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Abstract Deep neural networks are more and more pervading many computer
vision applications and in particular image classification. Notwithstanding that,
recent works have demonstrated that it is quite easy to create adversarial exam-
ples, i.e., images malevolently modified to cause deep neural networks to fail. Such
images contain changes unnoticeable to the human eye but sufficient to mislead
the network. This represents a serious threat for machine learning methods. In
this paper, we investigate the robustness of the representations learned by the
fooled neural network, analyzing the activations of its hidden layers. Specifically,
we tested scoring approaches used for kNN classification, in order to distinguish be-
tween correctly classified authentic images and adversarial examples. These scores
are obtained searching only between the very same images used for training the
network. The results show that hidden layers activations can be used to reveal
incorrect classifications caused by adversarial attacks.

Keywords Adversarial images detection · Deep Convolutional Neural Network ·
Machine Learning Security

1 Introduction

Deep Neural Networks (DNNs) have recently led to significant improvement in
many areas of machine learning. They are the state of the art in many vision
and content-base multimedia indexing tasks such as classification [23, 39, 45],
recognition [40], image tagging [26], video captioning [5], face verification [35, 38],
content-based image retrieval [1, 21], super resolution [13], cross-media searching
[9, 14], and image forensics [4, 6, 49, 50].
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Fig. 1: Overview of our detection approach. The input image is classified by the
CNN, but we consider the classification valid only if the kNN score of the predicted
class based on deep features (pool5 ) is above a certain threshold.

Unfortunately, researchers have shown that machine learning models, including
deep learning methods, are highly vulnerable to adversarial examples [15, 22, 31,
47]. An adversarial example is a malicious input sample typically created applying
a small but intentional perturbation, such that the attacked model misclassifies it
with high confidence [15]. In most of the cases, the difference between the original
and perturbed image is imperceptible to a human observer. Moreover, adversarial
examples created for a specific neural network have been shown to be able to
fool different models with different architecture and/or trained on similar but
different data [31, 47]. These properties are known as cross-model and cross-dataset
generalization of adversarial examples and imply that adversarial examples pose
a security risk even under a threat model where the attacker does not have access
to the target’s model definition, model parameters, or training set [24, 31].

It becomes crucial to understand how adversarial actions are perpetrated in
order to consequently build up solutions to be robust against such attacks. Most
of the effort of the research community in defending from adversarial attacks had
gone into increasing the model robustness to adversarial examples via enhanced
training strategies, such as adversarial training [15, 32] or defensive distillation
[18, 34]. However, studies have shown [31] that those techniques only make the
generation of adversarial examples more difficult without solving the problem. A
different, less studied, approach is to defend from adversarial attacks by distin-
guishing adversarial inputs from authentic inputs.

In this work, we present an approach to detect adversarial examples in deep
neural networks, based on the analysis of activations of the neurons in hidden lay-
ers (often called deep features) of the neural network that is attacked. Being deep
learning a subset of representation learning methods, we expect the learned repre-
sentation to be more robust than the final classification to adversarial examples.
Moreover, adversarial images are generated in order to look similar to humans and
deep features have shown impressive results in visual similarity related tasks such
as content-based image retrieval [16, 41]. The results reported in this paper show
that, given an input image, searching for similar deep features among the images
used for training, allows to predict the correctness of the classification produced
by a DNN.

In particular, we use traditional kNN classifiers scoring approaches as a mea-
sure of the confidence of the classification given by the DNN (see Figure 1). The
score assigned by the kNN classifier to the class predicted by the DNN is used
as a confidence measure of the reliability of the predicted class. The experiments
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show that we are able to filter out many adversarial examples, while retaining
most of the correctly classified authentic images. The choice of the discriminative
threshold is a trade-off between accepted false positives (FP) and true positives
(TP), where positive means non-adversarial.

A preliminary version of this method has been presented in [10]. We extended
that work with a twofold contribution. First, we considered the behavior of differ-
ent intermediate layers in determining adversarial examples. Second, we analyzed
the cross-model applicability and resilience of the introduced approach when deal-
ing with a diverse and more recent type of convolutional neural network.

The rest of the paper is structured as follows. Section 2 reviews the most
relevant works in the field of adversarial attacks and their analysis. Section 3
provides background knowledge to the reader about DNNs, image representations
(known as deep features), and adversarial generation. In section 4 our approach
is presented, while in section 5 we describe the experimental settings we used to
validate it. Finally, section 6 concludes the paper and presents some future research
directions.

2 Related Work

2.1 Generation of Adversarial Examples

Szegedy et al. [47] firstly defined an adversarial example as the smallest perturbed
image that induces a classifier to change prediction with respect to the origi-
nal one. They successfully generated adversarial examples through the use of the
box-constrained Limited-memory approximation of Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) optimization algorithm, and they proved that adversarial exam-
ples exhibit cross-model and cross-training set generalization properties. The same
adversarial images also affect different models with different architectures also
trained on different subsets of the training set. Cross-model and cross-training set
generalization properties of adversarial examples are also confirmed in [48], where
the authors explored the pixel space around adversarial images moving in random
directions applying different kinds of noise. They show that adversarial images are
not isolated, spurious points, but they occupy large regions of the pixel space that
mislead models with similar classification boundaries. To overcome to the high
computational cost of the L-BFGS approach, Goodfellow et al. [15] proposed the
Fast Gradient Sign (FGS) method, which derives adversarial perturbations from
the gradient of the loss function with respect to the input image, that can be
efficiently computed by backpropagation. In [29], Nguyen et al. used evolutionary
algorithms and gradient ascent optimizations to produce fooling images which are
unrecognizable to human eyes but are classified with high confidence by DNNs.
Papernot et al. [32] used forward derivatives to compute adversarial saliency maps
that show which input feature have to be increased or decreased to produce the
maximum perturbation of the last classification layer towards a chosen adversarial
class. In [28], Moosavi et al. presented an algorithm to find image-agnostic (uni-
versal) adversarial perturbations for a given trained model, that are able fool the
classifier with high probability when added to any input.
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2.2 Defense Strategies for Adversarial Attacks

Different kinds of defenses against adversarial attacks have been proposed. Fast
adversarial generation methods (such as FGS) enable adversarial training, that is
the inclusion in the training set of adversarial examples generated on-the-fly in the
training loop. Adversarial training allows the network to better generalize and to
increase its robustness to this kind of attacks. However, easily optimizable models,
such as models with non-saturating linear activations, can be easily fooled due to
their overly confident linear responses to points that not occur in the training data
distribution [15]. This concept is also discussed in [33], where the authors shows
that there are tensions between model accuracy and resilience that has to be cali-
brated for each particular use case. They also provide a detailed description of the
threat model for a machine learning system according to adversarial goals and ca-
pabilities, and a categorization of attacks and defenses in this framework. In [19],
the authors found that denoising autoencoders can remove substantial amounts of
the adversarial noise. However, when stacking the autoencoders with the original
neural network, the resulting network can again be attacked by new adversarial
examples with even smaller distortion. Thus, the authors proposed Deep Con-
tractive Network, a model with an end-to-end training procedure that includes
a smoothness penalty. Similarly, in [34] a two-phase training process known as
distillation is used to increase the robustness of a model to small adversarial per-
turbations by smoothing the model surface around training points and vanishing
the gradient in the directions an attacker would exploit. Still, attackers can find
potential adversarial images using a non-distilled substitute model. Papernot et
al. [31] showed that successfully attacks are possible even if the attacker does not
have direct access to the model weights or architecture. In fact, the authors suc-
cessfully performed adversarial attacks to remotely hosted models, and Kurakin
et al. [24] also showed that attacks in physical scenarios, such as feeding a model
with a printout adversarial example through a digital camera, are possible and
effective. Detection of adversarial examples is still an open problem [32]. In this
direction, Metzen et al. [27] proposed to add a parallel branch to the classifier
and train it to detect whether the input is an adversarial example. However, the
proposed branch is still vulnerable to adversarial attacks, and a more complicate
adversarial training procedure is needed to increase the robustness of the whole
system. The work most related to ours is from Grosse et al. [17], that proposed to
detect adversarial inputs based on the statistical differences of their distribution
from the one describing authentic inputs. However, the main drawback of this
method is the inability to perform a per-sample detection.

3 Background

3.1 Deep Learning and Features

Deep learning methods are “representation-learning methods with multiple levels
of representation, obtained by composing simple but non-linear modules that each
transform the representation at one level (starting with the raw input) into a
representation at a higher, slightly more abstract level” [25].
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Starting from 2012, deep learning has become state-of-the-art in image clas-
sification given the excellent results in ILSVRC challenges based on ImageNet
[20, 23, 39, 42, 45]. In the context of Content-Based Image Retrieval, deep learn-
ing architectures are used to generate high level features. The relevance of the
internal representation learned by the neural network during training have been
proved by many recent works [2, 7, 12, 25]. In particular, the activation produced
by an image within the intermediate layers of a deep convolutional neural network
can be used as a high-level descriptor of the image visual content [2, 3, 11, 36, 39].

In this work, we employed the image representations extracted using OverFeat
[39], a well-known and successful deep convolutional network architecture that
have been studied for the analysis of adversarial attacks to convolutional neural
networks [48], and for which implementations of adversarial generation algorithms
are publicly available (see Section 5). Specifically, we used the Fast OverFeat net-
work pre-trained on ImageNet (whose code and weights are publicly available at
https://github.com/sermanet/OverFeat), and we selected the activations of the
pool5 layer as deep features for images.

3.2 Adversarial Generation

In this subsection we provide a brief description of the two approaches we used in
our work to generate adversarial images.

Box Constrained L-BFGS [47, 48] Given an input image x and a DNN classifier
y = f(x), an adversarial example is generated finding the smallest distortion η
such that x′ = x+η is misclassified by the target model, that is f(x+η) 6= y. The
adversarial perturbation η is modeled as the solution of the following optimization
problem:

minimize
η

||η||+ C ·H(y, yA)

subject to L <= x+ η <= U,

y = f(x+ η)

(1)

where L and U are respectively lower and upper bound of pixel values, f is the at-
tacked classifier, H(y, yA) is the cross-entropy loss computed between the output
class probability distribution y and the target adversarial distribution yA (which
assigns probability 1 to the adversarial label and 0 to the remaining ones). The pa-
rameter C controls the trade-off between the magnitude of η and its fooling power.
An adversarial perturbation is found by solving (1) using the box-contrained L-
BFGS optimization algorithm. A first feasible value of C is found with a coarse
grid search and then tuned with a binary search.

Fast Gradient Sign [15] In the Fast Gradient Sign method, the adversarial pertur-
bation is proportional to the sign of the gradient back-propagated from the output
to the input layer. Mathematically speaking, let θ be the parameters of a model, x
the input to the model, y the targets (the desired output) associated with x, and
J(θ, x, y) the cost function used to train the neural network. The cost function
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can be linearized around the current value of θ, obtaining an optimal max-norm
constrained perturbation:

η = ε · sign(∇xJ(θ, x, y))

Note that the gradient can be computed easier using back-propagation. The ad-
versarial input is given by x′ = x+ η.

4 Detecting adversarial examples

In this work, we propose to detect adversarial examples analyzing the representa-
tion learned in the hidden layers (deep features) of the fooled convolutional neural
networks. Being deep learning a subset of representation learning methods, we
expect the learned representation to be more robust than the final classification to
adversarial examples. The recent renaissance of neural networks is due to the abil-
ity of learning powerful representations that can be used for classification but also
for many other tasks such as recognition [40], face verification [38], content-based
image retrieval [21], super resolution [13], cross-media searching [9, 14], etc. There
are two reasons why deep features should be more robust: first, the adversarial
generation algorithms are not meant to fool the representation itself but only the
final classification; second, adversarial images are generated in order to look simi-
lar to authentic ones for humans, and deep features have shown impressive results
in visual similarity related tasks such as content-based image retrieval [16, 41].

To detect whether an image is tampered, we first classify it with the DNN.
Then, the activations of an hidden layer of the DNN (deep features) are used as
query to perform a kNN search on the training set of the DNN. The deep features
are used to judge image similarity. We then use the score assigned by a kNN
classifier to the class predicted by the DNN as a measure of confidence of the
classification. Please note, we do not rely on the classification produced by the
kNN classifier, but we only use the score assigned to the class predicted by the
DNN as a measure of confidence.

More formally, given a set of labeled images X = {(xi, ci)} where xi is an
image and ci is its class label, a kNN classifier assigns labels to an unknown
image q considering the ordered results of its k nearest neighbors NN(q, k) =
{(x1, c1) . . . (xk, ck)}, obtained performing a kNN search over X for a predefined
distance function d(x, y) between any two images. We define the distance function
as d(x, y) = ||φ(x) − φ(y)||2, where φ(x) is the deep feature extracted from the
image x using the DNN, and || · ||2 is the L2 norm. A score s(q, c) is assigned to
every class c found in the retrieved nearest neighbors of q as follows:

s(q, c) =

∑k
i=1 wi1{ci = c}∑k

i=1 wi
(2)

where q is a query image, c is the class for which we are computing the score, ci
is the groundtruth class of the i-th result in NN(q, k), wi the weight assigned to
the same i-th result, and 1{ci = c} has value 1 if ci = c, 0 otherwise. In Table 1,
we report wi assignments for famous variants of kNN classifiers.

Let x be the input image and cx the class predicted by the DNN with a forward
computation: cx = f(x). The kNN classifier is used to compute the score s(x, cx)
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kNN Weighted kNN d-Weighted kNN

wi = 1 wi =
1

i
wi =

1

d(q, xi)2

Table 1: Weighting functions for the various kNN classifiers

of the class cx predicted by the DNN. We decide that the classification is reliable,
i.e. it is not an adversarial, if the score s(x, cx) is above a predefined threshold. The
score s(x, cx) is, basically, a measure of the confidence of the classification given by
the DNN. The intuition behind this choice is that while it is unlikely that a class
correctly predicted by the DNN has the highest kNN score among the scores of all
the classes, it is implausible that a correct classification has a very low score. As
anticipated, the choice of the score threshold is a trade-off between false positives
(FP) and true positives (TP), where FP are the adversarial examples (negatives)
not detected using the specific threshold (false) and TP is the rate of correctly
classified authentic images (positives) successfully identified (true). Please note
that we do not rely on additional models or data other than the fooled DNN and
its original training set for the extraction of deep features or for the detection task.

5 Experimental Settings

In this section, we describe the experimental setups used to evaluate the proposed
adversarial detection approach. Our method has been evaluated as a binary clas-
sification of the correctness of the prediction given by a DNN, in which a positive
outcome means that the prediction given by the DNN is trustful, while a negative
outcome indicates that the prediction given by the DNN is spurious and have to
be discarded.

The datasets used in this paper are the ILSVRC2012 subset of ImageNet [37]
and the NIPS 2017 Adversarial Attacks and Defenses Kaggle Competitions [8]
images. Both datasets share the same ILSVRC2012 label space. We selected these
datasets for the experiments due to the big availability of classifiers pre-trained
on ILSVRC2012. We search for similar images on the very same data that have
been used for training the neural networks (i.e., the ILSVRC2012 training subset).
Thus, the kNN methods rely on the very same information the neural network have
seen during training.

We performed experiments with two DNN architectures. First, we applied
our approach to OverFeat-Fast DNN [39] (Subsection 5.1), using a subset of the
ILSVRC2012 validation images for generating adversarials. Second, we aligned
with the configuration proposed in the context of the NIPS 2017 Adversarial De-
fenses Kaggle Competition [8] (Subsection 5.2). Hence, we tested our method on
the network used as baseline in the competition (InceptionV3 ), and we used the
DEV image set provided through Kaggle for generating adversarials. Generated
adversarials and other resources have been made public available on the paper web
page 1.

1 http://deepfeatures.org/adversarials/
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5.1 OverFeat-Fast network

In the experiments reported in this section, we selected the OverFeat-Fast DNN
[39] given that this network (trained network on ILSVRC2012) was used in the
papers in which both L-BFGS and Fast Gradient Sign (see Section 3.2) were
presented.

As reported in Section 4, our approach performs a kNN similarity search
over the images that were used for training the attacked DNN (the ILSVRC2012
training set). For generating adversarial examples, we selected images from the
ILSVRC2012 validation set. In particular, we selected two subsets of images based
on the classification results. The first set is composed by randomly selecting a cor-
rectly classified image for each of the 1, 000 ILSVRC classes, while the second set is
composed by randomly selecting a wrongly classified image (for which the network
has given a wrong prediction) for each of the same classes. We could not select
a wrongly classified image in the class coded “n12057211” (yellow lady’s slipper,
yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum) because all
the instances of this class in the validation set are correctly classified by OverFeat.
Thus, the two sets respectively count 1, 000 and 999 images. We named those
subsets respectively Authentic and Authentic Errors, where ‘authentic’ stands for
non-adversarial images.

For each image in the Authentic subset, we generated two adversarial images
using both box constrained L-BFGS2 and FGS3 algorithms. For both methods,
we used the default parameters in every generation and we randomly selected the
target class, that is the class we fool the network to predict. We observed that L-
BFGS algorithm failed to generate 8 adversarial images, in the sense that the class
prediction of the generated adversarial image was the same of the original image.
Those failures in the generation process could be avoided tuning the parameters
of the algorithm for each input, but for sake of simplicity we discarded the failed
adversarial examples, ending up with two sets of adversarial images respectively
composed by 1000 images generated by FGS, and 992 images obtained with L-
BFGS. The generated adversarial images are made publicly available4 to make
easier to reproduce the experiments.

We extracted the activations of the pool5, fc6, and fc7 intermediate layer of the
pre-trained OverFeat fast network [39] from the following sets of images: Authen-
tic, Authentic Errors, L-BFGS Adversarial, FGS Adversarial and ILSVRC2012
train set. Both fully connected layers fc6 and fc7 are composed by 4096 floats,
while activations of pool5 are composed by 1024 6x6 feature maps. Following [43],
we applied global average pooling (GAP) to the pool5 feature maps, which acts as
a structural regularizer, obtaining an image representation of 1024 floats. For the
kNN classifier, we used the features extracted from ILSVRC2012 train set as la-
beled set X, and we defined the distance function d(q, x) as the euclidean distance
between the extracted features. We chose k = 1, 000 to have a number of nearest
neighbors of the same order of magnitude of the number of images per class in the
labeled set. We tested also feature L2 normalization and dimensionality reduction
using PCA+Whitening with 256 dimensionality.

2 https://github.com/tabacof/adversarial
3 https://github.com/e-lab/torch-toolbox/tree/master/Adversarial
4 http://deepfeatures.org/adversarials/
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Given an input image x, we compute the kNN score s(x, c) for the class c = f(x)
predicted by OverFeat, and we discard this classification if the score is below a
certain threshold. We computed the kNN score for each image in the FGS Adver-
sarial, L-BFGS Adversarial and Authentic Errors image sets, and for each set we
measure the ability to detect an adversarial input as the performance of a binary
classification problem (‘trustful’ / ‘spurious’ classification).

5.1.1 Results

In Table 2, we report the detection accuracy of our proposed approach for different
settings. Accuracy of the binary ‘trustful’ / ‘spurious’ classification is evaluated
in the equal error rate (EER) setting, that is when we choose a threshold yielding
equal false positive and false negative rates. The best results were obtained pro-
cessing pool5 deep features using PCA and Whitening, delivering an aggregated
accuracy of roughly 85% irregardless of the generation method of the adversarial
perturbation. The three scoring approaches considered revealed similar perfor-
mance with DW-kNN and W-kNN more effective in detecting L-BFGS and FGS,
respectively.

We found that adversarial examples generated with FGS are in general easier
to detect using higher-level activations (fc6, fc7 ), while L-BFGS examples are sig-
nificantly harder to filter out. This is reasonable because the optimization problem
solved by L-BFGS produces small adversarial perturbation that are usually more
difficult to detect even at higher layers at the cost of a more time-consuming gener-
ation process. While pool5 activations perform best when applying a considerable
amount of preprocessing on them (PCA+Whitening), fully connected activations
perform well when used as is. We think a meaningful explanation for this behavior
is given by the presence of dropout in the fully connected layers during the net-
work training. Dropout is known to reduce the co-adaptation of hidden units and
help learning robust, independent representations [44]. This may limit the benefits
brought by dimensionality reduction schemes, such as PCA.

In Figure 2, we report the Receiver operating characteristic (ROC) curves of
the DW-kNN scoring approach on adversarial images and errors. The curves illus-
trate the performance of the proposed binary classifier when varying the threshold
on the score s(x, f(x)). As mentioned before, despite that fc6 perform better de-
tecting FGS adversarials, using pool5 activations result in a detector more robust
in general. However, we observed that higher kNN scores (which correspond to dif-
ficult L-BFGS adversarial to detect) usually reflects inter-class visual similarities
that are independent from the adversarial nature of the input image (see Table
3). The ROC curve for errors is the worst, indicating that our approach confuse
correctly and incorrectly classified authentic images. As mentioned before, the
detection of authentic images incorrectly classified (errors) would be a desirable
property of our approach, but it is not our main goal. We also report in Table 2 the
detection accuracy obtained by the proposed methods when using the threshold
value yielding equal error rates (EER) on both ‘confident’ / ‘not confident’ classes.

In the following, we focus on the DW-kNN score. In Figure 3, we report the true
positive (for correctly classified authentic images) and false positive (for adversarial
images and authentic errors) rates distributions as a function of the discriminant
threshold applied on the score s(x, f(x)). Please note that for our method positive



10 Fabio Carrara et al.

pool5

Processing Score L-BFGS FGS Aggr. Errors

None
kNN 70.7 69.9 70.3 58.1

W-kNN 71.2 70.8 71.0 59.6
DW-kNN 71.0 69.9 70.4 58.6

L2Norm
kNN 79.2 74.3 76.7 60.7

W-kNN 81.4 76.4 78.9 62.9
DW-kNN 81.7 76.6 79.1 61.6

PCA + Whiten

kNN 86.4 83.4 84.9 62.9
W-kNN 85.9 83.8 84.8 65.0

DW-kNN 86.5 83.5 85.0 63.6

fc6

Processing Score L-BFGS FGS Aggr. Errors

None
kNN 76.4 88.8 82.2 65.8

W-kNN 77.0 86.9 81.7 68.0
DW-kNN 76.3 88.6 82.0 65.2

L2Norm
kNN 69.6 84.9 76.5 65.6

W-kNN 70.2 86.8 77.7 71.3
DW-kNN 69.4 84.7 76.3 65.4

PCA + Whiten

kNN 67.5 84.8 75.2 66.2
W-kNN 68.6 86.6 76.6 72.0

DW-kNN 67.9 84.4 75.3 66.0

fc7

Processing Score L-BFGS FGS Aggr. Errors

None
kNN 77.0 87.8 82.1 67.0

W-kNN 73.2 88.8 80.3 69.7
DW-kNN 76.7 87.8 81.9 66.7

L2Norm
kNN 64.7 86.2 73.9 64.7

W-kNN 64.1 87.8 74.1 69.9
DW-kNN 64.7 86.1 73.9 64.8

PCA + Whiten

kNN 63.4 86.3 73.1 64.6
W-kNN 62.7 88.0 73.2 70.5

DW-kNN 63.6 85.9 73.1 64.8

Table 2: Detection accuracy in the equal error rate (EER) score threshold setting
for various activation layers, score functions, and features processing. We report re-
sults for both type of adversarial (L-BFGS and FGS) and the aggregated accuracy
(Aggr.). In the last column, we report the detection rate of erroneous classifications
not due to adversarial examples.

means non-adversarial. The results show that using very low discrimination score
values (about 0.002), it is possible to correctly filter out more than 50% of the
adversarial examples created by L-BFGS and more than 40% of the ones created
by FGS, while retaining more than 98% of authentic images correctly classified. As
a positive side-effect, we also discard around 10% of images the DNN would mis-
classify. The low threshold values reveal that while the DW-kNN score would not
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Fig. 2: Receiver operating characteristic (ROC) curves of the binary classification
(‘prediction is right’ or ‘prediction is wrong’) for the various types of images. The
curves are obtained varying the discrimination threshold on the score assigned
by the DW-kNN classifier to the class predicted by the CNN. We only report
the curves of the best performing configurations, that are fc6 with no processing,
and pool5 with PCA and whitening. Notice that when using pool5 we obtain a
detection less sensible to a particular adversarial generation process.

be effective in classifying the images, values below 0.003 are unlikely for authentic
images.

The same results can be seen from the score densities reported in Figure 4,
in which we can observe a distinction between the score densities of adversarial
images and the ones of authentic images. Some simple statistics on those densities
(such as the mean) could be computed on-line in the system hosting the model
to isolate a particular source of adversarial examples, hence denying the access to
the service to an attacker.

Finally in Table 3, we report examples of successful detections and failures
of our approach applied to the generated adversarial images. We observed that
higher kNN scores (which correspond to difficult adversarial to detect) usually
reflects inter-class visual similarities that are independent from the adversarial
nature of the input image.
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Algorithm Adv. Image Actual Predicted Predicted NN s

L-BFGS
bikini, two-
piece

pomegranate 0.01

FGS brassiere, bra,
bandeau

Chihuahua 0.01

FGS
revolver,
six-gun, six-
shooter

mousetrap 0.00

L-BFGS
assault rifle, as-
sault gun

Border terrier 0.00

(a) Examples of good detections of adversarial images with content that might be filtered. Low
scores reflect a low confidence of image authenticity.

Algorithm Adv. Image Actual Predicted Predicted NN s

FGS
chime, bell,
gong

barometer 0.13

L-BFGS basenji
Arctic fox,
white fox,
Alopex lagopus

0.13

FGS Greater Swiss
Mountain dog

Bernese moun-
tain dog

0.11

FGS jeep, landrover pickup, pickup
truck

0.11

(b) Examples of bad detections of adversarial images. Those are adversarial images for which
our approach wrongly assigned a high score. However, this is mainly due to the visual similarity
between the actual and fooled class.

Table 3: Examples of detections of adversarial images obtained by our best ap-
proach (pool5+PCA+DW-kNN). From left to right, columns respectively report:
the adversarial generation algorithm, the generated adversarial image, its original
class, the class predicted by the DNN, the nearest neighbor image (in terms of
L2 distance between average-pooled pool5 activations) belonging to the predicted
class, and the DW-kNN score s for the predicted class. A low score indicates that
the adversarial is correctly detected (a) while a high score means that our approach
is wrongly confident about the prediction of the CNN (b). The results show that
high scoring adversarials examples often share some common visual aspects and
semantic with the predicted (adversarial) class, resulting in a more challenging
detection.
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Fig. 3: True positive and false positive rates using as discrimination threshold
between correctly and incorrectly classified images the score assigned by the DW-
kNN classifier to the class predicted by the CNN. The pool5 (on the left) and
fc6 (on the right) layers have been used as features with PCA and Whitening
processing.
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Fig. 4: Density of the DW-kNN scores for both adversarial and authentic images.
We report densities of scores using pool5 (on the left) and fc6 (on the right) as
feature and PCA+Whitening as processing.

5.2 InceptionV3 Network on Kaggle NIPS 2017 Adversarial Competition Dataset

In the following experiments, we applied our detection algorithm to a more recent
model, that is InceptionV3 [46], which has been used as baseline classifier in the
NIPS 2017 Adversarial Attacks and Defenses Kaggle Competitions [8]. Thus, in-
stead of selecting random images from the ILSVRC2012 validation set, we used the
DEV images set released for the competition. The DEV set is composed of 1,000
images that are not part of the ImageNet dataset, yet they have been manually
labelled using the ILSVRC2012 labels.

We followed the same methodology as in Section 5.1: we set apart from the DEV
set the images that were incorrectly classified by InceptionV3; for the remaining
images, we applied four different perturbation schemes (we generated the last two
adversarial perturbations using the cleverhans library [30]):
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noop the image is unchanged;
random noise the image is perturbed adding random gaussian noise in the

interval [−16,+16];
fgsm the image is perturbed with FGSM (see Section 3.2) with ε = 16

choosing a random target class;
iter step class the image is perturbed with 20 iterations of FGSM algorithm

with ε = 1; the target class is randomly chosen and kept fixed
for all the iterations; the total perturbation is clipped to be in
the interval [−16,+16].

Since random noise images are not meant to directly attack the classifier, we
considered them authentic images. As in Section 5.1, we removed failed adversarial
images produced by fgsm or iter step class, i.e. adversarial perturbed images
for which the prediction of the network has not changed. We also left out images
produced by random noise that are misclassified by the network, in order not to
tamper the analysis of our adversarial detection approach with errors committed
naturally by the classifier. From this procedure, we obtained a test set comprising
correctly classified authentic images and successfully generated adversarial images.

We performed a thorough exploration on the choice of the deep features to be
extracted from the InceptionV3 model. We extracted convolutional features after
each inception module, and we obtained compact representations applying global
average pooling. We also performed PCA dimensionality reduction to 256 com-
ponents, since it had been proved beneficial for convolutional features in previous
experiments (see Section 5.1).

5.2.1 Results

In Table 4, we report the equal-error-rate (EER) accuracy obtained on the test
set for each layer used to extract deep features and considering each kNN scor-
ing scheme. We noticed that the effectiveness of the detection increases adopting
higher-level layers of the network, until we reach the fooled layers, where the accu-
racy drops. The first layers of the network produce activations not representative
enough of class-level semantic concepts, while the last layers are steered by the
adversarial crafting algorithms. This behavior suggests that current adversarial
crafting algorithms do not steer all the internal semantic representations inside
the network. Thus, we are able to find a good compromise between representative-
ness and robustness to adversarial manipulation.

In Figure 5, we report the true positive (correctly classified authentic images
predicted as non-adversarial) and false positive (adversarial images and authentic
errors not detected by our method) rates distributions as a function of the discrim-
inant threshold applied on the score (positive means non-adversarial). Although
lower-level features seem not to affect the detection of less perturbed images (i.e.
FGSM), we noticed that they play a fundamental role to detect strong adversarial
such as iter target class (Figure 5 on the left). This is reasonable given that
the stronger attack we analyzed, i.e. iter target class, tends to affect multiple
layers in the last stage of the network, thus being better detected using more inter-
nal lower-level activations, while FGSM can be easily detected using higher-level
layers.
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kNN

Features fgsm iter target class Aggr. Errors

maxpool 5a 3x3 50.1 51.9 51.1 31.1
mixed 5b 53.0 54.4 53.8 35.4
mixed 5c 56.6 58.4 57.6 41.2
mixed 5d 57.6 59.8 58.9 43.2
mixed 6a 62.6 65.7 64.4 51.5
mixed 6b 62.3 72.7 68.2 52.8
mixed 6c 70.7 80.6 76.3 60.5
mixed 6d 70.9 83.0 77.8 64.5
mixed 6e 72.5 74.2 73.5 71.3
mixed 7a 73.0 77.2 75.4 71.4
mixed 7b 73.7 70.5 71.9 75.2
mixed 7c 74.0 52.0 61.5 78.5

W-kNN

Features fgsm iter target class Aggr. Errors

maxpool 5a 3x3 58.2 60.8 59.7 45.6
mixed 5b 59.5 63.0 61.5 49.1
mixed 5c 62.2 66.9 64.9 54.6
mixed 5d 63.8 68.7 66.6 57.5
mixed 6a 68.7 74.4 72.0 61.7
mixed 6b 67.8 79.9 74.7 63.1
mixed 6c 71.0 82.5 77.6 68.2
mixed 6d 71.7 84.6 79.1 69.4
mixed 6e 74.3 75.6 75.1 72.1
mixed 7a 75.5 78.4 77.2 75.0
mixed 7b 75.1 71.3 72.9 76.5
mixed 7c 74.4 52.3 61.9 80.5

DW-kNN

Features fgsm iter target class Aggr. Errors

maxpool 5a 3x3 58.3 60.9 59.8 45.7
mixed 5b 59.5 63.0 61.5 49.1
mixed 5c 62.2 66.9 64.9 54.5
mixed 5d 63.8 68.8 66.6 57.8
mixed 6a 68.8 74.4 72.0 62.7
mixed 6b 68.0 80.0 74.8 64.0
mixed 6c 71.4 82.3 77.6 69.2
mixed 6d 71.6 85.0 79.2 69.5
mixed 6e 72.8 75.5 74.4 72.6
mixed 7a 74.4 78.3 76.7 73.1
mixed 7b 74.4 71.4 72.7 76.1
mixed 7c 74.5 52.8 62.2 79.0

Table 4: Equal error rate (EER) detection accuracies for each (scoring scheme,
layer) combination. The accuracies are computed putting together each subset
(fgsm or iter target class) with the set authentic images. The Aggr. column
reports a weighted mean of the accuracies on all subsets. The Errors column
report the recover accuracy for natural (non-adversarial) errors committed by the
network.
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Fig. 5: True positive and false positive rates when varying the score threshold. The
scores are computed using mixed 6d (on the left) and mixed 7a (on the right)
of the InceptionV3 classifier. DW-kNN scoring scheme was selected for both.

Weighted scoring schemes (W-kNN and DW-kNN) seem to outperform the
naive kNN scheme, specially when combined with low level features (see Figure
6). Overall, the best performance is obtained using the mixed 6d layer and the
DW-kNN scheme, reaching a mean EER accuracy of 79.2%. Moreover, our method
is able to recover around 80% of natural errors committed by the network. This
rate is considerably higher than the ones presented in Table 2 due to the presence of
random noise images, that produced lots of easily recoverable misclassifications.

6 Conclusions and Future Work

In this paper, we presented an approach to detect adversarial examples crafted
for fooling deep neural network classifiers. The overall goal is filtering out mali-
cious images. Being deep learning methods based on representation learning, we
decided to consider activations of neurons in hidden layers (the representation
learned) in order to detect adversarials. In particular, we inspect the activations
of intermediate layers for both adversarial and authentic inputs, and we defined an
authenticity confidence score based on kNN similarity searching among the images
used for training. Experiments on the two most cited adversarial generation tech-
niques (L-BFGS and FGSM) on the very same neural network used in the original
papers (i.e., Overfeat, InceptionV3) have been carried out. In the experiments, we
considered various kNN score functions and hidden layers.

The proposed approach allows to filter about 80% of adversarial examples
retaining more than 90% of the correctly classified authentic images (see Figure 3).
We also showed that the probability density function of our authenticity confidence
obtained over adversarial examples significantly differs from the one obtained for
authentic images. Moreover, some examples are suggesting that hard adversarial
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Fig. 6: The Equal Error Rate accuracy obtained on the NIPS DEV set using
different intermediate activations of the InceptionV3 as deep features. Note that
the effectiveness of the detection gets better when using deeper representations,
and rapidly decreases when we reach the fooled layers at the end of the network.

examples are the ones for which actual and target classes are similar or have similar
visual patterns.

With respect to the previous work we presented at CBMI 2017, we also tested
our method on the InceptionV3 DNN, generating adversarial images from the
NIPS 2017 Adversarial Attacks and Defenses Kaggle Competitions. Moreover, we
compared the results obtained using the features obtained from each internal layer
of the InceptionV3. Best results were obtained using layer mixed 6d with an over-
all EER Accuracy of 80%. These results confirm the effectiveness of our approach
and its general applicability to deep neural network classifiers.
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