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Abstract

The great success of visual features learned from deep neural networks has led

to a significant effort to develop efficient and scalable technologies for image re-

trieval. Nevertheless, its usage in large-scale Web applications of content-based

retrieval is still challenged by their high dimensionality. To overcome this is-

sue, some image retrieval systems employ the product quantization method to

learn a large-scale visual dictionary from a training set of global neural network

features. These approaches are implemented in main memory, preventing their

usage in big-data applications. The contribution of the work is mainly devoted

to investigating some approaches to transform neural network features into text

forms suitable for being indexed by a standard full-text retrieval engine such as

Elasticsearch. The basic idea of our approaches relies on a transformation of

neural network features with the twofold aim of promoting the sparsity without

the need of unsupervised pre-training. We validate our approach on a recent

convolutional neural network feature, namely Regional Maximum Activations

of Convolutions (R-MAC), which is a state-of-art descriptor for image retrieval.

Its effectiveness has been proved through several instance-level retrieval bench-

marks. An extensive experimental evaluation conducted on the standard bench-

marks shows the effectiveness and efficiency of the proposed approach and how
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it compares to state-of-the-art main-memory indexes.

Keywords: image retrieval, deep features, surrogate text representation,

inverted index

1. Introduction

Full-text search engines on the Web have achieved great results in terms of

efficiency thanks to the use of inverted index technology [1, 2, 3]. In the last

years, we experienced an increasing interest of the research community in the

case of retrieval of other forms of expression, such as images [4, 5]; nevertheless,5

the development in those cases was not as rapid as text-based paradigms. In

the field of image retrieval, this was initially due in part to the ineffectiveness of

hand-crafted features used by instance-level and content-based image retrieval.

However, since 2014 we have had a great development of new learned features

obtained by training neural networks – in particular convolutional neural net-10

works (CNN). Differently from text, in which inverted indexes perfectly marry

the sparse document representation in standard vector models, learned image

descriptors tend to be dense and compact, thus making directly unfeasible the

usage of mature text-tailored index technologies. While efficient index struc-

tures for this type of data exist [6, 7, 8], they usually come with caveats that15

prevent their usage in very large-scale scenarios, such as main-memory-only

implementations and computationally expensive indexing or codebook-learning

phases.

In a nutshell, the idea is to use image representations extracted from a CNN,

often referred to as Deep Features, and to transform them into text so that they20

can be indexed with a standard text search engine.

The application focus of this work is on a scenario of image retrieval in a

large-scale context, with an eye to scalability. This aspect is often overlooked

by the literature, most of the image retrieval systems are designed to work in

main memory and many of these cannot be distributed across a cluster of nodes25

[9]. Many techniques present in literature try to tackle this problem by heavily
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compressing the representation of visual features to adapt more and more data

to the secondary memory. However, these approaches to indexing are not able

to scale because sooner or later response times become unacceptable as the size

of the data to be managed increases.30

In particular, our general approach is based on the transformation of deep

features, which are (dense) vectors of real numbers, into sparse vectors of inte-

ger numbers. The transformation in integers is necessary to deal with textual

representations of the vectors, as it will be explained better below, in which the

components of the vectors are in fact translated by “term frequency” of these35

textual representations. Sparseness is necessary to achieve sufficient levels of

efficiency exactly as it does for search engines for text documents. To obtain

this two-fold result, we will analyze two approaches: one based on permutations

and one based on scalar quantization.

The present paper is the evolution of previous works [10, 11, 12, 13, 14]. In40

[10] the idea of representing metric objects as permutations of reference objects

to construct an inverted index that In [11], and allowing us to take advantage of

a standard text search engine without having to implement the inverted index.

In [12], the authors introduced the idea of Deep Permutations that applies to the

deep feature vectors and in which the components of the vectors themselves are45

permuted. In [13] and [14] an extension of the technique of Deep Permutations

is presented, in the former using the surrogate text representation and R-MAC,

and in the latter taking into account the negative components of R-MAC. In [14],

we have also proved that this general approach can be implemented on top of

Elasticsearch by showing how such a retrieval system is able to scale to multiple50

nodes. In the earlier attempt [15], we have presented a preliminary draft of

quantization approach on deep features extracted from the Hybrid CNN1, which

is less effective but has the advantage of being partly spare.

The original contribution of the present work consists in introducing a new

approach of surrogate representation for deep features based on Scalar Quan-55

1http://github.com/BVLC/caffe/wiki/Model-Zoo.
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tization. We present this approach in a unified framework of representation of

deep features using surrogate text together with the technique based on Deep

Permutations, and we compare it with the scalar quantization technique. We

have also extended the experimental evaluation by adding two more benchmarks

and, regarding efficiency, we also considered the size of the indexes as well as60

their percentage of use.

The rest of the paper is organized as follows: Section 2 surveys the relevant

related work. Section 3 provides a brief background about the Deep Features.

In Section 4, the main contribution of this paper, namely the Surrogate Text

Representation is presented. Section 5 shows experimental results, and finally65

Section 6 gives concluding remarks. Table 1 summarizes the notation used

throughout this manuscript.

2. Related Work

To frame our work in the context of scientific literature, we refer to the survey

of Zheng et al. [16], which organizes the literature according to the codebook70

size, i.e. large/medium-sized/small codebooks. Although this organization,

according to the authors, is relevant to local features (which were defined as

“sift-based” by the authors), we think it can be extended to deep features and

representation-focused neural models in general [17]. We think our work belongs

to medium-sized (or even large-sized codebooks), which rely on their sparsity75

to exploit inverted indexes and the trade-off between accuracy and efficiency is

a major influencing factor.

In this respect, the scientific literature devoted to mitigating the complexity

of computing the matching between local features and based on the generation

of visual words, i.e. Bag-of-Words (BoW), are very close to our work in the80

spirit [18]. If we limit ourselves to consider only the works that exploit the

sparsity of the BoW model (originated from a work by Sivic et al. [19]) paper

[20] uses an inverted index on secondary memory to implement a scalable vi-

sual object-retrieval system based on the SIFT descriptor. We refer the reader
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to the survey [16] for more information about other approaches that quantize85

local features into visual words. In the following discussion, we concentrate our

attention on techniques that try to deal with deep features with an inverted

index.

A permutation-like approach, which relies on the use of special anchor ob-

jects called pivots, were used in PPP-Codes index [21] to index a collection90

of 20 million images processed by a deep convolutional neural network. How-

ever, the proposed approach relies on an index specifically developed to manage

permutations in secondary memory called recursive Voronoi partitioning.

Liu et al. [6] proposed a framework that adapts the BoW model and inverted

table to deep feature indexing, which is similar to the one we propose. However,95

for large-scale datasets, Liu et al. have to build a large visual dictionary that

employs the product quantization method to learn it from a training set of

global deep features. This approach also uses a specialized index that combines

inverted table and hashing codes. Moreover, it has been tested only with sparse

outdated deep features that exhibited low accuracy.100

Some other works try to treat the features in a convolutional layer as local

features [22, 23]. This way, a single forward pass of the entire image through

the CNN is enough to obtain the activations of its local patches, which are

then encoded using Vector of Locally Aggregated Descriptors (VLAD). A similar

approach uses the BoW encoding instead of VLAD to take advantage of sparse105

representations for fast retrieval in large-scale databases. However, although

authors claim that their approach is very scalable in terms of search time, they

did not report any efficiency measurements and experiments have been carried

out on datasets of limited size.

In [7], the authors quantized the deep features coming from a VGG16 pre-110

trained network with a codebook of size 25k and employed an inverted index

for efficiency. Also in this case, although authors claim that their BoW-based

representation is highly sparse, allowing for fast retrieval using inverted indices,

no experimental evidence was offered.

An approximate nearest neighbor algorithms based on product quantization115
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(PQ), which exploits an inverted index is presented in [24]. In PQ, the original

vector is divided into M sub-vectors which are then independently quantized.

A codebook is learned via k-means for each of the M sub-division, and each

sub-vector is compressed by storing the nearest centroid index. In particular,

we focus on PQ-compressed inverted indexes, denoted IVFPQ, which are im-120

plemented in the open source FAISS library [8]. In IVFPQ, the feature space

is partitioned into N Voronoi cells, each associated with a particular posting

list of the inverted file. Each posting list contains the PQ-compressed difference

between samples belonging to that cell and its centroid. When building the

index, both the cell centroids and the PQ-compression codebooks have to be125

pretrained on a subset of the data. When querying the index, FAISS probes the

posting lists of the P Voronoi cells nearest to the query, and it reconstructs the

samples using the codebooks. In the section devoted to the experimental evalua-

tion, we will discuss the performance of FAISS in comparison with our approach.

130

Table 1: Notation used throughout this manuscript

Symbol Definition

X data domain

o, oi ∈ X data objects

v, vi ∈ RD D-dimensional data vectors

e ∈ RD constant vector [1, . . . , 1]

q ∈ X , q ∈ RD query

d(·, ·) distance function d : X × X → R+

`2(·, ·), ‖ · ‖2 Euclidean distance, Euclidean norm

Sρ(·, ·) Spearman rho distance

simcos(·, ·) cosine similarity

(continued on next page)
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Symbol Definition

{τ1, . . . , τn} codebook

n ∈ N codebook size

f(·) mapping of data objects into integer vectors (term

frequencies)

STRf (o), to surrogate text representations of the object o

∪ space-separated concatenation operator

{p1 . . . pn} ⊂ X set of pivots

Πo ∈ Nn pivot permutation of o ∈ X

Π−1
o ∈ Nn inverted permutation of o ∈ X

Π̃v Deep Permutation of v ∈ RD

Π̃−1
v ∈ Nn inverted Deep Permutation of v ∈ RD

k ∈ N permutation-prefix length

Π̃−1
v,k ∈ Nn inverted truncated Deep Permutation of v ∈ RD

R ∈ RD×D, µ ∈ RD random orthogonal matrix, translation vector

s ∈ R scalar quantization factor (s > 1)

γ ∈ N thresholding parameter

v+ ∈ R2D CReLU of the vector v

M ∈ N number of sub-vectors in which a vector is divided in

the PQ approach

N ∈ N number of Voronoi cells used in the PQ approach

P ∈ N number of Voronoi cells used to probe the posting list

in the PQ approach

(continued on next page)
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Symbol Definition

C code size (memory occupied by a sample) in the PQ

approach

SDB query selectivity (average fraction of database ac-

cessed per query)

CDB query cost (average number of bytes accessed per

query)

BDB total size of the database in bytes

δi, δ̂i ∈ R density of i-th dimension of a set of data vectors

ni ∈ N number of elements in the i-th posting list

3. Background

3.1. Deep Features

Recently, a new class of image descriptor, built upon Convolutional Neural

Networks, have been used as an effective alternative to descriptors built using lo-

cal features such as SIFT, ORB, BRIEF, etc. CNNs have attracted an enormous135

interest within the Computer Vision community because of the state-of-the-art

results achieved in challenging image classification tasks such as the ImageNet

Large Scale Visual Recognition Challenge (http://www.image-net.org). In

computer vision, CNNs have been used to perform several tasks, including im-

age classification, as well as image retrieval [25, 26] and object detection [27],140

to cite some. Moreover, it has been proved that the representations learned

by CNNs on specific tasks (typically supervised) can be transferred successfully

across tasks [25, 28]. The activation of neurons of specific layers, in particular

the last ones, can be used as features to semantically describe the visual content

of an image.145

Tolias et al. [29] proposed the R-MAC (Regional Maximum Activations of

Convolutions) feature representation, which encodes and aggregates several re-
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gions of the image in a dense and compact global image representation. To

compute an R-MAC feature, an input image is fed to a fully convolutional net-

work pre-trained on ImageNet. The output of the last convolutional layer is150

max-pooled over different spatial regions at different position and scales, ob-

taining a feature vector for each region. These vectors are then `2-normalized,

PCA-whitened, `2-normalized again, and finally aggregated by summing them

together and `2-normalizing the final result. The obtained representation is

an effective aggregation of local convolutional features at multiple position and155

scales that it can be compared with the cosine similarity function.

We extracted the R-MAC features using fixed regions at two different scales

as proposed in [29] instead of using the region proposal network. Defined S

as the size in pixel of the minimum side of an image, we computed the multi-

resolution descriptor aggregating the ones extracted at S = 550, 800 and 1, 050,160

resulting in a dense 2048-dimensional real-valued image descriptor.

4. Surrogate Text Representation

As we explained in the introduction, we aim to index and search a data set

of feature vectors by exploiting off-the-shelf text search engines. So our main

goal is to define a family of transformations that map a feature vector into165

a textual representation without the need for tedious training procedures. Of

course, we also require that such transformations preserve as much as possible

the proximity relations between the data, i.e. similar feature vectors are mapped

to similar textual documents.

This basic idea was firstly exploited in [11], where the authors defined the

Surrogate Text Representation (STR) to represent a generic metric object, i.e.

an object living in a space where a distance function is defined [30]. The STR of

an object is a space-separated concatenation of some alphanumeric codeword se-

lected from a pre-defined dictionary. The original approach uses a permutation-

based indexing technique (further described in Section 4.1) to generate the tex-

tual encoding. Here we observe that a surrogate text representation for an object
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Query

𝑓(𝑞) = 1,0,0,0,2
𝑆𝑇𝑅𝑓 𝑞 = "𝜏1 𝜏5 𝜏5"

Data Objects

𝑓(𝑜1) = 1,2,0,0,3
𝑆𝑇𝑅𝑓 𝑜1 = "𝜏1 𝜏2 𝜏2 𝜏5 𝜏5 𝜏5"

𝑓(𝑜2) = 0,0,2,3,1
𝑆𝑇𝑅𝑓 𝑜2 = " 𝜏3 𝜏3 𝜏4 𝜏4 𝜏4 𝜏5"

𝑓(𝑜3) = 3,0,1,1,0

𝑆𝑇𝑅𝑓 𝑜3 = "𝜏1 𝜏1 𝜏1 𝜏3 𝜏4 𝜏5"

⋮

(𝑜3, 3) (𝑜1, 1) …𝝉𝟏

(𝑜1, 2) …𝝉𝟐

(𝑜2, 2) …𝝉𝟑

(𝑜2, 3) (𝑜3, 1) …𝝉𝟒

(𝑜1, 3) (𝑜2, 1) (𝑜3, 1) …𝝉𝟓

Posting Lists

Figure 1: Example of the STR encodings for a query object q and three data objects o1, o2, o3.

The STRs are indexed using posting lists. The posting lists accessed at query time are the

only ones associated to the codewords comparing in the surrogate text representation of the

query. For example, given the query STRf (q) =”τ1 τ5 τ5”, the posting lists accessed are just

those related to the codewords τ1 and τ5.

o of a data domain X can be obtained more generally by defining a transforma-

tion Specifically, given a dictionary {τ1, . . . , τn} and the transformation f , we

define the surrogate text to = STRf (o) as

STRf (o) =

n⋃
i=1

f
(o)
i⋃
j=1

τi (1)

where, by abuse of notation, we denote the space-separated concatenation of the170

codewords with the union operator ∪. Thus, by construction, the integer values

of the i-th component of the vector f(o), is the frequency of the codeword τi in

the text STRf (o). For example, given f(o) = [1, 3, 0, 2] and a codebook {τ1 =

“A”, τ2 = “B”, τ3 = “C”, τ4 = “D”} we have STRf (o) = “A B B B D D”.

The rationale of this approach is that a full-text search engine based on the175

vector space model [31] will generate a vector representation of the STRf (o) by

counting the number of occurrences of the words in it, i.e. the term frequencies.

In facts, these systems transform the text into vector representations using the

well-known TF scheme and practically use the dot product as a function of
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similarity between vectors. So, the abstract transformation f(·) represents a180

function that exactly generates the vectors that are internally represented by

the search engine in the case of the simple term-weighting scheme. Using this

representation, the search engine indexes the text by using inverted files, i.e.

each object o is stored in the posting lists associated to the codewords appearing

in STRf (o).185

Ideally, the transformation f(·) should be

1. order-preserving : the ranked results to the query q (obtained by searching

the original space X ) exactly correspond to the ranked results to the text

query STRf (q) (obtained by searching the surrogate text space);2

2. sparsifying : for any o ∈ X , the vector f(o) is sparse.190

The order-preserving property guaranties we do not loose any solutions when

using the textual representation with respect to the results that would be ob-

tained using the original data representation. However, having this property

is quite impossible in practice since it is likely that any hand-crafted function

f(·) introduces some approximations when transforming the data objects into195

term-frequency vectors. Thus, the effectiveness of a STR-based retrieval sys-

tem highly depends on how good the transformation f(·) is in preserving the

object similarities. The sparsifying property, instead, is requested for efficiency

issues since each data object o will be stored in as many posting lists as the

number of the non-zero elements in f(o). Having dense vectors means that the200

search based on the inverted index would be significantly more expensive than

the sequential scan, moreover also the index size would be much bigger than the

original dataset. The ideal case is having uniformly sparse vectors so that the

length of each posting list is approximately the same.

2Note that to compare a query with a set of objects we can use either a similarity or a

distance function. In the former case, we search for the objects with the greatest similarity

to the query. In the latter case, we search for the objects with the lowest distance from the

query. A similarity function is said to be equivalent to a distance function if the ranked list

of the results to a query is the same.
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Unfortunately, the sparsifying property is in contrast with the order-preserving205

one since the former naturally introduces some approximations in the vectors,

which basically translates our problem into a trade-off between effectiveness

(score approximation) and efficiency (posting-list length).

In this paper, we are interested in indexing and searching D-dimensional

vectors originally compared with the dot product. In this case, X = RD and

the order-preserving property with respect to dot product can be expressed as

∀ q,v1,v2 ∈ RD q · v1 ≤ q · v2 ⇒ f(q) · f(v1) ≤ f(q) · f(v2). (2)

Below we present two text transformation techniques that can be used in this

context: a Permutation-Based approach and Scalar Quantization approach. We210

then discuss how to achieve sparse representations for these two approaches.

4.1. Permutation-Based Approach

The basic idea of permutation-based indexing techniques is to represent fea-

ture objects as permutations of a set of identifiers. Traditionally, the permuta-

tion representations are built using the identifiers of a set of reference objects215

as permutants.

Formally, given a domain X , a distance d : X × X → R+, and a fixed set

{p1 . . . pn} ⊂ X of reference objects (or pivots), we define a permutation-based

representation Πo (briefly permutation) of an object o ∈ D as the sequence of

pivots identifiers sorted in ascending order by their distance from o [10, 32].

In other words, the permutation-based representation Πo = [Πo(1), . . . ,Πo(n)]

lists the pivot identifiers {1, 2, . . . , n} in an order such that ∀ i ∈ {1, . . . , n−1},

d(o, pΠo(i)) < d(o, pΠo(i+1)) (3)

or [
d(o, pΠo(i)) = d(o, pΠo(i+1))

]
∧ [Πo(i) < Πo(i+ 1)] . (4)

where pΠo(i) indicates the pivot at position i in the permutation associated with

the object o. An equivalent permutation-based representation is the inverted
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permutation, defined as Π−1
o = [Π−1

o (1),Π−1
o (2), . . . ,Π−1

o (n)], where Π−1
o (i) de-

notes the position of a pivot pi in the permutation Πo, so that Πo(Π
−1
o (i)) = i.220

Thus, the coordinate i in the permutation Πo is the identifier of the pivot at i-th

position in the ranked list of the nearest pivots to o; the value at the coordinate

i in the inverted representation Π−1
o is the rank of the pivot pi in the list of the

nearest pivots to o.

The inverted representation of the permutations is often used in practice225

since it allows us to easily define most of the distance functions usually used to

compare permutations, such as the Spearman rho and the Spearman Footrule

distances [33].

The original STR approach [11] is based on a double transformation process.

First, each data object o is transformed in a permutation vector (the inverted

permutation) Π−1
o using the approach presented above, and then it transforms

the permutation into a textual representation to. The textual representation is

obtained by associating each pivot pi with an unique alphanumeric codeword τi

and the permutation Π−1
o with a sequence of codewords. Specifically, the text

to is built in such a way that the occurrence of the codeword τi in it reflects the

closeness of the pivot pi to the object o: the lower the value Π−1
o (i) the higher

the frequency of the term τi in the document to. Formally, the original STR

approach uses the transformation fperm : o 7→ ne−Π−1
o , where e = [1, . . . , 1] is

the constant vector. Therefore,

STRfperms(o) =

n⋃
i=1

n−Π−1
o (i)⋃

j=1

τi. (5)

The rationale behind this approach is that if two objects are very close one

to the other, they will sort the set of pivots in a very similar way, and thus

the corresponding permutations/text representations will be close as well. Note

that we have no theoretical guarantees that the transformation

Π−1 : (X , d)→ (Nn, `2) (6)

o 7→ Π−1
o (7)
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is order-preserving in a strict sense, however several works [10, 34, 35] experi-

mentally proved that the rankings obtained in the permutation space are good230

approximations of the rankings obtained in the original space. Moreover, it

can be easily proved that the cosine similarity between any two term frequency

vectors is a monotonic transformation of the squared Euclidean distance be-

tween the associated inverted permutations: simcos(fperms(o1), fperms(o2)) =

α− β `2(Π−1
o1 ,Π

−1
o2 )2, where α ∈ R, β ∈ R+ are constants (see [36, 37]). There-235

fore, a ranking obtained using the cosine similarity on term frequency vectors

is equivalent to that obtained in the permutation space using the Spearman

rho distance, which in turn is an approximation of the ranking obtained in the

original data space.

So far, we have presented the general approach of STR based on the tradi-

tional permutation representations. However, when objects to be indexed are

real-valued vectors, as in the case of deep features, we can exploit the Deep

Permutations technique [12] that allows to generate the permutations at very

low computational cost by avoiding the calculations of the distances between

the pivots and the objects to be represented. Moreover, Amato et al.[12] shown

that this encoding is more effective than the traditional permutation-based rep-

resentation for both multimedia retrieval and similarity search tasks. In the

Deep Permutations approach, the permutants are the indexes of the elements of

the deep feature vectors rather that a predefined set of pivots. Specifically, the

deep permutation of a feature vector v ∈ Rn is obtained by sorting the indexes

of the elements of v, in descending order with respect to the corresponding ele-

ment values. In other words, the Deep Permutation Π̃v = [Π̃v(1), . . . , Π̃v(n)] of

a deep feature v is the permutation of the indexes {1, . . . , n} such that

∀i = 1, · · · , n− 1, v(Π̃v(i)) ≥ v(Π̃v(i+ 1)), (8)

where we use the notation v(j) to indicates the j-th element of v. So the index240

i appears before index j in the permutation Π̃v if the value v(i) is greater

than or equal to v(j). Equivalently, using the inverted representation Π̃−1
v =

[Π̃−1
v (1), . . . , Π̃−1

v (n)], we have that Π̃−1
v (i) ≤ Π̃−1

v (j) if v(i) ≥ v(j). Using
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the approach introduced above, similarly to the traditional SRT technique, we

can define the transformation fDeepPerm : v 7→ ne − Π̃−1
v to associate a term245

frequency vector to each data object.

Suppose, for instance, that the feature vector is v = [0.1, 0.3, 0.4, 0, 0.2] (in

reality, the number n of dimensions may be thousands). The deep permutation

encoding of v is Π̃v = [3, 2, 5, 1, 4], that is permutant (index) 3 is in position 1,

permutant 2 is in position 2, permutant 5 is in position 3, etc. In facts, v(3) =250

0.4 is the biggest value in v, v(2) = 0.3 is the second biggest element value, and

so on. The corresponding inverted deep permutation is Π̃−1
v = [4, 2, 1, 5, 3], that

is permutant (index) 1 is in position 4, permutant 2 is in position 2, permutant

3 is in position 1, etc. The term frequencies vector will be fDeepPerm(v) =

[1, 3, 4, 0, 2], and thus STRfDeepPerms
(v) = “ABBBC C C C E E”.255

4.2. Scalar Quantization-Based Approach

In this section, we propose an alternative approach to provide a surrogate text

representation for feature vectors. The idea behind our Scalar Quantization

approach is to map the real-valued vector components independently into a

smaller set of integer values which act as the term frequencies of a predefined260

set of codewords. However, as for more generic Product Quantization, the

scalar quantization has mainly the purpose of making a compact representation

suitable for approximate nearest neighbor search.

The first step in our approach is the application of an order-preserving trans-

formation to the vectors To understand why, remember that in our approach265

each component of the vectors is associated with a posting list in which each

post stores the id of the vector and the value of the component itself, if nonzero.

Therefore, if on average some component is nonzero for many data vectors then

the corresponding posting list will be accessed many times, provided that the

queries follow the same distribution of the data. The ideal case occurs when270

the component share exactly the same distribution (same mean and variance

is sufficient). In this way, we try to increase to cases where the dimensional

components of the features vectors have same mean and variance, with mean
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equal to zero. This last constraint is because we want then sparsify the vectors,

but this aspect is further investigated in the next subsection.275

∀ q,v1,v2 ∈ RD q · v1 ≤ q · v2 ⇒ Rq ·R(v1 − µ) ≤ Rq ·R(v2 − µ). (9)

. The next step is transforming the rotated vectors into term frequency vectors.

We do it by quantizing the vectors so that posting entries will contain numeric

values proportional to the float values of the deep feature entries. Specifically,

we use the transformation w → bswc where b·c denotes the floor function and s

is a multiplication factor > 1 that works as a quantization factor. This process280

introduces a quantization error due to the representation of float components

in integers. However, as we will see, this error does not affect the retrieval

effectiveness.

In summary, the Scalar Quantization-based STR is obtained using the trans-

formation fScalarQuant : v 7→ bsR(v − µ)c.285

For instance, suppose after the random orthogonal transformation we have

the feature vector v = [0.1, 0.3, 0.4, 0, 0.2], by adopting a multiplication fac-

tor s = 10, we obtain the term frequencies vector will be fScalarQuant(v) =

[1, 3, 4, 0, 2], and thus STRfScalarQuant
(v) = “ABBBC C C C E E”.

4.3. Sparsification290

The two approaches presented above are intended to encode a vector of real

numbers into a vector of integers preserving as much as possible the order with

respect to the dot product. However, this approach does not solve the problem

that in most cases these vectors are dense, which means having low efficiency

performance if the inverted files are used to index the textual documents. In295

order to sparsify the term frequency vectors, that is to cancel the less significant

components of the vectors, we must accept a further loss in precision. To achieve

this we propose two ways: keep the top-k larger components of the vector or

maintain components above a certain threshold 1/γ by zeroing all the others.

Where γ ∈ N is the parameter we use to control the sparseness of the thresholded300
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feature. The first approach (top-k) is better suited to the permutation-based

approach and the latter (thresholding) to the scalar quantization approach.

The top-k approach on the permutation-based encoding can be seen as the

selection of a fixed-length prefix of the permutations. This approach works well

since it is assumed that the greatest information is in the first k elements of

the permutation, i.e. the identifiers of the closest pivots to the object to be

represented. It is equivalent to say that instead of using the full-length inverted

permutation Π̃−1
v we use the truncated inverted permutation:

Π̃−1
v,k(i) =

Π̃−1
v (i) if Π̃−1

v (i) ≤ k

k + 1 otherwise

. (10)

Note that, in the permutation-based indexing context, using the positions of the

nearest k out of n pivots often leads to obtaining better or similar effectiveness

then using the full-length permutation [10, 32], resulting also in a more compact305

data encoding. To transform the truncated inverted permutation into a term

frequency vectors we use fDeepPerm, k : v 7→ (k + 1)e− Π̃−1
v,k.

The thresholding adopted for scalar quantization simply discards by setting

to zero the dimension of the vector v having absolute values above a specified

threshold:

vγ(i) =

v(i) if v(i) ≥ 1
γ

0 otherwise

, (11)

where v(i) indicates the i-th dimension of the feature vector v. This approach

is optimal when we have many components near or equal to zero;

4.4. Dealing with Negative Values310

In order to index R-MAC features and represent them in the vector space

model of text retrieval, we encode each dimension of the R-MAC features as a

different codeword, and we use the TF field to represent a single value of our

feature vector. However, TF must be positive (no search engine admits nega-

tive TFs even if this in principle would be possible), nonetheless, both negative315

and positive elements contribute to informativeness. In the two approaches
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presented above, this produces two different negative effect, but fortunately

the solution we adopt is the same for both. In the scalar quantization case,

negative quantized components are not admitted by construction; in the deep

permutation-based approach, negative components are neglected since they al-320

ways fall behind the positive ones in the ordering. Naive techniques such as

truncation to zero or taking the absolute value result in a degraded perfor-

mance due to respectively loss or aliasing of information. In order to prevent

this imbalance towards positive activations at the expense of negative ones, we

use the Concatenated Rectified Linear Unit (CReLU) transformation [38]. It325

simply makes an identical copy of vector elements, negate it, concatenate both

original vector and its negation, and then apply ReLU altogether. More pre-

cisely the CReLU of the vector v is defined as v+ = ReLU([v,−v]), where

the ReLU(·) = max(·, 0) is applied element-wise. After applying CReLU, we

applied either fDeepPerm or fScalarQuant (or their sparsifying versions) to v+ as330

described in the previous sections.

For instance, if v = [0.1,−0.3,−0.4, 0, 0.2], the CReLU applied on v is

v+ = [0.1, 0, 0, 0, 0.2, 0, 0.3, 0.4, 0, 0]. If using the Deep Permutations approach,

the corresponding inverted permutation is Π−1
v+ = [4, 5, 6, 7, 3, 8, 2, 1, 9, 10] (ties

take random positions) and thus fDeepPerm(v+) = [6, 5, 4, 3, 7, 2, 8, 9, 1, 0]. For335

completeness we report the example also for the case of a spasifying factor

k = 4, for which we have Π−1
v+,4 = [4, 5, 5, 5, 3, 5, 2, 1, 5, 5] and fDeepPerm, k(v+) =

[1, 0, 0, 0, 2, 0, 3, 4, 0, 0]. If we apply the Scalar Quantization technique to the

same vector v+, with the values of γ = 5 and s = 10, we obtain fDeepPerm, k(v+) =

[0, 0, 0, 0, 2, 0, 3, 4, 0, 0].340

Notice that in general, the CReLU operation is lossy since the dot product

between vectors is not preserved, i.e., v1 · v2 ≤ v+
1 · v

+
2 . However, this transfor-

mation allows us to apply the deep permutation approach without completely

neglecting the negative activations of the R-MAC features. Moreover, the du-

plication of the dimensionality introduced by the CReLU does not increase the345

number of non-zero elements (half the elements are always zero) and therefore

neither the space occupied in the inverted index.
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5. Experimental Evaluation

The aim of this section is to assess the performance of the proposed solution

in a content-based retrieval task both in terms of effectiveness and efficiency. To350

this end, we are able to evaluate the approximation introduced with respect to

the exact similarity search algorithm against the impact of this approximation

with respect to the user perception of the retrieval task. We extracted the R-

MAC features from the images of two different benchmarks: INRIA Holidays

and Oxford Buildings. INRIA Holidays [39] is a standard benchmark for image355

retrieval consisting in a collection of 1,491 images representing a large variety

of scene type (natural, man-made, water, etc). The authors of INRIA Holidays

selected 500 queries and manually identified a list of qualified results for each

of them. In the literature, this benchmark is extended with the distractor

dataset MIRFlickr including 1M images called MIRFlickr1M (http://press.360

liacs.nl/mirflickr/). Oxford Buildings [20] is composed of 5,062 images of

11 Oxford landmarks downloaded from Flickr. A manually labeled groundtruth

is available for five queries for each landmark, for a total of 55 queries. As for

INRIA Holidays, we merged the dataset with the distraction dataset Flickr100k

including 100k images 3.365

In the implementation of FAISS, the number of Voronoi cells N controls the

number and length of the postings lists, while the number of PQ sub-quantizer

M controls the amount of memory occupied by a sample, also known as code

size C. Moreover, we directly choose the code size C, and M is set accordingly

by the software. Since FAISS is an in-memory index, C is usually set to the370

maximum code size to fit the whole dataset we want to index in main memory.

While N and C are fixed parameter chosen at indexing time, the number of

nearest neighbor Voronoi cells to probe P can be adjusted at query time and

can be tuned to control the effectiveness-efficiency trade-off.

For a fair comparison, we used a configuration for FAISS which gives the375

3http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
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best trade-off between effectiveness and efficiency for each dataset, choosing a

relatively big code size (C = 1, 024 for Holidays, C = 512 for Oxford) and

optimal number of Voronoi cells (N = 16k for Holidays and N = 1.5k for

Oxford). However, these configurations have long index training times and a

large memory footprint (for 1M images and C = 1, 024, FAISS requires about380

1GB in main memory, against about 0.7GB of our solution in secondary memory

in the larger configuration for k = 400), and this could limit its scalability,

especially in systems with limited main memory.

We generated different sets of permutations from the original features using

different values of k for the permutation-based approach (i.e., we consider top-k385

truncated permutations) and γ for the scalar quantization approach. For each

configuration, we measured the mAP (mean Average Precision) obtained and

the query execution times for each configuration. As the goal of our approach is

to work in a context of large scale image search, in the experiments, we report

the mAP (on the y-axis) in function of either the Query Selectivity SDB , i.e.390

the average fraction of database accessed per query, or the Query Cost CDB ,

i.e. average number of bytes accessed per query. If the total size of the database

in bytes is BDB , then the following equality holds: CDB = BDB SDB .

The query selectivity for surrogate text representation techniques can easily

be derived as follows. Given a database comprised of N D-dimensional objects

(D = 2, 048 for v in the case of R-MAC), the query selectivity SDB is defined as

the fraction of the N ·D elements accessed to answer a query. Let δi be the frac-

tion of samples in the database having a non-zero element in its i-th dimension.

Given a query q, we access the i-th posting list only if the i-th dimension of q

is non-zero, which is true with probability δi since query and dataset objects

share the same distribution. The number ni of elements contained in the i-th

posting list equals the number of elements of the database having non-zero i-th

dimension, that is ni = δiN . Hence, the number of elements accessed to answer

a query is
D∑
i=1

δi ni , (12)
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because i-th posting list contains ni elements, and we access it with δi proba-

bility. Thus, we can compute the query selectivity

SDB =
1

ND

D∑
i=1

δi ni =
1

D

D∑
i=1

δi
2 , (13)

Similarly, in the case of the CReLU-ed vector v+, the number of dimensions

(and thus posting lists) doubles, but the number of total non-zero elements

stored in the index is still at most N ·D. Thus,

SDB =
1

D

2D∑
i=1

δ̂i
2
. (14)

Note that, in the surrogate text representation, we associate a distinct code-395

word to each dimension of the vector, and each codeword is associated to a

posting list. An object o is stored in the posting list corresponding to the code-

word τi if and only if the occurrence of τi in the surrogate text representation of

the object o is greater than zero. At query time, we access only to the posting

lists associated to the codewords appearing in the surrogate text representation400

of the query object, and thus, the more balanced are the posting lists of the

inverted index, the smaller the query selectivity is. The greater is k, the lower

is the sparsity, and hence the greater is the mAP and the query selectivity.

Since we are dealing with an approximate approach, the brute-force mAP, i.e.

the one computed with the original features and a sequential scan of the entire405

database, can be considered as an upper-bound.

Figure 3 reports the performance of the evaluated approaches on both datasets.

We can see that we reach satisfactory levels of effectiveness for a query selectivity

of 10−2. Moreover, we have shown the remarkable advantage of the CReLU pre-

processing on R-MAC vectors in comparison with the deep permutation method410

applied directly on the original vectors.

We would like to stress two points concerning the experiments on scalar

quantization. First, we used a large value of the scalar quantization factor s

in order to exploit the full range of numbers that can be expressed in term-

frequencies integers depending on the search engine implementation employed415
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(a) mAP vs Query Selectivity for the Holidays + MIRFlickr1M dataset.
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(b) mAP vs Query Cost (Bytes) for the Holidays + MIRFlickr1M dataset.
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(c) mAP vs Query Selectivity for the Oxford + Flickr100k dataset.
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(d) mAP vs Query Cost (Bytes) for the Oxford + Flickr100k dataset.
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Figure 3: Comparison of the performance of our methods (SQ and DP) and PQ-

compressed/inverted-file-based FAISS indexes (IVFPQ and IVFPQ*) on Holidays + MIR-

Flickr1M (a-b) and on Oxford + Flickr100k (c-d), in terms of mAP and query selectivity/cost

trade-off. Note that IVFPQ and IVFPQ* are obtained using two different dataset for the cood-

ebook learning: the indexed dataset itself and the T4SA dataset, respectively. The curves

are obtained varying k (for DP), γ (for thresholded scalar quantization), and the number of

Voronoi cell accessed P (for IVFPQ/IVFPQ*). Values of k and γ are reported near each

point. The horizontal line represents the mAP obtained using the original R-MAC vectors

and performing a sequential scan of all the dataset (brute-force approach).
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(we considered a 32-bit integer in our experiments on Elasticseach). We could

analyze the impact on performance for low values of s, but we believe that this

study is of little relevance because the SRT approach involves using a standard

search engine, so we would not have any control over how the integers within

the posting lists are effectively implemented by the search engine. Second, the420

reported experiments with Scalar Quantization without the CReLU transfor-

mation (‘SQ + Threshold’ line in Figure 3) are simulated, since the components

of the vectors can also be negative and thus not implementable with the SRT

approach on a standard textual search engine.

We also report the performance of FAISS indexes when varying the number of425

Voronoi cells probed P . We report two curves related to FAISS which correspond

to two different datasets used for learning the codebooks: the indexed dataset

itself, on which the mAP evaluation is performed, and an uncorrelated dataset

of images. For the latter, we employed the T4SA dataset [40], a large collection

of images collected from the live stream of random 5% of global tweets using430

the Twitter Streaming API. The reason for this choice is to show how the

performance of FAISS is sensitive to the specific dataset distribution on which

it has been trained. Indeed, we see the impact of this aspect is really strong, and

it could, in real applications, influence the scalability of the system or require

continuous codebook adjustments, forcing to re-indexing the data periodically.435

Our solution has an intermediate performance but does not require any training

procedure and therefore any re-adjustments.

6. Conclusions and Future Works

This paper has proposed a simple and effective methodology to index and

retrieve convolutional features without the need for a time-consuming codebook440

learning step. To get an idea, consider that FAISS takes about three hours

for learning the codebook from about a million R-MAC features with the con-

figuration used in the experiments. This learning step is often left out by

the authors; nevertheless, in the context of Web-scale applications in which we
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(a) mAP vs Query Time (s) for the Holidays + MIRFlickr1M dataset.
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(b) NDCG vs Query Time (s) for the Holidays + MIRFlickr1M dataset.
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(c) mAP vs Index Size (Bytes) for the Holidays + MIRFlickr1M dataset.
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(d) NDCG vs Index Size (Bytes) for the Holidays + MIRFlickr1M dataset.
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Figure 4: Effectiveness (mAP and NDCG) versus time (average query time, a-b) and space

(index size, c-d) resources for our best method (Thresholded SQ with CReLU) and PQ-

compressed/inverted-file-based FAISS indexes (IVFPQ and IVFPQ*) on Holidays + MIR-

Flickr1M. IVFPQ and IVFPQ* are obtained using two different dataset for the coodebook

learning: the indexed dataset itself and the T4SA dataset, respectively. The curves are ob-

tained varying γ (for thresholded scalar quantization), and the number of Voronoi cell accessed

P (for IVFPQ/IVFPQ*).
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frame our work, we think that not only processing time is a relevant aspect, but445

also being as independent as possible from data distribution during the indexing

phase is a crucial point to be robust to data distribution drifting through time.

Another important aspect of our work is that our technique is completely

independent from the technology used for indexing. We can rely on the latest

text search engine technologies, without having to worry about issues related450

to implementation problems, such as software maintenance, updates to new

hardware technologies, bugs, etc. Furthermore, with our approach, it is possible

to include in the image records, in addition to the visual features (which are in

textual form), other information such as text metadata, geotags, etc.

We plan to extend our work by investigating the possibility of modifying the455

R-MAC extraction network to directly learn a “discretized vector” similar to the

one we get with the proposed hand-crafted method while trying to maximize

sparsity and increase the cardinality of the codebook as much as possible.
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