
D
RA
FT

Submitted to International Journal of Multimedia Information Retrieval
Final authenticated publication: https://doi.org/10.1007/s13735-019-00178-7

Learning Visual Features for Relational CBIR

Nicola Messina · Giuseppe Amato · Fabio Carrara · Fabrizio Falchi ·
Claudio Gennaro

Submitted: 15 April 2019 / Revised: 20 July 2019 / Accepted: 4 September 2019
c©Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract Recent works in deep-learning research

highlighted remarkable relational reasoning capabili-

ties of some carefully designed architectures. In this

work, we employ a relationship-aware deep learning

model to extract compact visual features for use as

relational image descriptors. In particular, we are in-

terested in Relational Content-Based Image Retrieval

(R-CBIR), a task consisting in finding images contain-

ing similar inter-object relationships. Inspired by the

Relation Networks (RN) employed in Relational Vi-

sual Question Answering (R-VQA), we present novel

architectures to explicitly capture relational informa-

tion from images in the form of network activations

that can be subsequently extracted and used as vi-

sual features. We describe a two-stage Relation Net-

work module (2S-RN), trained on the R-VQA task,
able to collect non-aggregated visual features. Then,

we propose the Aggregated Visual Features Relation

Network (AVF-RN) module, that is able to produce

better relationship-aware features by learning the ag-

gregation directly inside the network. We employ an

R-CBIR ground-truth built by exploiting scene-graphs

similarities available in the CLEVR dataset in order to

rank images in a relational fashion. Experiments show

that features extracted from our two-stage RN (2S-RN)

model provide an improved retrieval performance with

respect to standard non-relational methods. Moreover,

we demonstrate that the features extracted from the

novel AVF-RN can further improve the performance

measured on the R-CBIR task, reaching the state-of-

the-art on the proposed dataset.
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1 Introduction

Recent advances in deep-learning technologies brought

to light remarkable capabilities of neural networks. In

particular, focusing on the computer vision world, one

of the aims of deep-learning architectures consists in

understanding the content of an image at a high-level

of abstraction. In this respect, some specific tasks have

been developed in order to test the capabilities of newly

proposed architectures to cope with high-level reason-

ing.

Understanding relationships between entities is con-

sidered a difficult task since it requires complex reason-

ing skills. For this reason, some challenging tasks such

as Relational Visual Question Answering (R-VQA) and

Visual Relationships Detection (VRD) have been in-

troduced as reference tasks for probing relational ca-

pabilities of deep-learning solutions. R-VQA consists of

answering questions related to difficult inter-object re-

lationships in an image; on the other hand, VRD tries

to recover relationships between couples of objects in

the images by coding the information under the form

of triplets subject, predicate, object. R-VQA and VRD

underlined some of the difficulties that current deep-

learning approaches present when it comes to reason-

ing about relationships between different objects: plain

convolutional architectures showed major performances

in tasks such as image classification or object recog-

nition; however, they exhibit some limitations in rela-

tional contexts.
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In this work, we analyze the possibility of applying

relational understanding capabilities to the Content-

Based Image Retrieval (CBIR) task. More in details,

we are interested in the sub-field of Relational-CBIR

(R-CBIR) in which the aim is to retrieve images with

given relationships among objects.

This study is focused on bringing image retrieval a

step further with respect to current approaches, keep-

ing the basic idea untouched. In fact, the similarity be-

tween two images is always measured as affinity among

some sort of high-level features extracted from the im-

age. Our objective consists in extracting a relationship-

aware descriptor able to embed relational information.

These descriptors should be easily comparable using

standard distance metrics so that they can be used in

standard indexing engines. The distance between fea-

tures should embody the dissimilarity between the re-

spective images in terms of relationships between the

objects contained in them.

The key contribution of this work is the introduc-

tion of architectures able to learn relational features

directly inside the network. These proposed architec-

tures, however, are not trained directly on the R-CBIR

task; instead, this work investigates upon the possibil-

ity of learning features from networks trained on the

task of R-VQA.

The transfer-learning methodology is not a novel

approach for CBIR. Standard CBIR features are ex-

tracted from architectures trained for example on im-

age classification tasks. Image classification, however,

does not require the architecture to learn difficult rela-

tional concepts. Hence, as far as R-CBIR is concerned,

relational-aware features can be extracted from archi-

tectures trained on a task that requires high-level rea-

soning capabilities, and the R-VQA tasks perfectly fill

this need. In fact, we rely on the assumption that ar-

chitectures that are able to correctly answer questions

on complex inter-object relationships have internally

learned some relational concepts that can be later ex-

tracted and compared.

We perform this study in a fully controlled environ-

ment, using the images and scene graphs provided by

the CLEVR synthetic dataset. CLEVR is a diagnostic

dataset originally designed for the task of R-VQA, and

it is composed of 3D rendered scenes made up of simple

shapes. Unlike real-world datasets like Visual Genome,

it avoids common relational biases. Also, being a highly

controlled environment, it is useful to test in fine details

the very specific relational capabilities of deep-learning

architectures.

In this work, we extend the study published at the

CEFRL workshop of ECCV 2018 on 2S-RN [18] in which

we discussed the possibility of extracting relationship-

aware visual features from an architecture trained on

the R-VQA task. 2S-RN is designed in a way that ex-

tracted features should be aggregated afterwards, by

averaging all the contributions from every objects cou-

ple. For this reason, it is possible that the aggregated

features are not embedding in an efficient manner all

the information needed for fully describing a scene. The

novel proposed network Aggregated Visual Features Re-

lation Network (AVF-RN) solves this problem by learn-

ing the aggregation directly inside the network. By do-

ing so, we are obliging the network to incorporate as

much information as possible inside the aggregated fea-

tures. Hence, the extracted activations can immediately

be used as compact visual features. To sum up, we ex-

tend the 2S-RN approach by adding the following con-

tributions:

– we propose the Aggregated Visual Features Rela-

tion Network (AVF-RN), a novel architecture that

is able to learn aggregated relationship-aware fea-

tures directly inside the network;

– we train AVF-RN on the R-VQA task on the CLEVR

dataset;

– we compare the features extracted from the AVF-

RN network with 2S-RN features on the R-CBIR

task, using three different CLEVR dataset config-

urations; we also include as non-relational baseline

the CNN features extracted from a simple model

trained on multi-label classification on CLEVR scenes.

The rest of the paper is organized as follows. In

section 2, we review some of the works belonging to the

Relational Learning world, mainly focusing on VRD, R-

VQA, and R-CBIR. In section 3, we describe in details

the process needed for creating the relational ground

truth from CLEVR. In section 4, we describe in details

the proposed AVF-RN architecture. In section 5, we

describe our experimental setup, we collect the results

also considering baseline architectures present in the

literature, and we discuss the obtained results. Finally,

in section 6, we recap our contribution, and we present

future directions for this research.

2 Related Work

In this section, we review some of the works related to

Relational Learning in particular related to Relational

Visual Question Answering (R-VQA) and Visual Rela-

tionship Detection (VRD) tasks. Afterward, we review

some of the existing approaches to Relational CBIR (R-

CBIR).

Visual Relationship Detection (VRD) Recent work has

addressed the problem of visual relationships detection
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(VRD) in images in the form of triplets (subject, predi-

cate, object), where subject and object are common ob-

jects present in an image, and predicate indicates a re-

lationship between them out of a set of possible rela-

tionships containing verbs, prepositions, comparatives,

etc.

Several datasets are comprised of a large set of vi-

sual relationships, such as [11,13,19]. They have opened

the way to approaches aimed to detect inter-object re-

lationships in images [13,19,4].

A common approach to VRD employed by many [13,

27,20,29] consists at first in proposing entities using

region proposal networks, such as Faster-RCNN [23].

Then, once the entities have been located, a network

tries to reason on the relationships occurring between

them.

Notwithstanding approaches that solve VRD are able

to detect relationships, they usually do not encode the

learned information in a compact representation: all

possible relationships are combinatorially tested on pre-

diction time.

Relational VQA (R-VQA) R-VQA comes from the ba-

sic task of VQA (Visual Question Answering). Plain

VQA consists in giving the correct answer to a ques-

tion asked on a given picture, so it requires connecting

together different entities coming from heterogeneous

representations (text and visuals).

Some works [31,28] proposed approaches to stan-

dard VQA problems on datasets such as VQA [1],

DAQUAR [15], COCO-QA [22].

Recently, there is a tendency to conceptually sepa-

rate VQA and Relational-VQA (R-VQA). In R-VQA,

in fact, images contain difficult inter-object relation-

ships, and question are formulated in a way that it is

impossible for deep architectures to answer correctly

without having understood high-level interactions be-

tween the objects in the same image. Some datasets,

such as CLEVR [7], RVQA [14], FigureQA [10], move

the attention towards this new challenging task.

On the CLEVR dataset, [25] and [21] authors pro-

posed a novel architecture specialized to think in a re-

lational way. They introduced a particular layer called

Relation Network (RN), which is specialized in compar-

ing pairs of objects. Objects representations are learned

by means of a four-layer CNN, and the question embed-

ding is generated through an LSTM. The overall archi-

tecture, composed of CNN, LSTM, and the RN, can be

trained fully end-to-end, and it is able to reach super-

human performances. Other solutions [6,8] introduce

compositional approaches able to explicitly model the

reasoning process by dynamically building a reasoning

graph that states which operations must be carried out

and in which order to obtain the right answer. These

architectures are internally split into two different sub-

components: a generator network that produces an ex-

ecution graph based on the question embeddings, and

an execution network that executes the graph produced

by the generator network taking in input the image fea-

tures and outputting the answer. Usually, these archi-

tectures tend to perform poorly when related to other

approaches.

In order to close the performance gap between in-

terpretable architectures and high performing solutions,

[16] proposed a set of visual-reasoning primitives that

are able to perform complex reasoning tasks in an ex-

plicitly interpretable manner.

R-CBIR While standard CBIR captured a lot of atten-

tion even before the deep-learning era, R-CBIR involves

complex reasoning skills and current deep-learning ap-

proaches have shown promising results in this direction.

Nevertheless, in this work, we use the same basic

ideas from the standard CBIR methodology; we act

only on the features extraction process. We take as ref-

erence the work by [26] that introduced RMAC features

— one of the state-of-the-art non-relational image de-

scriptors for image instance retrieval. This descriptor

encodes and aggregates several regions of the image in a

dense and compact global image representation exploit-

ing a pre-trained fully convolutional network for feature

map extraction. The aggregated descriptor is obtained

by max-pooling the feature map over different regions

and scales and summing them together.

As regards the work carried out on R-CBIR, there

was some experimentation using both CLEVR and real-

world datasets. [9] introduced a CRF model able to

ground relationships given in the form of a scene graph

to test images for image retrieval purposes. However,

this model is not able to produce a compact feature.

They employed a simple dataset composed of 5000 im-

ages and annotated with objects and their relationships.

More recently, using the Visual Genome dataset,

[30] implemented a large scale image retrieval system

able to map textual triplets into visual ones (object-

subject-relation inferred from the image) projecting

them into a common space learned through a modified

version of triplet-loss.

The works by [2,18] exploit the graph data asso-

ciated with every image in order to produce ranking

goodness metrics, such as nDCG and Spearman-Rho

ranking correlation indexes. Their objective was evalu-

ating the quality of the ranking produced for a given

query, keeping into consideration the relational content

of every scene.
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3 A Relational-CBIR Ground-Truth

In order to evaluate the quality of any relational fea-

ture extracted from a relationship-aware system, we

compute a specific ground-truth exploiting relational

knowledge embedded into graphs (scene-graphs).

By carefully choosing a distance function between

graphs, we are able to give a good estimation of the

relational similarity between scenes. In order to accom-

plish this task, we need some datasets that include a

formal and precise description of relations occurring in-

side the scene. In this work, we will use the synthetic

generated dataset CLEVR [7].

3.1 CLEVR

CLEVR [7] is a synthetic dataset composed of 3D

rendered scenes, and it has been designed for the R-

VQA task. There are 100k rendered images subdivided

among training (70k), validation (15k), and test (15k)

sets. The total number of questions is ∼865k again split

among training (∼700k), validation (∼150k), and test

(∼15k).

The main concept behind CLEVR is the scene. A

scene contains different simple shaped objects with

mixtures of colors, materials, and sizes. There are

cubes, spheres, and cylinders, each one of which can

have a color chosen among eight; they can be big or

small, and they can be made of one of two different ma-

terials, metal or rubber. The scene is fully and uniquely

described by a scene graph. The scene graph describes

in a formal way all the relationships between objects.

The question is formulated under the form of a func-

tional program. The answer to a question represented

by its functional program on a scene is simply calcu-

lated by executing the functional program on the scene

graph. Scene graphs are rendered to photo-realistic 3D

scenes by using Blender, a free 3D software; instead,

functional programs are converted to natural language

expressions compiling textual templates embedded in

the dataset and written in English.

The CLEVR dataset gives us way more control on

the learning phase than other datasets present in litera-

ture. Information in each sample of the dataset is com-

plete and exclusive. This means that no common-sense

awareness is needed in order to correctly answer the

questions. Answers can be given simply understanding

the question and reasoning exclusively on the image,

without needing external concepts.

12
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rubber
sphere

small
gray
metal
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cyan
rubber
cylinder

big
purple
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Behind

Right
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Fig. 1: CLEVR scene with associated scene graph.

3.2 Scene graphs

The best way to formally describe relations inside a

scene is by making use of scene graphs, already avail-

able in CLEVR. More in details, a scene graph contains

nodes, that account for objects occupying the scene, and

edges, that describe relations occurring among them.

Every node or edge can be assigned a set of attributes

that fully describe them. CLEVR includes some specific

objects attributes, namely the color, the shape, the ma-

terial and the size, and accounts for the following spa-

tial relationships: to the left of, to the right of, in front

of, behind.

In Figure 1, we report an example image from

CLEVR with the associated scene-graphs. Note that,

although CLEVR graph is complete, half of the edges

can be removed without losing information, since to the

right of implies an opposite edge to the left of and in

front of implies an opposite edge behind.

3.3 Ground-truth generation

We define a ground-truth for retrieving images with

similar relations among objects relying on the similar-

ity between scene graphs. Two scene graphs should be
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similar if they can depict almost the same relations be-

tween the same objects. However, evaluating the sim-

ilarity between two graphs is not trivial; furthermore,

it is often a subjective task, since there are aspects of

the graph (e.g., the attributes associated to nodes) that

weight differently depending on the specific application.

Although many solutions have been proposed in lit-

erature for defining distances between graph-structured

data [3], concerning this particular use-case, we decide

to employ the graph edit-distance (GED), that is an

extension of the well-known edit-distance working on

strings.

Differently from strings, edit operations on graphs

include delete, insert, and substitute for both nodes and

edges, for a total of 6 edit operations. The computa-

tion of the GED is faced as an optimization problem.

Since the GED problem is known to be computation-

ally hard, in this work we employ an approximated ver-

sion of the GED algorithm. Computational times be-

come easily unworkable on CLEVR scene graphs, even

if removing the redundant behind and left edges. For

this reason, we used an implementation based on [24],

that is able to perform an efficient approximation of

the algorithm. The approximated GED algorithm does

not consider the entire span of solutions, but instead,

it looks for a tiny subset of edit sequences, obtained

by first matching similar nodes using linear assignment

and then matching edges on the ruled node pairing.

The node-edge edit costs can be customized on the

basis of their attributes. In particular, we use a cost

of 1 for nodes-edges insertion/deletion and a cost of 1

if edges do not belong to the same kind of relation. A

null cost is applied otherwise. Node substitution cost is

driven by a policy that weights equally all attributes.

Since in CLEVR there are 4 attributes per node, every

attribute substitution costs 0.25.

To clarify GED algorithm functioning using our cost

policy, we report an example in Figure 2. This instance

of GED computation transforming the upper image into

the below one returns a cost of 1.5.

In the light of this, given a query, we compute

the ground-truth ranking of the dataset by sorting all

scenes using computed GEDs between the scene graph

of the query image and the graphs from all the others.

Given an image ranking produced by an arbitrary

relationship-aware system, a rank correlation metric

is computed against the ground-truth ranking. In this

work, we use the Spearman-Rho correlation index, that

is a common ranking similarity measure often employed

in information retrieval scenarios [17].

4 Models

In this section, we describe our architectures tailored

to explicit relationship-aware features learning. First

of all, we review the basic formulation of the Rela-

tion Network (RN) for the sake of comparison with the

newly introduced architecture. Then, we describe our

proposals, namely the 2-stage Relation Network (2S-

RN, previously introduced in [18]) and its extension —

the novel AVF-RN architecture. Differently from 2S-

RN, AVF-RN performs the aggregation of the visual

features directly inside the network.

4.1 RN and 2S-RN overview

The Relation Network (RN) [25] approached the task of

R-VQA and obtained remarkable results on the CLEVR

dataset. RN modules combine input objects forming all

possible pairs and applies a common transformation to

them, producing activations aimed to store information

about possible relationships among input objects. For

the specific task of R-VQA, authors used a four-layer

CNN to learn visual object representations, that are

then fed to the RN module and combined with the tex-

tual embedding of the question produced by an LSTM,

conditioning the relationship information on the tex-

tual modality. The core of the RN module is given by

the following:

r =
∑
i,j

gθ(oi, oj , q) , (1)

where gθ is a parametric function whose parameters θ

can be learned during the training phase. Specifically,

it is a multi-layer perceptron (MLP) network. oi and oj
are the objects forming the pair under consideration,

and q is the question embedding vector obtained from

the LSTM module. The answer is then predicted by

a downstream network fφ followed by a softmax layer

that outputs probabilities for every answer:

a = softmax(fφ(r)) . (2)

Relationship-aware features useful for R-CBIR

should be extracted from a stage inside the network still

not conditioned to the question. Hence, valid R-CBIR

features can be extracted from the original RN mod-

ule only at the output of the convolutional layer since,

after that, questions condition entirely the remaining

pipeline.

For this reason, the two-stage pipeline [18] was pro-

posed in order to decouple visual relationships process-

ing (first-stage) from the question elaboration (second-

stage) so that the activations from a layer in the first

stage can be employed as visual relationship-aware fea-

tures. The 2S-RN considers all possible relationships



6 Nicola Messina et al.

Steps Cost

1. Substitute node small-cyan-metal-cylinder with big-cyan-metal-sphere
(change 2 attributes)

0.5

2. Substitute edge small-cyan-metal-cylinder behind small-blue-rubber-
cylinder with big-cyan-metal-sphere in front of small-blue-rubber-
cylinder

1.0

Fig. 2: GED computation example.

between objects gθ(oi, oj) in the image. The function

gθ is called first-stage of the RN. The output from

this stage is a representation of the relationships be-

tween objects in the image not conditioned on the

question. Then, the obtained relational representations

ri,j = gθ(oi, oj) are combined with the query embed-

ding q as follows:

r =
∑
i,j

hψ(ri,j , q) =
∑
i,j

hψ(gθ(oi, oj), q) , (3)

where hψ is the second-stage implemented as a multi-

layer perceptron network with parameters ψ. Using this

solution, the 2S-RN constrains the network to learn

relational concepts without considering the questions,

at least during the first stage, before the hψ(·) func-

tion evaluation. Hence, the 2S-RN architecture enables

relationship-aware features extraction from the output

of any layer of the gθ(·) function.

4.1.1 Detailed Configuration

Both the RN and the 2S-RN architectures are trained

on the R-VQA task on the CLEVR dataset.

Concerning the RN network, we use the very same

setup described by the authors. In particular, the CNN

is composed of 4 convolutional layers each with 24 ker-

nels, ReLU non-linearities, and batch normalization;

both gθ and fφ are composed by 256-dimensional fully-

connected layers, with ReLU non-linearities after every

layer, with four and two layers respectively. The final

linear layer with 28 units produces logits for a softmax

layer over the answers vocabulary; finally, the learning

rate follows an exponential step increasing policy, that

doubles it every 20 epochs, from 5e-6 up to 5e-4. Fea-

tures are extracted directly at the end of the CNN and

are aggregated using global average pooling.

2S-RN follows a very similar setup to the one of the

original RN. Differently from the RN, gθ and the novel

hψ are both composed by 2 fully-connected layers. In

this case, features are extracted at the end of the gθ
layer, immediately before the question concatenation.

Detailed architectures are shown in Figures 3a and 3b.

Both RN and 2S-RN reaches very high performances

when trained on CLEVR R-VQA: they obtain 93,6%

and 93,8% accuracy on the test set respectively.

4.2 Aggregated Visual Features Relation Network

(AVF-RN)

The 2S-RN approach is able to extract the relational

content from the visual pipeline before it is conditioned

by the question embedding. Nevertheless, features ex-

tracted from the 2S-RN are still not aggregated and

contain all the descriptions from every couple of ob-

jects. Hence, standard 2S-RN features are aggregated

only during the extraction process by simply averaging

them iterating through all the couples.

Our contribution consists in learning the feature

directly inside the network. To this aim, we slightly

changed the 2S-RN architecture in order to aggregate

all the object couples before inserting the question em-

bedding into the pipeline. Hence, AVF-RN network can

be described by the following equation:

r = q, hψ
∑
i,j

ri,j = q, hψ
∑
i,j

gθ(oi, oj) , (4)

with the same naming conventions used for 2S-RN.

However, differently from 2S-RN, hψ is not evaluated

for every couple; instead, it is evaluated once, on the

already aggregated visual features. For this reason, the

hψ role changes with respect to the 2S-RN case. In

AVF-RN the purpose of hψ is to process the already

aggregated visual feature, while in 2S-RN it processes

textual and visual features from every couple of objects.

The architecture has been designed so that each

function gθ, hψ and fφ can be customized with any

number of fully-connected layers with any number of

neurons each. More in details:

– gθ comprises the n layers before the aggregation op-

eration;

– hψ comprises the m layers between the aggregation

and the question insertion;
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(a) Relation Netowrk (RN) architecture.
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(b) Two-stage Relation Network (2S-RN) architecture.

Fig. 3: Detailed RN and 2S-RN architectures with layers configuration.

– fφ comprises the k layers after question insertion;

they are aimed at processing the joint visual aggre-

gated features and the textual ones to obtain the

information needed to predict the answer.

The overall architecture is reported in Figure 4.

4.2.1 Detailed configuration and hyper-parameters

tuning

In the case of RN and 2S-RN, the concatenation of the

question with all the couples works as a simple but

quite effective attention mechanism. The novel AVF-

RN model, instead, introduces the question embedding

after the aggregation. We gain in feature relational ex-

pressiveness but, on the other hand, the attention effect

is lost. For this reason, we obtain an overall less accu-

racy with respect to the RN and the 2S-RN architec-

tures. There are several hyper-parameters that should

be tuned and an extensive search is not feasible. Among

the hyper-parameters, the most important ones are the

number of fully-connected layers for every function gθ,
hψ, and fφ, namely n, m, k, and the output size for

all of these layers. We try to stick, wherever possible,

to successful configurations observed when training the

RN and the 2S-RN architectures. In Table 1 we collect

some of the hyper-parameters experimentation we per-

formed on this architecture, together with the reached

accuracy on the CLEVR R-VQA task.

The best result is obtained using weighted-sum as

aggregation, with weights learned during training, one

layer of hψ and three layers of fφ. The aggregation is

positioned after the 4th fully connected layer of gθ, while

the question is inserted after a single fully-connected

layer of hψ.

The 4th layer of gθ is larger in order to augment the

expressiveness of the aggregated feature. In order to

speed up convergence, we initialize the weights for the

CNN and the first two fully-connected layers of gθ with

the weights coming from the respective layers of the

2S-RN architecture (they are the only ones to maintain
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LSTM

C
N

N

Are there an equal number of 
large things and metal spheres?
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28

softm
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...
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...
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...

extracted feature
(aggregated)

Fig. 4: AVF-RN architecture overview. The number of fully-connected layers is fully customizable, as well as the

aggregation function.

Table 1: The accuracy values of different fully-connected layer configurations for every function gθ, hψ and fφ.

Each configuration includes the output size for every fully-connected layer.

gθ config. hψ config. fφ config. Aggr. Type Accuracy(%)

256, 256, 512 256 256, 256 sum 53.8
256, 256, 256, 512 256 256, 256 sum 53.2
256, 256, 256, 256 256 256 ,256, 256 sum 54.0
256, 256, 256, 512 256 256, 256, 256 sum 54.2
256, 256, 256, 1024 - 512 1024 weighted-sum 55.7
256, 256, 256, 512 256 256, 256, 256 weighted-sum 64.5

the same role and the same interface with respect to

the AVF-RN).

Even if the reached accuracy is quite far from the

performance reached by the RN and the 2S-RN archi-

tectures, this result is enough for learning relationship-

aware visual features.

5 Experimental Setup

In this section, we compare all the different architec-

tures explained in Section 4 on the task of R-CBIR.

We use a standard CBIR metric for comparing our re-

sults, namely the Spearman-Rho metric. As a baseline,

we choose the ranking obtained with one of the state-

of-the-art non-relational image descriptors for image in-

stance retrieval, namely the RMAC descriptor [26].

Also, as a non-relational baseline, we train a simple

architecture on a multi-classification task, where the

objective consists in correctly classifying all the objects

inside every CLEVR scene. This simple architecture

consists of the CNN already used in the original RN

architecture and 2 fully-connected layers with ReLU

non-linearities for use as multi-label classifier. Similarly

to the basic RN architecture, features are extracted by

average-pooling the CNN activations. We call this ar-

chitecture Multi-label CNN.

All the architectures are trained on the clevr train-
set; however, features are always extracted on the test-

set in order to evaluate the generalization capabilities of

the system. All the architectures are trained on an RTX

2080Ti, with a batch size of 640. During experiments,

we observed that the training time was almost the same

for all the RN-derived architectures. We trained for

about 300 epochs. We then picked the model having

the highest validation accuracy among all the training

epochs.

The average training speed was about 25 minutes

per epoch. Instead, extracting all the features from the

whole test set required only about 1 minute. Questions

are not needed at extraction time, so the entire archi-

tecture is considerably lighter.

We use three different setups for evaluating the re-

sults:

1. CLEVR-Full - We use the entire CLEVR test set.

Any image can be selected as query and any image

could be eligible for being retrieved.
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Table 2: Spearman-Rho correlation index for existing methods and our novel AVF-RN features. We report the

95% confidence intervals for the mean over 500 queries.

CLEVR Full CLEVR Filtered Queries CLEVR Subset

RMAC [5] −0.15±0.02 0.02±0.02 0.09±0.01
Multi-label CNN 0.05±0.05 0.64±0.04 0.18±0.04
RN [25] 0.04±0.05 0.64±0.03 0.20±0.03

2S-RN [18] 0.15±0.04 0.65±0.02 0.26±0.02
AVF-RN (ours) 0.28±0.04 0.72±0.02 0.34±0.02

2. CLEVR-Filtered-Queries - We select as queries

only the images containing at most N objects, while

any image remains eligible for being retrieved.

3. CLEVR-Subset - We filter the entire CLEVR

test set with images containing at most N objects.

Hence, both queries and retrieved images contain at

most N objects.

CLEVR-Full is the same scenario used for evaluat-

ing 2S-RN performances in [18]. However, the approx-

imated GED algorithm we employ presents some no-

table differences with the exact version when graphs

have a large number of nodes. For this reason, during

experimentation, we explore also the simpler scenarios

CLEVR-Filtered-Queries and CLEVR-Subset.

CLEVR comes with rendered images containing no

more than 10 objects. In our experiments we set N

equal to 5.

Table 2 reports values of Spearman-Rho correlation

index for all the experiments on all the three versions

of the CLEVR datasets. Spearman-Rho correlations are

relative to the ground-truth generated as explained in

3.3 and obtained by ranking images using the approx-

imated version of the GED algorithm. The Spearman-

Rho correlation index is evaluated over multiple rank-

ings, generated using 500 query images, in order to pro-

duce statistically meaningful results.

5.1 Discussion

The new AVF-RN features reaches the state-of-the-

art on the R-CBIR task, defeating both non-relational

baseline methods and the RN and 2S-RN relationship-

aware techniques. It is worth noting the almost zero per-

formance gap between convolutional features extracted

from the RN and the multi-label CNN networks. The

results tell us that the simple global average pooling

of the last feature maps of the CNN is not able to

catch significant relational content, even in the case of

a downstream RN network.

On the CLEVR-Full scenario, our AVF-RN features

obtain an almost doubled Spearman-Rho value with re-

spect to the 2S-RN one. This suggests that the novel

AVF-RN architecture is able to correctly order com-

plex relevant scenes in terms of their relational con-

tent. However, due to the approximation introduced by

ApproxGED in case of large number of objects, it is

difficult to strongly confirm this claim in this scenario.

On the other hand, in the CLEVR-Filtered-Queries

scenario, the images with few objects are privileged

by the ground-truth. Hence, standard approaches like

RMAC or simple CNN features behave quite well since

they can exploit their capability of retrieving images

having a similar number of objects with respect to the

query. Besides counting, they are in any case unable to

catch intrinsic inter-object relationships. Instead, these

details are well captured by AVF-RN and 2S-RN fea-

tures. However, the aggregation learned inside the net-

work in AVF-RN obliges the layers after the aggrega-

tion to learn compact and smart scene descriptions.

Consequently, AVF-RN captures more detailed scene-

information with respect to the simple posterior aggre-

gation performed for the 2S-RN feature.

Similarly, in the CLEVR-Subset scenario, all the re-

trieved images are forced to contain a small number of

objects, hence the basic recognition abilities by CNN

features do not capture the finest relational details. In

this case, since all the images contain few objects, the

only way to obtain remarkable results is by understand-

ing the intrinsic relational content of the scene. This

explains why there is a great improvement of AVF-RN

features over standard methods.

Even if it is quite difficult to give an objective eval-

uation of the proposed methodology by only looking at

the first 10 most relevant images, visual evaluation re-

ported in Figure 5 is useful for giving a qualitative feed-

back and an intuition beyond statistics. We collect these

visual results from the challenging Full CLEVR exper-

iment. In particular, we can see that RMAC features

always try to find the very same objects as the query,

in any position inside the image. Similarly, multi-label

CNN features seem very noisy.

It appears that 2S-RN and AVF-RN, instead, are

interpreting the scene from an high-level perspective

by finding all the images having a big object (better
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Query Image

Approx
GED

RMAC

Multi-label
CNN

RN

2S-RN

AVF-RN

Fig. 5: Most relevant images for the proposed query from Full CLEVR experiment, using both non-relational

approaches (RMAC, Multi-Label CNN) and relational ones (RN, 2S-RN, AVF-RN). The first row belongs to the

ground-truth generated as explained in section 3.3.

if a metallic blue cube) surrounded by other smaller

objects.

On our website rcbir.org you can find an interac-

tive browsing system for exploring the R-CBIR results

from the proposed methods for different query images.

5.2 Success/Failure Analysis

In Figure 6 we report simple cases of success and failure

of the top-performing method AVF-RN against the two

baselines RMAC and multi-label CNN. We assume the

result as successful if our AVF-RN features can retrieve

more ground truth images with respect to the baselines;

otherwise, the experiment is considered failed for the

examined query. For the sake of simplicity, we analyze

only the top 10 results.

It can be noticed that successful retrieved images

(Figures 6a and 6b) are well approximating the ground-

truth scene graphs. This is because AVF-RN features

exhibit some scene-wide image understanding that is

not tailored to the features of single objects. On the

other hand, RMAC features are quite good at catching

the key visual features of the single objects, such as

their size, but they have troubles to focus the attention

on the global scene arrangement.

Failure cases (Figures 6c and 6d) demonstrate that

AVF-RN features cannot always catch the relational

content of the scene. In particular, in the failure ex-

ample of Figure 6c, the AVF-RN features seem to be

always triggered by a yellow object, that perhaps is a

not so important characteristic if considering the whole

scene arrangement.

Instead, Figure 6d demonstrates that is difficult to

catch objects arranged in precise configurations (in this

case, placed on the same line). In this example, both

the multi-label CNN baseline and our AVF-RN features

fail.

6 Conclusions

State-of-the-art methods for relational reasoning eval-

uate their capabilities on some challenging tasks such

as R-VQA (Relational Content-Based Image Retrieval)

and VRD (Visual Relationships Detection).

In this work, we defined the sub-task of R-CBIR in

which retrieved images should be similar to the query

in terms of relationships among objects. This was moti-

vated by the fact that current image retrieval systems,

performing traditional CBIR, are not able to infer re-

lations among the query and the retrieved images.

Given the novelty of the proposed task, we had to

generate a relational benchmark. To this aim, we em-

ployed CLEVR, a synthetic and unbiased dataset origi-

nally developed for the task of R-VQA. In particular, we

rcbir.org
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Query Image

Approx GED
(GT)

RMAC
(Baseline)

AVF-RN
(Ours)

(a) Success against RMAC features

Query Image

Approx GED
(GT)

Multi-label CNN
(Baseline)

AVF-RN
(Ours)

(b) Success against Multi-label CNN features

Query Image

Approx GED
(GT)

RMAC
(Baseline)

AVF-RN
(Ours)

(c) Failure against RMAC features

Query Image

Approx GED
(GT)

Multi-label CNN
(Baseline)

AVF-RN
(Ours)

(d) Failure against Multi-label CNN features

Fig. 6: Success (a)(b) and failure (c)(d) cases for AVF-RN compared to the baselines, RMAC (a)(c) and Multi-

Label CNN (b)(d). Matches among GT and AVF-RN are marked in green, while matches among GT and the

baselines in red.
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compared scene graphs using a graph distance metric

called Graph Edit Distance (GED), in order to define

a relational-aware concept of distance between CLEVR

scenes.

Distance evaluation among graphs, however, pre-

sented some degrees of freedom. In fact, the employed

GED distance must be initialized with some cost pa-

rameters. Costs have been set to values that were not

able to advantage any object attribute over the others,

in order to produce the fairest configuration.

We described the 2S-RN approach and, afterwards,

we proposed an extension to the 2S-RN module, called

Aggregated Visual Features Relation Network (AVF-

RN). This modification aims at aggregating the visual

features directly inside the network. We proved that

features from our AVF-RN are able to encode in a com-

pact representation the relationships between objects in

the image, outperforming some baseline non-relational

methods as well as the 2S-RN relational features.

Although the AVF-RN system lacks the native at-

tention mechanism that both RN and 2S-RN use when

they concatenate the question with all the objects cou-

ples, this method can successfully learn compact rela-

tional features.

We noticed that, despite the encouraging perfor-

mances measured with the introduced metrics, our ap-

proach generates results of difficult interpretation when

images have a high number of objects. This is proba-

bly due to the fact that having many objects implies

too many relationships that are difficult to track by the

human eye. Also, the proposed architectures must be

trained on VQA datasets, since the relationships be-

tween objects in the image are learned by answering

questions. In this regard, the need for a VQA train-

ing dataset is overall a strong constraint that should be

relaxed in future works.

Next steps in this ongoing research include the pos-

sibility of learning features by training architectures di-

rectly on the R-CBIR task, by using metric learning

approaches such as siamese-learning methods. Also, it

would be interesting studying how the performance of

the models changes when using real-world datasets such

as Visual Genome [11] or Open Images [12].

Acknowledgments

This work was partially supported by Automatic Data

and documents Analysis to enhance human-based pro-

cesses (ADA), CUP CIPE D55F17000290009, and by

the AI4EU project, funded by the EC (H2020 - Con-

tract n. 825619). We also gratefully acknowledge the

support of NVIDIA Corporation with the donation of

the Tesla K40 GPU used for this research.

References

1. Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D.,
Zitnick, C.L., Parikh, D.: VQA: visual question answer-
ing. CoRR abs/1505.00468 (2015). URL http://

arxiv.org/abs/1505.00468
2. Belilovsky, E., Blaschko, M.B., Kiros, J.R., Urtasun, R.,

Zemel, R.: Joint embeddings of scene graphs and images.
ICLR (2017)

3. Cai, H., Zheng, V.W., Chang, K.C.: A comprehensive
survey of graph embedding: Problems, techniques and
applications. CoRR abs/1709.07604 (2017). URL
http://arxiv.org/abs/1709.07604

4. Dai, B., Zhang, Y., Lin, D.: Detecting visual relationships
with deep relational networks. In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pp. 3298–3308. IEEE (2017)

5. Gordo, A., Almazan, J., Revaud, J., Larlus, D.: End-to-
end learning of deep visual representations for image re-
trieval. arXiv preprint arXiv:1610.07940 (2016)

6. Hu, R., Andreas, J., Rohrbach, M., Darrell, T., Saenko,
K.: Learning to reason: End-to-end module networks for
visual question answering. In: The IEEE International
Conference on Computer Vision (ICCV) (2017)

7. Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei,
L., Zitnick, C.L., Girshick, R.: Clevr: A diagnostic dataset
for compositional language and elementary visual reason-
ing (2017)

8. Johnson, J., Hariharan, B., van der Maaten, L., Hoffman,
J., Fei-Fei, L., Lawrence Zitnick, C., Girshick, R.: Infer-
ring and executing programs for visual reasoning. In:
The IEEE International Conference on Computer Vision
(ICCV) (2017)

9. Johnson, J., Krishna, R., Stark, M., Li, L.J., Shamma,
D., Bernstein, M., Fei-Fei, L.: Image retrieval using scene
graphs. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3668–3678
(2015)

10. Kahou, S.E., Atkinson, A., Michalski, V., Kádár, Á.,
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