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Abstract. In the realm of metric search, the permutation-based ap-
proaches have shown very good performance in indexing and supporting
approximate search on large databases. These methods embed the met-
ric objects into a permutation space where candidate results to a given
query can be efficiently identified. Typically, to achieve high effective-
ness, the permutation-based result set is refined by directly comparing
each candidate object to the query one. Therefore, one drawback of these
approaches is that the original dataset needs to be stored and then ac-
cessed during the refining step. We propose a refining approach based on
a metric embedding, called n-Simplex projection, that can be used on
metric spaces meeting the n-point property. The n-Simplex projection
provides upper- and lower-bounds of the actual distance, derived using
the distances between the data objects and a finite set of pivots. We pro-
pose to reuse the distances computed for building the data permutations
to derive these bounds and we show how to use them to improve the
permutation-based results. Our approach is particularly advantageous
for all the cases in which the traditional refining step is too costly, e.g.
very large dataset or very expensive metric function.

Keywords: metric search · permutation-based indexing · n-point property ·
n-Simplex projection · metric embedding · distance bounds

1 Introduction

The problem of searching data objects that are close to a given query object,
under some metric function, has a vast number of applications in many branches
of computer science, including pattern recognition, computational biology and
multimedia information retrieval, to name but a few. This search paradigm,
referred to as metric search, is based on the assumption that data objects are
represented as elements of a metric space (D, d) where the metric4 function
d : D ×D → R+ provides a measure of the closeness of the data objects.

4 Throughout this paper, we use the term “metric” and “distance” interchangeably to
indicate a function satisfying the metric postulates [23].
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In metric search, the main concern is processing and structuring a finite set
of data X ⊂ D so that proximity queries can be answered quickly and with a low
computational cost. A proximity query is defined by a query object q ∈ D and
a proximity condition, such as “find all the objects within a threshold distance
of q” (range query) or “finding the k closest objects to q” (k-nearest neighbour
query). The response to a query is the set of all the objects o ∈ X that satisfy
the considered proximity condition. Providing an exact response is not feasible
if the search space is very large or if it has a high intrinsic dimensionality since
a large fraction of the data needs to be inspected to process the query. In such
cases, the exact search rarely outperforms a sequential scan [22]. To overcome
the curse of dimensionality [19] researchers proposed several approximate search
methods that are less (but still) affected by this phenomenon.

Many approximate methods are based on the idea of mapping the data ob-
jects into a more tractable space in which we can efficiently perform the search.
Successful examples are the Permutation-Based Indexing (PBI) approaches that
represent data objects as a sequence of identifiers (permutation). Typically, the
permutation for an object o is computed as a ranking list of some preselected
reference points (pivots) according to their distance to o. The main rationale be-
hind this approach is that if two objects are very close one to the other, they will
sort the set of pivots in a very similar way, and thus the corresponding permu-
tation representations will be close as well. The search in the permutation space
is used to build a candidate result set that is normally refined by comparing
each candidate object to the query one (according to the metric governing the
data space). This refinement step therefore requires access to the original data,
which is likely to be too large to fit into main memory. However, some kind of
refinement step is likely to be required as the search in the permutation space
typically has relatively low precision.

In this paper, we focus on the k-nearest neighbour (k-NN) query search and
we investigate several approaches to perform the refining step without accessing
the original data, but instead exploiting the distances between the objects and
the pivots (calculated at indexing time and stored within the permutations) and
the distances between the query and the pivots (evaluated when computing the
query permutation). In particular, for a large class of metric spaces that meet the
so-called “n-point property” [9,11] we propose the use of the n-Simplex projection
[12] that allows mapping metric objects into a finite dimensional Euclidean space
where upper- and lower- bounds for the original distances can be calculated. We
show how these distance bounds can be used to refine the permutation-based
results, therefore avoiding access to the original dataset.

2 Related Work

The idea of approximating the distance between any two metric objects by com-
paring their permutation-based representations was originally proposed in [5,8].
Several techniques for indexing and searching permutations were proposed in
literature, including indexes based on inverted files, like the Metric Inverted File
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(MI-File) [4] and its variants, or using prefix trees, like the Permutation Pre-
fix Index (PP-Index) [13] and the Pivot Permutation Prefix Index (PPP-Index)
[17]. The permutation-based approach are filter and refine methods: a candidate
result set is identified by performing the search in the permutation space, then
the result set is refined, commonly, by evaluating the actual distance between
the query and the candidate objects.

The permutation representation of an object is computed by ordering the
identifiers of a set of pivots according to their distances to the object [3]. However,
the computation of these distances is just one, yet effective, approach to associate
a permutation to each data object. For example, the Deep Permutations [2] have
been recently proposed as an efficient and effective alternative for generating
permutations of emerging deep features. However, this approach is suitable only
for specific data domains while the traditional approach is generally applicable
since it requires only the existence of a distance function to compare data objects.

The distances between the data objects and a set of pivots can be used also to
embed the data into another metric space where it is possible to deduce upper-
and lower- bounds on the actual distance of any pair of objects. In this context,
one of the very first embeddings proposed in a metric search scenario was the
one representing each data object with a vector of its distances to the pivots.
The LAESA [16] is a notable example of indexing technique using this approach.
Recently, Connor et al. [12,11,10] observed that for a large class of metric spaces
it is possible to use the distances to a set of n pivots to project the data objects
into a n-dimensional Euclidean space such that in the projected space 1) the
distances object-pivots are preserved, 2) the Euclidean distance between any
two points is a lower-bound of the actual distance, 3) also an upper-bound can
be easily computed. They called this approach n-Simplex projection and they
proved that it can be used in all the metric spaces meeting the n-point property
[7]. As also pointed out in [9], many common metric spaces meet the desired
property, like Cartesian spaces of any dimension with the Euclidean, cosine or
quadratic form distances, probability spaces with the Jenson-Shannon or the
Triangular distance, and more generally any Hilbert-embeddable space [7,20].

3 Background

In the following, we summarize key concepts of some metric space transforma-
tions based on the use of distances between data objects and a set of pivots. The
rationale behind these approaches is to project the original data into a space
that has better indexing properties than the original, or where the comparison
between objects is less expensive than the original distance. In particular, we re-
view data embeddings into permutation spaces, where objects can be efficiently
indexed using PBI methods, and other pivot-based embeddings that allow com-
puting upper- and lower- bounds of the actual distance. Table 1 summarizes the
notation used.
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Table 1: Notation used throughout this paper
Symbol Definition

(D, d) metric space

X finite search space, X ⊆ D
{p1, . . . , pn} set of pivots, pi ∈ D
n number of pivots

o, s data objects, o, s ∈ X
q query, q ∈ D
k, k′ number of results of a nearest neighbour search

amp amplification factor

Πo pivot permutation

Π−1
o inverted permutation

l location parameter (permutation prefix length)

Πo,l truncated permutation (permutation prefix of length l)

Π−1
o,l inverted truncated permutation

PivotSet(Πo,l) the pivots whose identifiers appear in Πo,l
Γo,q pivots in the intersection PivotSet(Πq,l) ∩ PivotSet(Πo,l)
Sρ,l Spearman’s rho with location parameter l

`2 Euclidean distance

`∞ Chebyshev distance

| · | size of a set

3.1 Permutation-based Representation

Let D a data domain and d : D × D → R+ a metric function on it5. A
permutation-based representation Πo (briefly permutation) of an object o ∈ D
with respect to a fixed set of pivots, {p1, . . . , pn} ⊂ D, is the sequence of pivots
identifiers ordered by their distance to o.

Formally, the permutation Πo = [Πo(1), Πo(2), ...,Πo(n)] lists the pivot iden-
tifiers {1, . . . , n} in an order such that ∀ i, j ∈ {1, . . . , n}

d(o, pΠo(i)) < d(o, pΠo(j))
Πo(i) < Πo(j) ⇔ or(

d(o, pΠo(i)) = d(o, pΠo(j)) ∧ (i < j)
) (1)

An equivalent permutation-based representation is the inverted permutation,
defined as Π−1o = [Π−1o (1), Π−1o (2), . . . ,Π−1o (n)], where Π−1o (i) denotes the po-
sition of a pivot pi in the permutation Πo. The inverted permutation is such
that Πo(Π

−1
o (i)) = i. Note that the value at the coordinate i in the permutation

Πo is the identifier of the pivot at i-th position in the ranked list of the nearest
pivots to o; the value at the coordinate i in the inverted representation Π−1o is
the rank of the pivot pi in the list of the nearest pivots to o.

5 In this work, we focus on metric search. The requirement that the function d satisfies
the metric postulates is sufficient, but not necessary, to produce a permutation-based
representation. For example, d may be a dissimilarity function.
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The inverted permutation representation is often used in practice since it
allows us to represent permutations in a Cartesian coordinate system and easily
compute most of the commonly-used distances between permutations as dis-
tances between Cartesian points. In this paper, we use the Spearman Rho that
is defined as Sρ(Πo, Πs) = `2(Π−1o , Π−1s ) for any two permutations Πo, Πs.

Most of the PBI methods, e.g. [4,13,17], use only a fixed-length prefix of the
permutations in order to represent or compare objects. This choice is based on
the intuition that the most relevant information in the permutation is present
in its very first elements, i.e. the identifiers of the closest pivots. Moreover,
using the positions of the nearest l out of n pivots often leads to obtaining
better or similar effectiveness to using the full-length permutation [4,3], resulting
also in a more compact data encoding. The permutation prefixes are compared
using top-l distances [14], like the Spearman Rho with location parameter l
defined as Sρ,l, (Πo, Πs) = `2(Π−1o,l , Π

−1
s,l ), where Π−1o,l is the inverted truncated

permutation:

Π−1o,l (i) =

{
Π−1o (i) if Π−1o (i) ≤ l
l + 1 otherwise

(2)

3.2 Pivoted embedding

The distances between metric objects and a set of pivots {p1, . . . , pn} ⊂ D can
be also used to embed a metric space into (Rn, `∞):

fn : (D, d)→ (Rn, `∞)

o→ [d(o, p1), . . . , d(o, pn)]

Using the triangle inequality of the metric governing the space is possible to
prove that

max
i=1,...,n

|d(o, pi)− d(s, pi)| ≤ d(o, s) ≤ min
i=1,...,n

|d(o, pi) + d(s, pi)| (3)

which means that `∞(fn(o), fn(s)) is a lower-bound of d(o, s) and that also an
upper-bound can be defined using the projected objects fn(o), fn(s) (see [23,
pp.28]). In the following we referred to these bounds to as Pivoted embedding
bounds. Please note that if we use just a subset of size l of the pivots {p1, . . . , pn},
the corresponding mapping fl provides upper- and lower- bounds that are less
tight than that obtained using fn.

This family of embeddings are typically used in indexing tables like LAESA
[16] or for space pruning [23]. However, as further described in Section 4, in
this work we used them not for indexing purpose, but rather as techniques to
approximate the distances between a query and data objects already indexed
using a permutation-based approach.

3.3 n-Simplex projection

In [9,12] it was observed that there exists a large class of metric spaces that satisfy
the so-called n-point property, which provides geometric guarantees stronger than
triangle inequality.
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A metric space meets the n-point property if, and only if, any set of n points
of the space can be embedded into a (n− 1)-dimensional Euclidean space while
preserving all the

(
n
2

)
inter-points distances. This property was exploited in [12]

to define an embedding of the considered metric space into a finite-dimensional
Euclidean space. Specifically, they defined a family of functions φn : (D, d) →
(Rn, `2), where φn(o) is obtained using the distances between o and a set of pivots
{p1, . . . , pn} ⊂ D. They provided also an inductive algorithm for determining
the Cartesian coordinates of φn(o) that, given the distances d(o, pi), requires the
computations of O(n) Euclidean distances between vectors having less than n
dimensions. The core idea of their approach is computing the vector φn(o) as the
apex of a n-dimensional simplex6 where the length of the i-th edge connecting
the apex and a simplex base corresponds to the actual distance d(o, pi). The
simplex base is computed using the distances d(pi, pj) for all i, j ∈ {1, . . . , n}.

One of the main outcomes of this embedding is that it allows deriving upper-
and lower-bounds of the actual distance by computing the Euclidean distance
between two Cartesian points. In facts, given the apexes

φn(o) = [x1, x2, . . . , xn−1, xn]

φn(s) = [y1, y2, . . . , yn−1, yn]

it holds√√√√ n∑
i=1

(xi − yi)2 ≤ d(o, s) ≤

√√√√n−1∑
i=1

(xi − yi)2 + (xn + yn)2 (4)

So, if defining φ−n (s) = [y1, y2, . . . , yn−1,−yn], we have that `2(φn(o), φn(s))
and `2(φn(o), φ−n (s)) are respectively a lower- and and upper-bound for d(o, s).
Connor et al. [12]7 proved that, if φn is the n-Simplex projection based on the
pivots {p1, . . . , pn}, and φm is the m-Simplex projection based on the pivots
{p1, . . . , pn, pn+1, . . . , pm} then

`2(φn(o), φn(s)) ≤ `2(φm(o), φm(s)) ≤ d(o, s) ≤ `2(φm(o), φ−m(s)) ≤ `2(φn(o), φ−n (s)).

Moreover, they experimentally showed that the so-defined distance bounds con-
verge to the actual distance when increasing the number of pivots.

4 Re-ranking Permutation-Based Candidate Set

The permutation-based methods are filter-and-refine approaches that map orig-
inal data (X, d) into a permutation space. The permutation representations are
used to identify a set of candidate results for a given query q ∈ D. The candidate
results are then refined, typically by comparing the candidate objects with the

6 A simplex is a generalisation of a triangle or a tetrahedron in arbitrary dimensions.
We refer to [12] for further details.

7 See also the on-line Appendix at http://arxiv.org/abs/1707.08370.
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Permutation representations (location parameter 𝑙 = 3)

Π𝑜1 = 5,2,1,3,4 Π𝑜2 = 4,3,5,1,2 Π𝑜3 = 5,1,2,3,4

𝑝1, 𝑝2,𝑝3 , 𝑝4, 𝑝5

Π𝑜1
−1 = 3,2,4,5,1

𝑝1, 𝑝2,𝑝3 , 𝑝4, 𝑝5

Π𝑜2
−1 = 4,5,2,1,3

𝑝1, 𝑝2 ,𝑝3 , 𝑝4, 𝑝5

Π𝑜3
−1 = 2,3,4,5,1

𝑝1, 𝑝2,𝑝3 , 𝑝4, 𝑝5

Π𝑜1,𝑙
−1 = 3,2,4,4,1

𝑝1, 𝑝2,𝑝3 , 𝑝4, 𝑝5

Π𝑜2,𝑙
−1 = 4,4,2,1,3

𝑝1, 𝑝2 ,𝑝3 , 𝑝4, 𝑝5

Π𝑜3,𝑙
−1 = 2,3,4,4,1

o2

o1
p5

p1

p2

p4
p3

o3

𝒑𝟏 𝑜3, 2 (𝑜1, 3)

𝒑𝟐 (𝑜1, 2) (𝑜3, 3)

𝒑𝟑 (𝑜2, 2) (𝑜3, 3)

𝒑𝟒 (𝑜2, 1)

𝒑𝟓 (𝑜1, 1) (𝑜3, 1) (𝑜2, 3)

Posting lists

𝒑𝟏 𝑜3, 2, 𝑑(𝑝1, 𝑜3) (𝑜1, 3, 𝑑(𝑝1, 𝑜1))

𝒑𝟐 (𝑜1, 2, 𝑑(𝑝2, 𝑜1)) (𝑜3, 3, 𝑑(𝑝2, 𝑜3))

𝒑𝟑 (𝑜2, 2, 𝑑(𝑝3, 𝑜2)) (𝑜3, 3, 𝑑 𝑝3, 𝑜3 )

𝒑𝟒 (𝑜2, 1, 𝑑(𝑝4, 𝑜2))

𝒑𝟓 (𝑜1, 1, 𝑑(𝑝5, 𝑜1)) (𝑜3, 1, 𝑑(𝑝5, 𝑜3)) (𝑜2, 3, 𝑑(𝑝5, 𝑜2))

Posting lists with distances

Fig. 1: Example of posting lists and posting list with distances generated to index
three objects using five pivots and a location parameter l = 3

query one according to the actual distance d. In the following, we investigate the
use of other refining approaches to answer a k-NN query. The aim is improving
the permutation-based results while getting rid of the original dataset.

Let CandSet(q) the set of candidate results selected using the permutation-
based encoding, where |CandSet(q)| = k′ ≥ k. The candidate result set can be
built, for example, by performing a k′-NN search in the permutation space (e.g.
using the MI-File [4]) or by finding objects with a common permutation prefix
(e.g. using the PP-codes [13]). In any case here we assume to have access only
to the permutation prefixes and not to the full-length permutations, as done in
many PBI approach [4,13,17].

Let PivotSet(Πo,l) the set of the l closest pivots to the object o, i.e. the
pivots whose identifiers appear in the prefix permutation Πo,l. We assume that
the distances between each object and its l closest pivots are stored and indexed
within the object prefix permutation. This can be done with a slight modification
of the used permutation-based index. In the following, we assume that the objects
are indexed using inverted files. Figure 1 shows a naive example for integrating
the object-pivot distances into the posting lists, such as the ones used in the
MI-file [4]. However, the approach presented in this paper can be extended to
cope with different permutation-based indexes.

We propose to refine the candidate result set by selecting the top-k candidate
objects ranked according to some pivot-based dissimilarity function. To this
end, we tested the Pivoted embedding and the n-Simplex projection distance
bounds, computed using the metric mapping described in Section 3.2 and 3.3.
Specifically, at query time, for each object o ∈ CandSet(q) we approximate
the actual distance d(o, q) on the basis of the distances d(q, pj), d(o, pj) for
pj ∈ Γo,q = PivotSet(Πq,l) ∩ PivotSet(Πo,l) as follows:
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Pivoted embedding - As a consequence of Equation 3 we have

max
pj∈Γo,q

|d(o, pj)− d(q, pj)| ≤ d(o, q) ≤ min
pj∈Γo,q

|d(o, pi) + d(q, pi)| (5)

so we consider three possible re-rankings of the candidate objects, based on
the following dissimilarity measures

Plwb(o, q) = max
pj∈Γo,q

|d(o, pj)− d(q, pj)| lower-bound

Pupb(o, q) = min
pj∈Γo,q

(d(o, pj) + d(q, pj)) upper-bound

Pmean(o, q) = (Pupb(o, q) + Plwb(o, q))/2 mean

Simplex projection - For each candidate object o, the pivots in Γo,q are used
to build a simplex base. The simplex base and the distances d(o, pj), d(q, pj)
with pj ∈ Γo,q are used to compute the apexes φh(o), φh(q), φ−h (q) ∈ Rh,
where h = |Γo,q| ≤ l. We consider the re-rankings of the candidate objects
based on the following dissimilarity measures:

Slwb(o, q) = `2(φh(o), φh(q)) lower-bound

Supb(o, q) = `2(φh(o), φ−h (q)) upper-bound

Smean(o, q) = (Supb(o, q) + Slwb(o, q))/2 mean

The Simplex bounds are highly affected by the number h of pivots used
to build the simplex base (the higher h, the tighter the bounds), moreover
note that the number h and the used simplex base change when changing
the candidate object o. This means that the quality of the simplex-based
approximation of the distance d(o, q) may vary significantly when changing
the considered candidate object. To overcome this issue, we also considered
the re-ranking according to

SNmean(o, q) = Smean(o, q)/g(h) normalized mean

where g(h) is a normalization factor, further discussed in section 5.2.

The lower-bounds Slwb and Plwb are metrics, while the other considered mea-
sures are just dissimilarity functions.

Note that for all those approaches no new object-pivot distances are evalu-
ated at either indexing or query time, since the used distances are already com-
puted for building the permutation-based representations of the objects/query.
Moreover, the distances d(o, pj) with pj ∈ Γo,q are retrieved while scanning the
posting list to build the candidate result set, therefore the considered re-ranking
approaches do not require further disk accesses in addition to the index accesses
already made to find the candidate results.

5 Experiments

In this section, we evaluate the quality of the re-ranking approach discussed
above. We first describe the experimental setup and then we report results and
their analysis.
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5.1 Experimental settings

The experiments were conducted using three publicly available datasets, namely
YFCC100M [21], Twitter-Glove [18], and SISAP colors [15].

YFCC100M collection contains almost 100M images, all uploaded to Flickr
between 2004 and 2014. In the experiments, we used a subset of 1M deep Con-
volutional Neural Network features extracted by Amato et al. [1] and available
at http://www.deepfeatures.org/. Specifically, we used the activations of the
fc6 layer of the HybridNet [24] after ReLu and `2 normalization. The resulting
features are 4,096-dimensional vectors. We followed the common choice of using
the Euclidean distance to compare them.

Twitter-GloVe is a collection of 1.2M GloVe [18] features (word embed-
dings) trained on tweets. We used the 100-dimensional pre-trained word vector
available at https://nlp.stanford.edu/projects/glove/. These word vec-
tors are often used as vocabulary terms to embed a document into a vector
representation, for example by averaging the vectors of the terms contained in
the text. In such cases, the space of the vocabulary word embeddings is represen-
tative of the space of the document embeddings. We used the Cosine distance,

i.e. dCos(x, y) =
√

1− x·y
‖x‖2‖y‖2

, to compare the GloVe vectors.

SISAP colors is a commonly used benchmark for metric indexing ap-
proaches. It contains about 113K feature vectors of dimensions 112, representing
color histograms of medical images. We used the Jenson-Shannon distance, de-
fined as in [9], for the feature comparison.

For each dataset we build a ground-truth for exact similarity search related
to 1,000 randomly-selected queries. The ground-truths are used to evaluate the
quality of the approximate results obtained by re-ranking a permutation-based
result set of size k′ ≥ k. Specifically, we select as a candidate result set for a
k-NN query the set obtained by performing a k′-NN search in the permutation
space. Then we re-rank the candidate results and we select the top-k objects. The
quality of the so obtained approximate results was evaluated using the recall@k,
defined as |R ∩ RA|/k where R is the result set of the exact k-NN search in
the original metric space and RA is the approximate result set. We set k = 10
and k′ = 100, thus, in order to build the candidate result set, we performed a
100-NN search in the permutation space using the Spearman’s rho with location
parameter l. In all the tests the pivots were randomly selected. We used about
4, 000 pivots for YFCC100M and Twitter-GloVe, and n = 1, 000 pivots for the
smaller SISAP colors dataset.

5.2 Results

Figure 2 reports the recall@10 with respect to the length l of the permutation
prefixes used to represent the data objects. Please note that, in each test, we
fixed the number n of pivots and we varied the prefix length l.

In order to evaluate the permutation-based results without any re-ranking, we
selected the first k = 10 objects of the candidate set, ordered according to their
permutation-based distance to the query that, in our case, was Sρ,l. This baseline
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Fig. 2: Recall@10 varying the location parameter l (the number n of pivots is
fixed). The candidate set to be reordered is selected with a 100-NN search in the
permutation space using the Spearman’s rho with location parameter l. In the
captions we also report the the Intrinsic Dimensionality (IDim), computed as in
[8], for each considered metric space.
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Fig. 3: YFCC100M, Euclidean Distance - Average relative error of the Pivoted

embedding and Simplex embedding distance bounds with respect to the actual
distance varying the number of h of pivots used to compute the bounds. Similar
trends are obtained on Twitter-GloVe and SISAP colors datasets.

approach is indicated as no reordering in the graphs. We compared it with
the re-rankings based on the Pivoted embedding and the Simplex projection

distance approximations (lower-bound, upper-bound and mean). In all cases, it
is important to keep in mind that, for a fixed value l and for a candidate object
o, the number h of pivots used to compute the distance approximations is less
than l; moreover, it varies when changing the candidate object because it equals
the cardinality of Γo,q. So, typically h is greater for objects in top positions in
the permutation-based candidate set and decrease for far objects. Moreover, the
greater the l, the greater the h and so the better the approximation bounds.

Surprisingly, we observed that in almost all the tested cases the Pivoted

embedding approach greatly degrades the quality of the permutation-based re-
sults. Moreover, on YFCC100M and Twitter-GloVe sets it never reaches a recall
greater than 0.3. So, in our tests, the Pivoted distance approximations resulted
to be not adequate for the re-ranking purpose. In fact, the considered lower-
bounds approximate well the actual distance d(o, q) only if o and q are very
close to each other in the original metric space, or if Γo,q contains at least one
pivot that is close to q and far to o (or vice versa). However, for randomly se-
lected pivots in high dimensional space this is unlikely to happen: for a random
pivots p and for an object o not so close to q, we often have that the distances
d(o, p) and d(q, p) are both close to the mean value in the distribution of the data
distances, and so the lower-bound results to be close to zero. This means that,
when using the Pivoted lower-bound for the re-ranking, many objects may be
incorrectly swapped and far objects can be assigned in top-positions. More gen-
erally, we observed that the Pivoted distance bounds have high relative errors
with respect to the actual distance and that these errors slightly decrease when
increasing the number h of pivots used to compute the bounds (Figure 3a).
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The Simplex distance bounds showed similar drawbacks when using rela-
tively small prefix lengths. In particular, they are mostly influenced by the fact
that the Simplex bounds asymptotically approach the true distances when in-
creasing the number h of pivots used to build the simplex base and that the
tightness of the bounds highly depends on h. In fact, in all the cases we ob-
served that there exists a value of h̃ for which full convergence is achieved:
4096 for YFCC100M, around 100 for Twitter-GloVe and SISAP colors. There-
fore, for two objects o, s ∈ CandSet(q) with |Γo,q| < |Γs,q| << h̃ we may have
Slwb(o, q) < Slwb(s, q) even if d(o, q) > d(s, q). Moreover, when using few pivots
the upper-bound particularly fails in approximate small distances (it is not a
metric and in particular Supb(o, o) may be much greater than 0 for small h). The
effect of the convergence of the Simplex bounds is evident in the Twitter-GloVe
data (Figure 2b): for l ≥ 200 we observed that the number of pivots in the inter-
section Γo,q starts to exceed h̃ = 100 for most of the candidate objects o, thus in
that case all Simplex bounds provide an exact or almost exact approximation of
the actual distances. A similar phenomenon was observed on the SISAP colors.

In general, we experimentally observed that very good re-ranking scores can
be obtained using the same simplex base (e.g. the one formed by the pivots
in the query permutation prefix) to project all the candidate objects. However,
this is not feasible because at query time, for each candidate object o, we had
access only to the distances d(o, p) with p appearing in both the object and query
permutation prefixes. Thus, the simplex base used (and its dimension h) changes
when considering different candidate objects. This means that the “quality”
(tightness) of the Simplex-based approximations of the distances query-objects
is not uniform within the set of the candidate objects. To overcome this issue, we
tested normalized versions of the Simplex distance bounds that take into account
the number of pivots used for projecting the data. In Figure 2, we report the
normalized mean that was the one obtaining the best results. As normalization
factor we used g(h) = log(h) since we experimentally observed that the relative
errors decrease logarithmically with h (e.g. Figure 3b).

In all the tested cases, the re-ranking using the Simplex normalized mean

improved the permutation-based results. For example, using about 4, 000 pivots
and l = 300 the recall@10 is improved from 0.39 to 0.59 on YFCC100M dataset,
and from 0.43 to 0.76 on Twitter-GloVe. On SISAP colors the recall increase from
0.44 to 0.80 for l = 80 and n = 1, 000. We provided examples with l < n since
when using inverted files the number of index blocks accessed is proportional to
l2/n; moreover, it does not depend on the number of retrieved objects.

The disk space needed by the inverted file can be estimated in general as-
suming to encode each entry of the posting lists with dlog2|X|e+ 32 bits, where
|X| is the size of the dataset. This space is largely sufficient to encode both the
ID of the object and its distance from the pivot corresponding to the list to
which the entry belongs to. As observed in [4], the positions of the objects can
be neglected by ordering the entries of the posting list according to the position
of the objects. So, for a fixed l, the size of our index is l|X|(dlog2|X|e+ 32) bits,
e.g. 1.8 GB for indexing one million objects using l = 300. For reference, we
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observe that for the same set-up the size of the traditional permutation-based
inverted index is 0.70 GB. However, more efficient approaches to compressing
our posting lists might be employed, for example by quantizing the distances
to store each of them in less than 32 bits. In facts, preliminary tests on a 1M
subset of YFCC100M deep features, confirmed us that the retrieval performance
is preserved when using just 8 bits for storing each distance. In such case, the
size of our index is 0.98 GB for one million objects and l = 300. For lack of
space, we reserve further investigation of this aspect for future work.

Finally, we observe that for l = 300 the time cost at query time for computing
all the simplex bases and projecting both the query and the candidate objects
is about 300ms. As future work, we plan to reduce the query runtime cost by
optimizing the construction of the simplex bases, e.g. by re-using some of them
instead of computing a new simplex base from scratch for each candidate object.

5.3 Conclusions

In this article, we presented an approach that proposes to exploit the n-Simplex
projection to reorder the candidate list of an approximate k-NN-based search
system based on permutations, without accessing the original data. However,
our approach can be generalized to other types of approximate search provided
that they are based on the use of anchor objects from which we must pre-
calculate the distances for other purposes. For example, some data structures
use inverted indices, as the inverted multi-index [6], in which objects belonging
to a Voronoi cell are inserted in a posting list associated with the centroid of
the cell from which we calculated the distance. Other indexes that can benefit
from our approach are those based on permutation prefix trees, like PP-Index
[13] and PPP-Index [17]. We also intend to investigate developments of our
approach using the aggregation of the rankings provided by the permutation
representations and the rankings obtained with various n-Simplex bounds, using
techniques as that proposed in [17], instead of just re-ranking the former one.
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