corresponds to the vanilla model in Figure 3, while
W&D-Text2Vis−4 is the wide & deep approach with 4 LSTM cells stacked.
In all cases, we set the dimensionality of the embedding space to 100 and the
size of the internal LSTM nodes to 512; again, those values were chosen during
preliminary experiments run on the validation set.

A Tensorflow implementation of all our methods, and of all the compared
methods described in the next section, is available at https://github.com/

AlexMoreo/tensorflow-Tex2Vis.

4.4 Compared methods

We compare the performance of the various Text2Vis models against a se-
lection of methods that perform search either in the visual space or in the
textual space. We define as the trivial lower bound baseline the method that
produces a random ranking of the images in the collection (dubbed RRank).

We define as VisSim the direct similarity method that computes the Eu-
clidean distances using the original pool5 (from the ResNet-152 [17]), and fc6
or fc7 features (from the AlexNet [47]) for the image that is associated to the
query caption in MsCOCO. VisSim models the scenario in which the user
submits the query using an image that is representative of the original textual
description. VisSim is thus not a real cross-media search model, but it allows
us to measure how a search-by-representative-image process compares with
the real cross-media search approaches. We also compare with VisReg, the
text-to-image sparse regressor described in section 3.1.

We use the caption generation methods presented in [22] (dubbed Neu-
ralTalk) and [44] (dubbed Show&Tell) to implement cross-media search meth-
ods based on textual search. Given a caption generation method, we generate
captions for all the 20K images in the test collection, and then we implement
the search process as a text similarity search process based on two retrieval
models: one that used the same ROUGEL metric that is used for the evalua-
tion (dubbed CapRouge), and one that uses a more classic ranking by L2 norm
of the vectors resulting from text indexing based on bag-of-words or characters
3- and 4-grams (respectively dubbed CapBow and CapGrams). We used two
Show&Tell models, one trained for one million iterations (Show&Tell-1M ),
and another for two million iterations (Show&Tell-2M ). It is important to
stress that the CapRouge method is to be considered as a very strong but un-
realistic baseline, added for the sake of a richer comparison, and not a viable
retrieval method, for two reasons. First, it uses the same metric of the evalu-
ation, so it improperly overfits on it. Second, it has a computational cost that
is quadratic with the length of the compared string, making it not practically
usable. For example, computing the ranking of 20K captions from the test set
against a query caption required on average for all the queries, on the same
hardware and using efficient implementation, 0.046 seconds for CapBoW and

https://github.com/AlexMoreo/tensorflow-Tex2Vis
https://github.com/AlexMoreo/tensorflow-Tex2Vis
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CapGram methods and 3.267 seconds for CapRouge, resulting two orders of
magnitude slower than the other methods.

We also compare our Text2Vis variants against Word2VisualVec [10],
a method that maps the text input into the visual space (as described in sec-
tion 2.3). We have reimplemented Word2VisualVec by following [10]. We
have pre-trained a 500-dimensional word embeddings space on the user tags
associated to 100M images in the YFCC100M dataset [43] using the skip-
gram model in Word2Vec [33]. We have experimented with two variants: short
(Word2VisualVec-S), which trains a feedforward network with two hid-
den layers of [1000, 2000]; and long (Word2VisualVec-L), which considers
three hidden layers of [1000, 2000, 3000]. We have only experimented with the
variant that adopts the same MSE loss function as our model6. In order to
carry out a fair comparison, we have implemented the exact same retrieval
for Word2VisualVec as our method (i.e., euclidean distance after PCA and
whitening – see section 3) instead of the originally proposed cosine similarity.
The reason for doing so is that we have observed a consistent improvement of
about 3% in our experiments, and verified similar improvements to be achieved
in the case of Word2VisualVec as well; concretely, Word2VisualVec im-
proved its DCG average by 0.073 (with a standard deviation of ±4.8E-03) due
to the use of this retrieval method in place of the cosine similarity.

4.5 Evaluation Measures

We measure the retrieval effectiveness of the various methods we compare by
means of the Discounted Cumulative Gain (DCG [20]), defined as:

DCGp =

p∑
i=1

2reli − 1

log2(i+ 1)
(15)

where reli quantifies the relevance of the retrieved element at rank position i
with respect to the query, and p is the rank at which the metric is computed;
we set p = 25 in our experiments, as was done in related research [19,10].

Given that some of the compared methods (e.g., text-based search) can
produce rankings with ties, we actually use the Ties-aware Discounted Cumu-
lative Gain (TDCG [32]), defined as:

TDCGp =

m∑
i=1

 1

ni

ti+1∑
j=ti+1

2reli − 1

min(ti+1,k)∑
j=ti+1

1

log2(i+ 1)

 (16)

where m is the number of group of ties in the ranking of the first p results, ni
indicates the number of tied result in the i-th group, ti indicates the starting

6 They reported slightly better results with the Marginal Ranking Loss (MRL), a cost
function that takes two visual vectors for each example, one considered relevant, and another
irrelevant, to the textual description. However, relevance judgments to generate the training
triplets relied on the user-click logs available in their dataset.
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position of each tied group. TDCGp is derived from DCGp by observing that
the average gain for a position in a group of tied results is the average of the
gain of such tied results. TDCGp is obviously equivalent to DCGp in the case
there are no ties in the results.

Because the rel values are not provided in the MsCOCO, we estimate them
by using the ROUGEL [28] metric, a measure often used for the evaluation of
the results of text summarization algorithms and one of the evaluation mea-
sures for the MsCOCO caption generation competition7 [3]. This is a metric
based on finding the Longest Common Subsequence (LCS) between the two
strings being compared8 and then measuring a weighted harmonic mean (Fβ ,
with β = 1.2) of the coverage ratios of the subsequence with the two strings.
Using a β value greater than one (β = 1.2 is the default value in the MsCOCO
evaluation software) gives a little more importance to producing a good cov-
erage of the gold standard caption. We compute reli = ROUGEL(tin, Ci),
where tin is the query caption, and Ci are the 5 captions associated to the re-
trieved image at rank i. This caption-to-caption relevance model is thus aimed
at measuring how much the concepts expressed in the query appear as relevant
parts of the retrieved images.

As a final note on the evaluation, it is noteworthy that many related meth-
ods so far [31,30,26,22,8,25,45] have been tested in MsCOCO as well. In doing
so, however, they have followed a different experimental protocol, involving
one random split of 1K test items (not standard across the experiments) and
relying on rank-based metrics, namely, recall at K (noted by R@K – the pro-
portion of queries whose expected image was found among the top-K retrieved
items) and medR (the median of the rank distribution). Despite the fact that
this protocol has become almost a standard practice in the literature, we ar-
gue it might fail to reflect the scenario we are concerned with here, i.e., the
fact that the “prototypical” image one has in mind might be better described
through a short textual description of it than through a specific sample im-
age accommodating the textual description (and, unavoidably, much other
irrelevant information). Therefore, the rank of the specific test image might
not necessarily be a good estimator of the system’s ability to generalize well in
text-to-image retrieval task. That is, although it is clear that a well-performing
system will deliver competitive rank-based metrics, it is also true that an over-
fitted system will rank a test image well whenever a very similar example is
seen in the training phase. Contrarily, a text-centered metric (as the DCG
with ROUGEL) is not liable to be likewise cheated. Figure 5 reports some
examples, taken from actual results from our methods, in which a good re-
call does not result in a good selection of top ranked images, and examples
in which a zero R@5 is obtained on rankings that contain a good selection of
relevant images.

7 https://github.com/tylin/coco-caption
8 LCS is a way to find a common exact sequence of words that is similar to matching

word n-grams but less stringent (i.e., inside the LCS sequence other words may appear).

https://github.com/tylin/coco-caption
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Rank 3

A woman holding a 
tennis racquet on top 

of a tennis court

There are three birds 
each standing on one 

leg on wet ground

Young children posing 
for photo while preparing 

food items in kitchen 

A man riding on 
top of a wave in 

the ocean 

4.028

1.122

1.266

3.816

Textual query Image query Rank 1 Rank 2 Rank 4 Rank 5 DCG

A pizza sitting
on top of a 
white plate

3.496

A baseball player 
prepares to hit 

the ball
3.397

 

Fig. 5: Evaluation metrics through examples retrieved by our W&D-
Text2Vis-4 in the fc7 visual space. The first and second rows of results,
despite including the specific query image (ranked 4 and 3, respectively), are
mostly unrelated to the textual query; yet they would have obtained a maxi-
mum R@5 score. The rest of the examples do not include the query image in
the top-5 rank, but are relevant to the query (and arguably, better prototypes
of the description than the query image itself). DCG successes to capture this
phenomenon.

1K samples 5K samples
R@1 R@5 R@10 medR DCG R@1 R@5 R@10 medR DCG

mean 19.1 48.5 64.6 5.9 2.370 6.9 21.3 31.7 25.7 2.408
std 1.047 1.350 1.393 0.349 0.023 0.322 0.507 0.538 0.749 0.012
max 21.6 52.4 67.9 7 2.426 7.6 22.5 33.3 27 2.439
min 15.5 44.8 60.1 5 2.294 5.9 20.0 30.5 24 2.375

Table 1: Variance in evaluation metrics measured on 200 random test splits of
1K images vs. 5K images in MsCOCO. Results correspond to the S-Text2Vis-
U model projecting into the pool5 layer. The rank-centered metrics R@K and
medR present a higher dependency on the sampling size than the DCG.

Moreover, rank-based metrics are strongly biased towards the test set size
(where only 1K images might fail to represent the web-scale scenario) and very
unstable with respect to the particular split one could extract from MsCOCO.
To show this issue, Table 1, reports the variation of R@1, R@5, R@10, medR
and DCG at the variation of the test set size from 1K to 5K images. DCG is
the only measures whose value remain stable, while the other measures have
a significant drop. All other things being equal, we present additional results
we have obtained by following this protocol for the sake of comparability (see
below); we also report the MRR (meaning Mean Reciprocal Rank, i.e., the
average of the inverse ranks) as a possibly more reliable rank-centered metric.
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4.6 Results

Search space
# paramsTextual Visual

Method CapRouge CapBoW CapGram pool5 fc6 fc7
RRank 1.524 1.524 1.524 1.524 1.524 1.524 -
NeuralTalk 2.016 1.979 1.813 - - - 148.3M
Show&Tell-1M 2.290 2.032 2.062 - - - 37.6M
Show&Tell-2M 2.360 2.092 2.122 - - - 37.6M
VisSim - - - 2.266 2.150 2.180 -
VisReg - - - 2.349 2.317 2.359 14.8M
Word2VisualVec-Scos - - - 2.394 2.316 2.317 10.7M
Word2VisualVec-Lcos - - - 2.405 2.317 2.318 20.8M
Word2VisualVec-S - - - 2.433 2.389 2.386 10.7M
Word2VisualVec-L - - - 2.443 2.390 2.389 20.8M
S-Text2Vis-U - - - 2.428 2.381 2.387 25.4M
S-Text2Vis-N - - - 2.432 2.382 2.384 53.3M
D-Text2Vis-1 - - - 2.418 2.372 2.381 10.5M
D-Text2Vis-2 - - - 2.435 2.384 2.389 15.7M
D-Text2Vis-4 - - - 2.442 2.393 2.388 26.0M
W&D-Text2Vis-1 - - - 2.435 2.382 2.385 51.5M
W&D-Text2Vis-2 - - - 2.447 2.392 2.391 56.7M
W&D-Text2Vis-4 - - - 2.446 2.397 2.391 67.0M

Table 2: Performance comparison of the different methods in terms of average
DCG. The bold value highlights the best result in each of the search spaces.

Table 2 reports the average DCG scores obtained by the compared methods
after five runs with different seeds. These results show a significant improve-
ment of our Text2Vis variants with respect to the compared methods. The
best absolute result is obtained by W&D-Text2Vis when using 2 stacked
LSTMs in the visual space pool5, which represents the 8% of relative improve-
ment with respect to the baseline VisSim. In the fc6 and fc7 visual spaces, the
W&D-Text2Vis-4 obtained the best performance, with a relative improve-
ment to VisSim of 11.5% and 9.7%, respectively. The S-Text2Vis model also
improved, yet by a smaller margin, over the VisReg model, showing that an
auto-enconding branch in the network is useful to avoid overfitting on visual
features. The best performing method in the textual space is CapRouge. As
detailed in Section 4.4, it cannot be considered a realistic retrieval method,
given its computational cost and also because it uses the same measure of the
evaluation. We used it to have a strong baseline against which to compare the
visual-space based methods, as we discuss in the following.

The Text2Vis methods all compare better by a large margin than the best
CapBoW and CapGram results. The worst Text2Vis result (D-Text2Vis-
1 in the fc6 layer) improves by 11.8% over the best CapGram result. The
best CapRouge result is in line with the average Text2Vis results, yet it is
affected by the computational issue mentioned before. The best Text2Vis
result (W&D-Text2Vis-2 on pool5) shows a relative improvement of 3.7%
over the best CapRouge result, and of 15.3% of the best CapGram result.



20 Fabio Carrara et al.

When comparing the Text2Vis results among themselves it is not obvious
whether the use of sparse features leads to better or worse results than the use
of dense features. For example, the dense-based models (i.e., the D-Text2Vis
variants) improve over the sparse-based models (i.e., the S-Text2Vis vari-
ants) only when resorting to stacking LSTM cells. In strict terms of effective-
ness (as measured by DCG), this blurs any conclusive remark on the preference
of either sparse or dense representations. Notwithstanding, this seemingly con-
tradictory result serves to reinforce another interesting insight, i.e., the fact
that, despite being unclear which representation mechanism is preferable, the
wide & deep architecture effectively takes advantage of the combination, con-
sistently producing better results.

In the table we report the results obtained by the implementation of
Word2VisualVec that uses the cosine similarity model originally adopted
in [10] (dubbed Word2VisualVec-Scos and Word2VisualVec-Lcos). Our
implementation using PCA and whitening for the similarity search (dubbed
Word2VisualVec-S and Word2VisualVec-L) obtains an average 4.5% of
improvement.

We found the following differences in performance between the best con-
figuration of each variant to be statistically significant (two-tailored t-test):
both D-Text2Vis and W&D-Text2Vis are significantly better than S-
Text2Vis with a confidence p < 0.005, while W&D-Text2Vis could only
be considered better than Word2VisualVec at the smaller confidence of
p < 0.05. Furthermore, there are no statistically significant differences be-
tween W&D-Text2Vis and D-Text2Vis, nor between D-Text2Vis and
Word2VisualVec performances.

In Table 3 we compare our methods against the results reported for other
state-of-the-art methods, using their evaluation measures (see section 4.5 for
a vaster discussion). The Text2Vis methods perform worse than the other
methods yet by a margin that we deem acceptable (a loss of 1-2 ranks in
medR) considering that all the other methods use a joint space projection,
thus they have the drawbacks on the image collection processing we discussed
in Section 1. The best performing method, m-CNN, is not even really suited for
fast retrieval on large collections, since its network models a distance function,
not an explicit projection model, and thus every time a query is given all the
collection must be processed by the network to compute the distances between
the query and each image.

An interesting aspect that deserves attention concerns with the models
complexity, as measured by the amount of parameters to train. We have in-
vestigated the trade-off between the model complexity and the results delivered
(Figure 6). The plot shows that the D-Text2Vis variants require a signifi-
cantly reduced number of parameters while still being competitive in perfor-
mance, followed by the S-Text2Vis variants, that however produce fluctu-
ating results in terms of DCG, and finally followed by the W&D-Text2Vis
variants, that despite requiring many parameters to train, consistently deliver
good results in all visual spaces.
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Method DCG MRR R@1 R@5 R@10 medR
S-Text2Vis-U 2.341 0.339 20.1 48.9 64.2 6
D-Text2Vis-4 2.356 0.355 21.2 51.5 67.4 5
W&D-Text2Vis-4 2.367 0.367 22.8 52.4 67.6 5
W&D-Text2Vis-8 2.370 0.372 22.8 53.2 68.5 5
m-RNN [31] - - 29.0 42.2 77.0 3
m-CNN [30] - - 32.6 68.6 82.8 3
CCA [FV-HGLMM] [26] - - 25.6 60.4 76.8 4
DVSA / BRNN [22] - - 27.4 60.2 74.8 3
LRCN [8] - - 29.0 61.6 74.8 3
STV [25] - - 25.9 60.0 74.6 4

Table 3: Comparison of results on MsCOCO 1K test set for a selection of
Text2Vis methods projecting into pool5.
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Fig. 6: Performance vs number of parameters to learn per model for all feature
spaces (pool5, fc6, and fc7 from left to right). Prefix ‘S-’ denotes S-Text2Vis,
‘D-’ denotes D-Text2Vis, ‘W&D-’ denotes W&D-Text2Vis, and ‘W2V-’
denotes Word2VisualVec.

As a final remark, we have investigated the convergence trends on the
training loss of the different methods. We found the best performing Text2Vis
variants to also converge faster to their better solutions. Word2VisualVec
requires instead a much larger number of iterations to converge. Figure 7 shows
some selected representative trends; D-Text2Vis-1 converges approximately
as fast as S-Text2Vis; the error decreases faster when stacking LSTM cells,
and even faster when combining the wide and deep approach. We have also kept
track of the iteration in which the best solution (estimated in the validation
error) was found for each model. In average, the W&D-Text2Vis variants
required 18K steps, followed by D-Text2Vis with 22K steps, S-Text2Vis
with 25K steps, and finally by Word2VisualVec with 104K steps.

5 Conclusions

We have investigated various neural network model designed to learn a pro-
jection from a textual space to a visual space, in order to enable cross-media
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Fig. 7: Convergence error loss trends on the fc6 layer of some selected models.

similarity search without reprocessing the representation of the image col-
lection and the relative data structures one may have already produced to
perform image similarity search.

The experiments we conducted indicate that our methods produce better
results than those produced by performing similarity search directly on the
visual features of a query image. This is an indication that our text-to-image
mappings produce better prototypical representations of the desired scene than
the representation of a sample image itself. A simple explanation of this result
is that textual descriptions strictly emphasize the relevant aspects of the scene
the user has in mind, whereas the visual features, directly extracted from the
query image, are keeping track of all the information that is contained in that
image, causing the similarity search to be potentially confused by secondary
elements of the scene.

Our results also indicate that our methods produce better results than
those obtained by similarity search methods on the textual space where the
images are indexed by means of automatically generated captions. The bet-
ter results that visual-space based methods have produced over textual-space
based ones are not the only argument in favor of the former. We deem that a
stronger argument in favor of visual-space methods is the fact the any improve-
ment to the projection method does not require to reprocess the entire image
collection, affecting it only the query processing pipeline. A web scale image
collection can thus immediately benefit from a model update without requiring
any processing. Moreover, a single image similarity search data structure can
serve multiple cross-media search models, e.g., built for different languages or
specialized on different domains.

We have compared against Word2VisualVec, a recently proposed method
that, like ours, uses the visual space as the search space. In our experimental
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setup we improved the performance obtained by the original Word2VisualVeccos
by switching from cosine similarity to euclidean similarity that uses PCA and
whitening, following the state of the art in similarity search literature. The im-
proved Word2VisualVec model obtained among the best results, together
with D-Text2Vis and W&D-Text2Vis. Our W&D-Text2Vis model im-
proved over Word2VisualVec by a statistical significant margin. W&D-
Text2Vis has more parameters than Word2VisualVec but converges much
faster.

One interesting aspect that proved to be effective in our experiments is
the use of a different tout as a constraint for the hidden representation. When
tin and tout are different, though semantically similar, the autoencoder branch
becomes semantically constrained. We have investigated this idea in the S-
Text2Vis and we believe the same principle could also bring similar benefits
for the D-Text2Vis and W&D-Text2Vis models. We thus plan to inves-
tigate the effects of such “semantic-autoencoding” principle by adopting a
Seq2Seg [5] architecture, i.e., by constraining the final memory state from an
encoding LSTM after processing the input tin to be a good representation to
generate a different, but semantically similar, tout with a decoder LSTM. We
believe such an intermediate state to be able to produce better projections to
the visual features.
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