
Re-ranking via Local Embeddings: A Use Case with
Permutation-based Indexing and the nSimplex Projection I

Lucia Vadicamoa,∗, Claudio Gennaroa, Fabrizio Falchia, Edgar Chávezb, Richard Connora,
Giuseppe Amatoa

aInstitute of Information Science and Technologies (ISTI), CNR, Pisa, Italy
bCentro de Investigación Cientı́fica y de Educación Superior de Ensenada (CICESE), Ensenada, Mexico

Abstract

Approximate Nearest Neighbor (ANN) search is a prevalent paradigm for searching intrinsi-
cally high dimensional objects in large-scale data sets. Recently, the permutation-based approach
for ANN has attracted a lot of interest due to its versatility in being used in the more general class
of metric spaces. In this approach, the entire database is ranked by a permutation distance to the
query. Typically, permutations allow the efficient selection of a candidate set of results, but typ-
ically to achieve high recall or precision this set has to be reviewed using the original metric
and data. This can lead to a sizeable percentage of the database being recalled, along with many
expensive distance calculations.

To reduce the number of metric computations and the number of database elements accessed,
we propose here a re-ranking based on a local embedding using the nSimplex projection. The
nSimplex projection produces Euclidean vectors from objects in metric spaces which possess the
n-point property. The mapping is obtained from the distances to a set of reference objects, and
the original metric can be lower bounded and upper bounded by the Euclidean distance of objects
sharing the same set of references.

Our approach is particularly advantageous for extensive databases or expensive metric func-
tion. We reuse the distances computed in the permutations in the first stage, and hence the
memory footprint of the index is not increased.

An extensive experimental evaluation of our approach is presented, demonstrating excellent
results even on a set of hundreds of millions of objects.

Keywords: metric search, permutation-based indexing, n-point property, nSimplex projection,
metric local embeddings, distance bounds

I2020 Elsevier Ltd. Final authenticated publication: https://doi.org/10.1016/j.is.2020.101506
∗Corresponding author
Email addresses: lucia.vadicamo@isti.cnr.it (Lucia Vadicamo), claudio.gennaro@isti.cnr.it

(Claudio Gennaro), fabrizio.falchi@isti.cnr.it (Fabrizio Falchi), elchavez@cicese.mx (Edgar Chávez),
richard.connor@isti.cnr.it (Richard Connor), giuseppe.amato@isti.cnr.it (Giuseppe Amato)
Preprint submitted to Information Systems February 18, 2020

1. Introduction

Proximity search is successfully used to retrieve data objects that are close to a given query
object under some metric function. It has a vast number of applications in many branches of
computer science, including pattern recognition, computational biology, and multimedia infor-
mation retrieval, to name but a few. This search paradigm, referred to as metric search, is based
on the assumption that data objects are represented as elements of a metric space (D, d) where
the metric1 function d : D × D→ R+ provides a measure of the closeness of the data objects.

In metric search algorithms, the main concern is processing and structuring a finite set of data
X ⊂ D so that proximity queries can be answered quickly and with a low computational cost. A
proximity query is defined by a query object q ∈ D and a proximity condition, such as “find all
the objects within a threshold distance of q” (range query) or “finding the k closest objects to q”
(k-nearest neighbour query). The response to a query is the set of all the objects o ∈ X that satisfy
the considered proximity condition. In this work, we focus on the k-nearest neighbour (k-NN)
search since, as also highlighted in [2, 3], (i) it allows us to control the size of the results set, and
(ii) it is simpler to use in high-dimensional space where it is not obvious to define a meaningful
distance value to be used with other search paradigms, like the range query. However, providing
an exact response to a k-NN query is not feasible if the search space is very large or it has a
high intrinsic dimensionality since it would be necessary to inspect a large fraction of the data to
process the query. In such cases, the exact search rarely outperforms a sequential scan [4, 5]. To
overcome this phenomenon, known as curse of dimensionality [6], researchers proposed several
approximate search methods that are less (but still) affected by it. The main idea of approximate
methods is to efficiently find a set of results that is likely to contain most of the objects that satisfy
the query proximity condition. However, the efficiency of these methods comes at the expense
of a certain reduction of the accuracy (e.g. false hits or missing results). A limited imprecision
in the response to the query, however, is tolerable in many applications, such as multimedia
retrieval where the concept of “(dis)similarity” may differ according to user expectations, and
close approximations may be good enough for human perception [7].

Many Approximate Nearest Neighbor (ANN) methods are based on the idea of mapping the
data objects into a more tractable space in which we can efficiently perform the search. Success-
ful examples are the Permutation-Based Indexing (PBI) approaches that represent data objects as
a sequence of identifiers (permutation). Typically, the permutation for an object o is computed
as a ranking list of some preselected reference points (pivots) according to their distance to o.
The main rationale behind this approach is that if two objects are very close one to the other they
will sort the set of pivots in a very similar way, and thus the corresponding permutation repre-
sentations will be close as well. The search in the permutation space is used to select a candidate
result set that is then typically refined by comparing each element of the candidate set to the
query, according to the metric governing the original data space. This refinement step, therefore,
requires access to the original data, which is likely to be too large to fit into the main memory.
However, some kind of refinement step is likely to be necessary as the search in the permutation
space usually has relatively low precision.

In this paper, we focus on permutation-based k-NN search and we investigate several ap-
proaches to perform the refining step without access to the original data. Our techniques approx-
imate the actual distance between a query and the candidate objects by exploiting the distances

1Throughout this paper, we use the terms “metric” and “distance” interchangeably to indicate a function satisfying
the metric postulates of non-negativity, identity, symmetry, and triangle inequality [1].

2

Table 1: Notation used throughout this paper

Symbol Definition

(D, d) metric space
X finite search space, X ⊆ D
Pn = {p1, . . . , pn} set of pivots, pi ∈ D
n number of pivots
o, s data objects, o, s ∈ X
q query, q ∈ D
k, k′ number of results of a nearest neighbour search
Πo pivot permutation
Π−1

o inverted permutation
l permutation prefix length (location parameter)
Πo,l permutation prefix of length l (truncated permutation)
Π−1

o,l inverted truncated permutation
PivotS et(Πo,l) the pivots whose identifiers appear in Πo,l

Γo,q pivots in the intersection PivotS et(Πq,l) ∩ PivotS et(Πo,l)
S ρ,l Spearman’s rho with location parameter l
`2 Euclidean distance
`∞ Chebyshev distance
fPn : (D, d)→ (Rn, `∞) Pivoted embedding
φPn : (D, d)→ (Rn, `2) nSimplex projection
| · | size of a set

between the objects and the pivots (calculated at indexing time and stored within the permuta-
tions) and the distances between the query and the pivots (evaluated when computing the query
permutation). In particular, for a large class of metric spaces that meet the so-called “n-point
property” [8, 9] we propose the use of the nSimplex projection [10] that allows mapping metric
objects into a finite-dimensional Euclidean space where upper- and lower- bounds for the origi-
nal distances can be calculated. We show how these distance bounds can be used to improve the
permutation-based results without accessing to the original data set.

A preliminary version of this work appeared in [11]. The present contribution gives, also, a
more detailed description of the proposed approaches and an extensive experimental evaluation.
In particular, it includes new results on large scale and investigates the use of compressed versions
of the inverted files to index the data. The rest of the paper is structured as follows. Section 2
reviews related work. Section 3 provides basic concepts of the metric space transformations
used in our work (namely, permutation-based representations, Pivoted embedding, and nSimplex
projection). In Section 4 we describe several pivot-based approaches to refine a permutation-
based candidate set. A detailed experimental evaluation and analysis of those approaches is
presented in Section 5. Finally, the conclusions are drawn in the last section.

Table 1 summarises the notation used in this paper.

3

2. Related Work

The idea of approximating the distance between any two metric objects by comparing their
permutation-based representations was originally proposed in [12, 13]. Several techniques for
indexing and searching permutations were considered in literature, including indexes based on
inverted files, like the Metric Inverted File (MI-File) [14] and its variants [15], or using prefix
trees, like the Permutation Prefix Index (PP-Index) [2] and the Pivot Permutation Prefix Index
(PPP-Index) [16]. In [17], the metric objects in the inverted index are represented by a signature
built from the l nearest references to them. However, in all above approaches, the candidate result
set identified by performing the search in the permutation space should be refined to achieve high
effectiveness. Typically the results are refined by directly comparing the query object with the
candidate results obtained according to the original distance and data representation.

The common approach to generate a permutation-based representation of a data object is to
sort the identifiers of a set of pivots according to their distances to the object [18]. However, the
computation of these distances is just one, yet effective, approach to associate a permutation to
each data object. For example, the Deep Permutations [19] have recently been proposed as an
efficient and effective alternative for generating permutations of emerging deep features. Never-
theless, this approach is only suitable for specific data domains whereas the traditional approach
is generally applicable as it requires only the existence of a distance function to compare data
objects.

In [20], Figueroa et al. have tried different distances between permutations instead of the
canonical Spearman’s Footrule or Spearman’s rho metrics. The aim of this work, however, was
to reduce the number of distance computations and the size of the index.

The distances between the data objects and a set of pivots can also be used to embed the
data into another metric space where upper and lower bounds of the actual distance between any
pair of objects can be calculated. In this context, one of the very first embeddings proposed in
a metric search scenario was the one representing each data object with a vector of its distances
to the pivots. The LAESA [21] is a notable example of indexing technique using this approach.
Connor et al. [10, 9, 22] observed that for a large class of metric spaces it is possible to use the
distances from a set of n pivots to project the data objects into a n-dimensional Euclidean space so
that in the projected space 1) the distances object-pivots are preserved, 2) the Euclidean distance
between any two points is a lower-bound of the actual distance, 3) also an upper-bound can be
easily computed. They called this approach nSimplex projection and they proved that it can be
used in all the metric spaces meeting the n-point property [23]. As also pointed out in [8], many
common metric spaces meet the desired property, like Cartesian spaces of any dimension with
the Euclidean, Cosine or Quadratic Form distances, probability spaces with the Jensen-Shannon
or the Triangular distances, and more generally any Hilbert-embeddable space [23, 24].

Recently, the nSimplex projection has been exploited to generate a novel permutation-based
representation for metric objects, called SPLX-Perm [25]. It is based on the idea of mapping
the data object to Euclidean vectors, which are in turn transformed into permutations using an
approach similar to that used in the Deep Permutations [19].

3. Background

Many metric space transformations proposed in the literature were designed with the aim of
mapping the original data to a space that has better indexing properties than the original one, or
where the function used to compare the objects is less expensive than the original distance. In this

4

section, we summarise key concepts of some metric transformations that exploit the distances
between data objects and a set of pivots for projecting the data. In particular, we review data
transformations into permutation spaces (where objects can be efficiently indexed using PBI
methods) and two pivot-based embeddings that allow computing upper- and lower- bounds of
the actual distance.

3.1. Permutation-Based Representations
Let D a data domain, d : D ×D → R+ a metric function on it2, and Pn = {p1, . . . , pn} ⊂ D

a fixed set of pivots. A permutation-based representation Πo (briefly permutation) of an object
o ∈ D with respect to the pivot set Pn is the sequence of the pivots identifiers ordered by their
distance to o.

Formally, the permutation Πo = [Πo(1),Πo(2), ...,Πo(n)] lists the pivot identifiers {1, . . . , n}
in an order such that ∀ i ∈ {1, . . . , n − 1},

d(o, pΠo(i)) < d(o, pΠo(i+1)) (1)

or [
d(o, pΠo(i)) = d(o, pΠo(i+1))

]
∧ [Πo(i) < Πo(i + 1)] . (2)

Several PBI methods, such as [2, 14, 16], do not use the full-length permutation to represent
a data object o, but instead use a fixed-length prefix of it, i.e. Πo,l = [Πo(1), . . . ,Πo(l)], which is
called permutation prefix or truncated permutation of lenght l. This choice is based on the intu-
ition that the most relevant information in the permutation is present in its very first elements, i.e.
the identifiers of the closest pivots. Moreover, using the positions of the nearest l out of n piv-
ots often leads to obtaining better or similar effectiveness then using the full-length permutation
[14, 18], resulting also in a more compact data encoding.

Several metric functions have been used in literature to compare permutations. Notable ex-
amples are Kendall’s tau, Spearman’s rho and the Spearman’s Footrule distances. The permuta-
tion prefixes are usually compared using top-l distances [26], such as the Spearman’s rho with
location parameter l. It is worth noting that most of the commonly-used distances between (trun-
cated) permutations can be easily computed as distances between Cartesian points by using the
so called inverted (truncated) permutations.

The inverted permutation of o ∈ D is defined as Π−1
o = [Π−1

o (1), . . . ,Π−1
o (n)], where Π−1

o (i)
denotes the position of a pivot pi in the permutation Πo. The inverted permutation is such that
Πo(Π−1

o (i)) = i. Note that the value at the coordinate i in the permutation Πo is the identifier of
the pivot at i-th position in the ranked list of the nearest pivots to o; the value at the coordinate i
in the inverted representation Π−1

o is the rank of the pivot pi in the list of the nearest pivots to o.
The inverted truncated permutation Π−1

o,l is computed as

Π−1
o,l (i) =

Π−1
o (i) if Π−1

o (i) ≤ l
l + 1 otherwise

(3)

In this work, we use the Spearman’s rho (S ρ) and the Spearman’s rho with location parameter
l (S ρ,l) metrics to compare permutations and truncated permutation, respectively. By using the

2In this work, we focus on metric search. The requirement that the function d satisfies the metric postulates is
sufficient, but not necessary, to produce a permutation-based representation. For example, d may be a dissimilarity
function.

5

inverted permutation representations we can easily compute these distances as the Euclidean
distances between two vectors:

S ρ(Πo,Πs) = `2(Π−1
o ,Π−1

s) (4)

S ρ,l(Πo,Πs) = `2(Π−1
o,l ,Π

−1
s,l). (5)

for any two permutations Πo, Πs and for any prefix length l. Note that if l = n then S ρ,l(Πo,Πs) =

S ρ(Πo,Πs).

3.2. Pivoted Embedding
Given a metric space (D, d) and a fixed set of pivots Pn = {p1, . . . , pn}, we can use the

information provided by measuring the distances between each metric object and each pivot to
embed the metric space into (Rn, `∞):

fPn : (D, d)→ (Rn, `∞)
o→

[
d(o, p1), . . . , d(o, pn)

]
.

This space transformation, referred to as as Pivoted embedding in the following, allows us to eas-
ily compute upper-bound and lower-bound of the actual distances. In facts, the triangle inequality
of the metric governing the space guarantees that

max
i=1,...,n

|d(o, pi) − d(s, pi)| ≤ d(o, s) ≤ min
i=1,...,n

|d(o, pi) + d(s, pi)| (6)

which it means that `∞(fPn (o), fPn (s)) is a lower-bound of d(o, s) and that also an upper-bound
can be defined using the projected objects fPn (o), fPn (s) (see [1, pp.28]). Please note that if we
use just a subset Pl of size l of the pivots {p1, . . . , pn}, the corresponding mapping fPl provides
upper- and lower- bounds that are less tight than that obtained using fPn .

The Pivoted embedding is typically used in indexing tables like LAESA [21] or for space
pruning [1]. However, in this work we do not use this space transformation for indexing purposes,
but rather as a technique to approximate the distances between a query and data objects already
indexed using a permutation-based approach (see also Section 4).

3.3. nSimplex Projection
The nSimplex projection [10] is a space transformation of the form

φPn : (D, d)→ (Rn, `2)

that uses the distances to a set of pivots Pn = {p1, . . . , pn} for embedding metric objects into
a finite-dimensional Euclidean space. It can be applied to any metric space that satisfies the
so called n-point property [23], which provides geometric guarantees stronger than the triangle
inequality. In particular, a metric space has the n-point property if, and only if, any set of n
points of the space can be isometrically embedded into a (n − 1)-dimensional Euclidean space,
i.e. there exists a mapping of those points to n Euclidean vectors that preserves all the

(
n
2

)
inter-

points distances. In other words, the n points can be isometrically mapped to the vertices of a
(n − 1)-dimensional simplex3.

3A simplex is a generalization of a triangle (2-dimensional simplex) or a tetrahedron (3-dimensional simplex) in
arbitrary dimensions. Specifically, the (n − 1)-dimensional simplex generated by the vertices v1, . . . , vn equals the union
of all the line segments joining vn to the points of the (n − 2)-dimensional simplex of vertices v1, . . . , vn−1.

6

The n-point property guarantees that given the pivots {p1, . . . , pn}, we can determine the
vectors vp1 , . . . , vpn such that

∀ i, j ∈ {1, . . . , n} : `2(vpi , vp j) = d(pi, p j).

We refer the (n−1)-dimensional simplex generated by those vectors to as the simplex base. Then,
for any further object o ∈ D the (n+1)-point property guarantees that there exists a vertex vo ∈ Rn

such that
∀ i ∈ {1, . . . , n} : `2(vpi , vo) = d(pi, o),

i.e., the vector vo is the apex of a n-dimensional simplex built upon the simplex base where the
length of the i-th edge connecting vo to the simplex base equals the actual distance d(pi, o). The
nSimplex projection φPn is the transformation that maps an object o ∈ D to the apex vo ∈ Rn

built upon the simplex base. Connor et al. [10] provided an iterative algorithm to compute
the coordinates of the vertices vpi of the simplex base as well as the coordinates of the apex vo

associated to a metric object o. Remark that this algorithm determines those coordinates by only
exploiting the distances d(pi, p j) and d(pi, o), for i, j ∈ {1, . . . , n}. Moreover, the simplex base is
computed once and is reused for projecting every data object. Given the distances d(pi, o), the
cost for computing vo is O(n) Euclidean distances between vectors having less than n dimensions.

One of the main profitable aspects of the nSimplex projection is that in the transformed space
we can easily compute upper- and lower-bounds of the actual distance between any two metric
objects. In facts, for any two objects o, s ∈ D, given the projected vectors

φPn (o) = [x1, x2, . . . , xn−1, xn]
φPn (s) = [y1, y2, . . . , yn−1, yn]

it holds √√ n∑
i=1

(xi − yi)2 ≤ d(o, s) ≤

√√√n−1∑
i=1

(xi − yi)2 + (xn + yn)2. (7)

Therefore, `2(φPn (o), φPn (s)) is a lower-bound for d(o, s). Moreover, if we consider the vector
φ−
Pn

(s) = [y1, y2, . . . , yn−1,−yn] we have that an upper-bound for d(o, s) can be computed as the the
Euclidean distance between φPn (o) and φ−

Pn
(s), i.e. `2(φPn (o), φ−

Pn
(s)). Interestingly, in [27, 10] it

was shown that the nSimplex bounds become tighter with increasing number of pivots n.
Note that, as observed in [8, 10], there is a large class of metric spaces that satisfy the n-point

property and therefore can be transformed by the nSimplex projection. Examples are given by
the Euclidean spaces of any dimension, spaces with the Triangular or Jensen-Shannon distances,
and, more generally, any Hilbert-embeddable spaces. Moreover, if a metric space does not meet
the n-point property, (e.g. Hamming or Chebyshev metrics), there always exists a proximity
preserving mapping of this space into a metric space with this property [28].

4. Re-ranking the Permutation-Based Candidate Set

The permutation-based methods for approximate search are filter-and-refine techniques that
rely on the idea of transforming a metric space (D, d) into a permutation space. At query time, a
set of candidate results for a given query q ∈ D is obtained by performing a similarity search in
the permutation space. The candidate results are then refined, typically by using the actual dis-
tance d to compare the candidate objects with the query one. Nevertheless, the refining approach

7

П𝑙,𝑞
−1

𝑘′-NN search
(𝑘′ ≥ 𝑘)

𝑪𝒂𝒏𝒅𝑺𝒆𝒕 𝒒 = 𝒐𝟏, …… , 𝒐𝒌′ 𝒐𝒊𝟏 , …… , 𝒐𝒊𝒌′
Re-ranking

(𝑃𝑒𝑟𝑚𝑠, 𝑆𝜌,𝑙)

top-𝑘 objects
selection𝑨𝒑𝒑𝒓𝒐𝒙𝑹𝒆𝒔𝒖𝒍𝒕𝒔 𝒒 = 𝒐𝒊𝟏 , . . , 𝒐𝒊𝒌

Figure 1: Illustration of the pipeline adopted in this work to compute the approximate k-NN
results to a query by re-ranking a permutation-based candidate result set.

based on the actual distance requires to store the original data set and access to it at query time.
Below, we investigate alternative refining approaches that do not require to access original data
objects. The main objective is to improve the permutation-based results while getting rid of the
original data set.

We focus on the k-NN search and we assume that a set of candidate results CandS et(q), with
|CandS et(q)| = k′ > k, is selected using only the permutation-based encoding. The candidate
results can be identified, for example, by performing a k′-NN search in the permutation space
(e.g. using the MI-File [14]) or by finding objects with a common permutation prefix (e.g. using
the PP-codes [2]). We then refine the candidate result set by selecting the top-k candidate objects
ranked according to a dissimilarity function (Figure 1). In order to use a dissimilarity function
that does not require access to the original data, we propose to re-rank the objects based on their
distances to a set of pivots. In fact, the distances between the objects and the pivots are calculated
when computing the permutation-based representation and can therefore be easily reused at query
time.

As done by many PBI approach [2, 14, 16], we consider the case in which the data objects are
represented and indexed using permutation prefixes instead of the full-length permutations. We
indicated with PivotS et(Πo,l) the set of the l pivots closest to the object o, i.e. the pivots whose
identifiers appear in the permutation prefix Πo,l. Moreover, we assume that the distances between
each object and its l closest pivots are stored and indexed within the object permutation prefix.
This can be done with a slight modification of the used permutation-based index. In Figure 2,
we show an example of how the object-pivot distances could be stored into posting lists such
as the ones used in the MI-file [14]. Hereafter, we assume that the objects are indexed using
this modified version of inverted files, however, the approaches presented in this paper can be
extended to cope with different permutation-based indexes.

We propose to refine the candidate result set according to a dissimilarity function derived
from the distance bounds provided either by the Pivoted embedding (Sec. 3.2) and the nSimplex
projection (Sec. 3.3), since these metric mappings can be easily computed by using the object-
pivot distances. Specifically, at query time, we use the distances d(q, p j), d(o, p j) with p j ∈ Γo,q =

PivotS et(Πq,l) ∩ PivotS et(Πo,l) to calculate an approximation of the actual distance d(o, q). In
the following we present various distance approximation that can be used for this scope.

Pivoted embedding - The distance constraints expressed in the Equation 6 can be easily re-
stricted to the pivots that belong to Γo,q:

max
p j∈Γo,q

|d(o, p j) − d(q, p j)| ≤ d(o, q) ≤ min
p j∈Γo,q

|d(o, pi) + d(q, pi)| (8)

8

Figure 2: Examples of traditional posting lists and posting lists with distances, used to index
three objects using five pivots and a prefix length l = 3

As a consequence, we identified three distance approximations that could be used to re-
rank candidate objects:

Plwb(o, q) = max
p j∈Γo,q

|d(o, p j) − d(q, p j)| lower-bound

Pupb(o, q) = min
p j∈Γo,q

(d(o, p j) + d(q, p j)) upper-bound

Pmean(o, q) = (Pupb(o, q) + Plwb(o, q))/2 mean

Simplex projection - For each candidate object o, we use the pivots in Γo,q to build the simplex
base of the nSimplex projection φΓo,q . Then we use the distances d(o, p j), d(q, p j) with
p j ∈ Γo,q to project both the query and the candidate object into Rh where h = |Γo,q| ≤ l.
Given the projected apexes φΓo,q (o), φΓo,q (q), φ−

Γo,q
(q) ∈ Rh, we consider the re-rankings of

the candidate objects based on the following dissimilarity measures:

S lwb(o, q) = `2(φh(o), φh(q)) lower-bound
S upb(o, q) = `2(φh(o), φ−h (q)) upper-bound
S mean(o, q) = (S upb(o, q) + S lwb(o, q))/2 mean

Other dissimilarity functions over the apex vectors may be considered as well, in particular,
any function that is always between the lower-bound and the upper-bound could be a good
option since both the Simplex bounds asymptotically approach the true distance when
increasing the number of pivots. In this work, we also consider the Zenith function, which
was recently proposed in [29], that equals the quadratic mean of the lower- and upper-

9

bounds

S zenith(o, q) =

√(
S upb(o, q)2 + S lwb(o, q)2

)
/2 zenith

The main difference between the mean and zenith distance is that the latter has a geometri-
cal interpretation as the Euclidean distance between two vertex in Rh+1 (see [29] for futher
details).

Note that number h of pivots used to build the simplex base highly affects the quality of the
Simplex bounds: the higher h, the tighter the bounds. Moreover, the number h and the used
simplex base change when changing the candidate object o. This means that the quality
of the simplex-based approximations of the distance d(o, q) may vary significantly when
changing the considered candidate object. To overcome this issue, we also considered the
re-ranking according to

S norm.mean(o, q) = S mean(o, q)/g(h) normalized mean
S norm.zenith(o, q) = S zenith(o, q)/g(h) normalized zenith

where g(h) is a normalization factor, further discussed in Section 5.3.

Of all the measures considered above, only the lower-bounds S lwb and Plwb are metrics, while
the others are dissimilarity functions. Finally, we remark that for all these approaches no new
distance between object and pivot is evaluated neither at indexing time nor query time, since
the distance used have already been calculated to build the permutation-based representations of
the objects/query. The distances d(o, p j) with p j ∈ Γo,q, instead, are retrieved while scanning
the posting list to select the candidate results. Therefore, the considered re-ranking approaches
do not require further disk accesses in addition to the index accesses already made to find the
candidate results.

5. Experiments

In this section, we experimentally evaluate the quality of the re-ranking approaches discussed
above. We first describe the employed data sets (Section 5.1) and other experimental settings
(Section 5.2). Then, we report results and their analysis for several case studies (Sections 5.3-
5.6)

5.1. Test Data
The experiments were conducted on three publicly available data sets, namely YFCC100M

[30], Twitter-Glove [31], and SISAP Colors [32]. To test our techniques on a variety of metric
spaces, for each data set we selected a different type of data descriptor and a different metric
function, as described below.

YFCC100M is a collection containing about 96M images, all uploaded to Flickr between 2004
and 2014 and published under a CC commercial or non-commercial license. As image
descriptors we used the deep Convolutional Neural Network features extracted by Amato
et al. [33], which are publicly available at http://www.deepfeatures.org/. Those
image descriptors are 4,096-dimensional vectors that were obtained from the activations

10

YFCC100M

0 0.5 1 1.5

Distance (Euclidean)

0

2

4

6

8

10

P
D

F
 e

st
im

at
e

(a) YFCC100M (IDim= 276)

Twitter Glove

0 0.5 1 1.5 2

Distance (Cosine)

0

1

2

3

4

5

P
D

F
 e

st
im

at
e

(b) Twitter-GloVe (IDim= 106)

SISAP colors

0 0.2 0.4 0.6 0.8 1

Distance (Jensen-Shannon)

0

0.5

1

1.5

2

2.5

P
D

F
 e

st
im

at
e

(c) SISAP Colors (IDim= 8)

Figure 3: Probability density function estimated on a sample of 500,000 distances.

of the fc6 layer of the HybridNet [34] after the ReLu and the `2 normalization stages. As
commonly done in the literature, we used the Euclidean distance for the comparison of
these features.

Twitter-GloVe is a collection of 1.2M GloVe [31] features (word embeddings) trained on tweets.
The GloVe vectors are often used as vocabulary terms to embed a document into a vector
representation, for example by averaging the vectors of the terms contained in the text. In
such cases, the space of the vocabulary terms is representative of the space of the document
embeddings. The Euclidean distance or the Cosine similarity are typically used to compare
two GloVe vectors since they provide an effective method for measuring the linguistic or
semantic similarity of the corresponding words. Various pretrained GloVe vectors are
available at https://nlp.stanford.edu/projects/glove/. In our experiments, we
used the 100-dimensional word vectors and we compared them using the Cosine distance,
which is defined as dCos(x, y) =

√
1 − x·y

‖x‖2‖y‖2
. Note that the Cosine distance is equivalent

to the Cosine similarity, i.e. the closest objects to a query according to dCos are the most
similar objects to the query according to the Cosine similarity.

SISAP Colors is a benchmark for metric search that contains about 113K feature vectors of di-
mensions 112. Each vector is a color histogram of a medical image. In our experiment, we
compared those feature vectors by using the Jensen-Shannon distance, which is defined as
the square root of the Jensen-Shannon divergence (JSDiv), i.e. dJS(x, y) =

√
JS Div(x, y).

The term Jensen-Shannon divergence is used variously with slightly different meanings in
literature; to avoid ambiguity, we follow the definition used in [8]:

JS Div(x, y) = 1 −
1
2

∑
i

h(xi) + h(yi) − h(xi + yi),

where h(z) = −z log2 z.

The distance distributions of the three considered data sets are depicted in Figure 3. In the
figure captions we also report the Intrinsic Dimentionality (IDim) of the data that was estimated

as in [35], i.e. IDim=
µ2

σ2 , where µ is the mean and σ is the standard deviation of the distances
between the data objects.

11

5.2. Experimental Setup

For each data set we build a ground-truth for the exact k-NN search related to 1,000 randomly-
selected queries.4 The ground-truths were used to evaluate the quality of the approximate results
obtained by re-ranking a permutation-based result set of size k′ ≥ k. Specifically, for each query
object we selected a candidate result set by performing a k′-NN search in the permutation space.
Then we re-ranked the candidate results and we selected the top-k objects as the approximate
answer to the k-NN query.

The quality of the approximate results was evaluated using the recall@k, defined as |R ∩ RA|/k,
where R is the result set of the exact k-NN search in the original metric space and RA is the ap-
proximate result set. We used k = 10 and k′ = 100, thus the candidate result set was computed
by performing a 100-NN search in the permutation space.

The permutation-based representations of the data objects were generated using a total of
n = 4, 000 pivots for YFCC100M and Twitter-GloVe data, and n = 1, 000 pivots for the smaller
SISAP Colors data set. In our tests, we used fixed-length permutation prefixes to represent the
data objects. The permutation prefixes were compared using the Spearman’s rho with location
parameter metric, where the location parameter is the length l of the permutation prefixes. Note
that the case l = n simply corresponds to use of the full-length permutations with the traditional
Spearman’s rho metric. In the experiments, we evaluate the performance for various permutation
prefix lengths.

5.3. Results

This section presents comparative results for all the approaches described in Sec. 4 to re-rank
a permutation-based candidate results set. We remind the reader that the considered techniques
are based on various Pivoted embedding and Simplex projection dissimilarity measures
(namely, lower-bound, upper-bound, and mean), as well as the Simplex zenith function. We
compared these approaches also with two baselines: 1) the permutation-based results before any
re-ranking, 2) the re-ranking based on the actual distance. The permutation-based results before
any re-ranking are simply the first k candidate objects ordered according to their permutation-
based distance to the query (i.e. the k-NN results in the permutation space). A good re-ranking
technique in terms of effectiveness should at least improve the recall of the permutation-based
results, and ideally achieve a performance close to that obtained using the re-ranking based on
the actual distance. In fact, the latter one is the approach that provides the maximum possible
recall for the given candidate result set, but it requires to access the original metric object o to
compute the distance d(q, o) between the query q and every candidate object o.

Figure 4 illustrates the results on Twitter-GloVe and SISAP Colors data sets. Figures 5a and
5b show the results on two subsets of YFCC100M that contain 1M and 10M images, respectively.
We used the term “Perms” to indicate the permutation-based results before any re-ranking, and
“Perms, re-rank(f)” for the re-ranking based on the measure f , where f may be either the

• actual distance d,

• Pivoted embedding measures (Plwb, Pupb, Pmean),

4The query objects were removed from the ground-truths of Twitter GloVe and SISAP Color data sets. For the
YFCC100M we kept the query objects in the ground-truth to have results comparable with other research papers that
used the same ground-truth (e.g. [19, 11]). Please also note that many re-ranking measures tested in this paper are not
metrics, thus there are no guarantees that the less similar object to a query will be the query itself.

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000

re
ca

ll@
1

0

permutation prefix length l

Perms

Perms, re-rank(actual distance)

Perms, re-rank(S_norm. zenith)

Perms, re-rank(S_zenith)

Perms, re-rank(S_norm. mean)

Perms, re-rank(S_mean)

Perms, re-rank(S_upb)

Perms, re-rank(S_lwb)

Perms, re-rank(P_mean)

Perms, re-rank(P_upb)

Perms, re-rank(P_lwb)

(a) Twitter-GloVe, Cosine distance, n = 4, 000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000

re
ca

ll@
1

0

permutation prefix length l

Perms

Perms, re-rank(actual distance)

Perms, re-rank(S_norm. zenith)

Perms, re-rank(S_zenith)

Perms, re-rank(S_norm. mean)

Perms, re-rank(S_mean)

Perms, re-rank(S_upb)

Perms, re-rank(S_lwb)

Perms, re-rank(P_mean)

Perms, re-rank(P_upb)

Perms, re-rank(P_lwb)

(b) SISAP Colors, Jensen-Shannon distance, n = 1, 000

Figure 4: Recall@10 of several re-ranking approaches varying the permutation prefix length l.
The candidate set to be reordered is selected with a 100-NN search in the permutation space
using the Spearman’s rho with location parameter l.

13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000

re
ca

ll@
1

0

permutation prefix length l

Perms

Perms, re-rank(actual distance)

Perms, re-rank(S_norm. zenith)

Perms, re-rank(S_zenith)

Perms, re-rank(S_norm. mean)

Perms, re-rank(S_mean)

Perms, re-rank(S_upb)

Perms, re-rank(S_lwb)

Perms, re-rank(P_mean)

Perms, re-rank(P_upb)

Perms, re-rank(P_lwb)

(a) Results on 1 million images

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000

re
ca

ll@
1

0

permutation prefix length l

Perms

Perms, re-rank(actual distance)

Perms, re-rank(S_norm. zenith)

Perms, re-rank(S_zenith)

Perms, re-rank(S_norm. mean)

Perms, re-rank(S_mean)

Perms, re-rank(S_upb)

Perms, re-rank(S_lwb)

Perms, re-rank(P_mean)

Perms, re-rank(P_upb)

Perms, re-rank(P_lwb)

(b) Results on 10 million images.

Figure 5: YFCC100M, Euclidean distance: Recall@10 varying the permutation prefix
length l on subsets of 1M images (5a) and 10M images (5b). The number of pivots is fixed
to n = 4, 000. The candidate set to be reordered is selected with a 100-NN search in the permu-
tation space using the Spearman’s rho with location parameter l.14

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 8 64 512 4096

A
ve

ra
ge

 R
e

la
ti

ve
 E

rr
o

r

h

 Pivoted emb. lwb

 Pivoted emb. upb

(a) Pivoted embedding

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 8 64 512 4096

A
ve

ra
ge

 R
e

la
ti

ve
 E

rr
o

r

h

Simplex lwb

Simplex upb

1-log(h)/log(4096)

(b) Simplex projection

Figure 6: YFCC100M, Euclidean Distance - Average relative error of the Pivoted embedding

and Simplex embedding bounds with respect to the actual distance varying the number of h
of pivots used to compute the bounds. Similar trends are obtained on Twitter-GloVe and SISAP
colors data sets.

• Simplex measures (S lwb, S upb, S mean, S zenith, S norm.mean, S norm. zenith).

In each graph, we report the recall@10 varying the length l of the permutation prefixes used to
represent the data objects (the number n of pivots is fixed). Please note that the prefix length l
influences the quality of the candidate set to be re-ranked, as well as the quality of the Pivoted
embedding and Simplex projection distance approximations. In fact, for a fixed value l and
for a candidate object o, the number h of pivots used to compute the distance approximations is
less than l; moreover, it varies and depends on the candidate object o as it is equal to the cardinal-
ity of Γo,q (i.e. the intersection between the query permutation prefix and the object permutation
prefix). Typically h is greater for objects in top positions in the permutation-based result list
and decrease for objects that are far according to the permutation-based distance. Moreover, the
greater the l, the greater the h and so the better the approximation bounds.

Surprisingly, we observed that in almost all the tested cases the Pivoted embedding ap-
proach greatly degrades the quality of the permutation-based results. Moreover, on YFCC100M
and Twitter-GloVe it never reaches a recall@10 greater than 0.3. Hence, the Pivoted distance
approximations resulted to be not adequate for the considered re-ranking purpose. One of the
reasons for this poor performance is that the Pivoted lower-bound approximates well the actual
distance d(o, q) only if o and q are very close to each other in the original metric space, or if Γo,q

contains at least one pivot that is very close to q and far to o (or vice versa). However, for ran-
domly selected pivots in high dimensional space this is unlikely to happen: for a random pivot p
and for an object o not so close to q, we often have that the distances d(o, p) and d(q, p) are both
close to the mean value in the distribution of the data distances, and so the lower-bound results
to be close to zero. This means that when we use the Pivoted lower-bound for re-ranking pur-
pose, it may happen that many objects are incorrectly swapped and far objects can be assigned
in top-positions. In addiction, we observed that the Pivoted distance bounds have high relative
errors with respect to the actual distance and that these errors slightly decrease when increasing
the number h of pivots used to compute the bounds (Figure 6a).

The Simplex distance bounds showed similar drawbacks when using relatively small prefix

15

lengths. In particular, they are mostly influenced by the fact that the Simplex bounds asymp-
totically approach the true distances when increasing the number h of pivots used to build the
simplex base and that the tightness of the bounds highly depends on h. In fact, in all the tested
cases, we observed that there exists a value h̃ for which the full convergence is achieved. This
value is 4,096 for YFCC100M, and about 100 for Twitter-GloVe/SISAP Colors. The effect of
the convergence of the Simplex bounds is evident in both the Twitter-GloVe (Figure 4a) and
the SISAP Colors (Figure 4b) data: for l > 300 we observed that the number of pivots in the
intersection Γo,q starts to exceed h̃ = 100 for most of the candidate objects o, and so all the
Simplex bounds provide an exact or almost exact approximation of the actual distances. As
a consequence, for l > 300 all the recall curves of the Simplex-based re-ranking approaches
coincide with the recall curve obtained using the re-ranking based on the actual distance. For the
YFC100M data set, instead, the Simplex bounds recall curves do not reach the values obtained
by using the actual distance because we are considering prefix lengths smaller than the number
h̃ of pivots needed to have the convergence.

We remark that the performance of the Simplex bounds is poor for small prefix lengths
mainly because

• for two objects o, s ∈ CandS et(q) such that |Γo,q| < |Γs,q| << h̃ we may have S lwb(o, q) <
S lwb(s, q) even if d(o, q) > d(s, q);

• the upper-bound, which is not a metric, particularly fails in approximate small distances
and S upb(o, o) may be much greater than 0.

This behaviour of the S upb is somehow observable in the recall values obtained on the YFFCC100
data: for small l the results of the re-ranking based on the S upb are better than that of S lwb on
the 1M images subset (Fig. 5a), but on 10M images (Fig. 5b) the curve of S upb never exceeds
that of S lwb. The reason is that the actual distances between the query and the candidate objects
are likely to be smaller when performing the nearest neighbour search on a lager subset of data.
Thus, given that for small prefix lengths the S upb does not approximate well tiny distances, the
performance of the re-ranking based on the upper-bound drops when the candidate objects are
selected by searching 10M images.

It is worth noting that, accordingly to our experimental observations, if we use the same sim-
plex base (e.g. the one formed by the pivots in the query permutation prefix) to project all the
candidate objects, we achieve re-ranking scores better than that showed in the Figures above,
especially for relatively small prefix lengths. However, this approach is not directly applicable in
the analysed scenario. In fact, we used inverted files to index the permutations and store the dis-
tances object-pivots. This implies that at query time, for each candidate object o we had access
only to the distances d(o, p) with p appearing in both the object and query permutation pre-
fixes. Therefore, the set of pivots employed to build the simplex base changes when considering
different candidate objects. This means that the “quality” (tightness) of the Simplex-based ap-
proximations of the query-object distances is not uniform within the set of the candidate objects.
To overcome this issue, we tested normalized versions of all the Simplex distance bounds by
taking into account the number h of pivots used for projecting the data. In the graphs reported in
this paper, we show only the normalized version of the mean and zenith distances since they were
the ones obtaining the best results. As normalization factor we used g(h) = log(h) because we
experimentally observed that the relative errors of the Simplex bounds decrease logarithmically
with h (e.g. Figure 6b).

16

The re-rankings based on the normalized versions of the Simplex mean and zenith have prac-
tically the same performance on Twitter Glove and SISAP Colors data sets, while on YFCC100M
data the S norm.mean shows slightly better recall values. Moreover, in all the tested cases, the re-
rankings using those Simplex measures always improved the permutation-based results (i.e. the
Perms baseline). For example, for n = 4, 000 pivots and l = 800, the recall@10 is improved
from 0.37 to 0.64 on YFCC100M (10M subset). For n = 4, 000 and l = 300, the recall increases
form 0.43 to 0.76 on Twitter-GloVe, while for l = 80 and n = 1, 000 it raises from 0.43 to 0.80
on SISAP Colors. We provided examples with l < n instead of considering the full-length per-
mutation since when using inverted files the number of index blocks accessed is proportional to
l2/n and does not depend on the number of retrieved objects. Moreover, it is worth to note that
the quality of permutation-based results it is not always improved by considering large prefix
lengths. In fact, it often happens that there exists an optimal prefix length for which we achieve
a recall that is better or very similar to that obtained using the full-length permutations. This
phenomenon is observable in the YFCC100M and the SISAP Colors data set (see Fig. 5 and 4b),
where the Perms recall line has a plateau or decreases after achieving a maximum value. Other
examples of this phenomenon can be found e.g. in [18] where it was observed the existence of
an optimal prefix length l < n for some synthetic and real-word data sets. The intuition is that
in those cases the intrinsic complexity of the data set is already well described when permuta-
tion prefixes with length equal to the optimal value are used, therefore increasing the length of
the prefixes may add noisy information instead of improving the data representation. This phe-
nomenon is not yet completely investigated in the literature, however, we mentioned it to clarify
why in the SISAP Colors case the performance is affected by using a large l parameter.

Finally, we observe that the cost of the considered re-ranking approaches depends on the
query object as it changes according to the numbers of pivots in the intersections of permutation
prefixes of the query and the candidate objects. If using the algorithm proposed in [10], the cost
for building a simplex base using h pivots is O(h3) floating point operations (flops), while the
cost for projecting an object is O(h2) flops. Thus, for k′ candidate objects whose permutation
prefixes have on average hl pivots in common with the query permutation we have a cost of
O(k′(h3

l + h2
l) + h2

l) flops to compute the Simplex bounds. However, the k′ simplex bases can be
computed in parallel since they referred to different sets of pivots. Just to provide an example,
for l = 300 the time cost for computing all the simplex bases and projecting both the query and
the candidate objects is about 300ms on an Intel i7 3.5 GHz for the YFCC100M data. We also
observe that this cost may be greatly reduced if some of these simplex bases are pre-computed or
partially computed. In facts, if we have a simplex base built upon the pivot set {pi1 , . . . , pih } and
we extend it by adding a further pivot the cost is O(h2) flops instead of the O(h3) flops needed
to build it from scratch. Therefore, implementations that exploit hashmaps or prefix trees to
dynamically cash the computed simplex bases would accelerate the response at query time.

5.4. Results on Large Scale

To evaluate our techniques on large scale, we performed the k-NN search on various subsets
of YFCC100M. Figure 7a shows the recall@10 varying the data set size from 1 to 96 million
images. The candidate results to be re-ranked were selected by using permutation prefixes of
length l = 800. We observe that the performance of our techniques with respect to the Perms

and re-rank(actual distance) baselines is stable when increasing the size of the data set.
In particular, the relative improvement in the recall obtained by the Simplex mean and zenith re-
rankings with respect to Perms results ranges between 70% (at 96M) and 78% (at 8M). Moreover,

17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100

re
ca

ll@
1

0

Data set size in Millions

Perms
Perms, re-rank(actual distance)
Perms, re-rank(S_norm. mean)
Perms, re-rank(S_norm. zenith)

(a) Recall@10 varying the data set size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000
re

ca
ll@

1
0

candidate set size

Perms
Perms, re-rank(actual distance)
Perms, re-rank(S_norm. mean)
Perms, re-rank(S_norm. zenith)

(b) Recall@10 varying the candidate set size (full
YFCC100M dataset)

Figure 7: YFCC100M, Euclidean distance, n = 4000, l = 800

for large sizes of the data set the relative gap between our techniques and the re-ranking based
on the actual distance slightly decreases.

We also investigated the performance varying the size k′ of the candidate set to be re-ranked
(Figure 7b). In this case, the candidate set was selected by performing a k′-NN search in the
permutation space using the Spearman’s rho with location parameter l = 800. As expected, the
gap between our approaches and the re-ranking based on the actual distance increases for large
sizes of the candidate set due to the errors in approximating the actual distance by the Simplex
measures. In facts, for the considered parameter l = 800, on average we have about 550 pivots in
the intersection between the query and the object permutation prefixes, but for the YFCC100M
data set the convergence of the Simplex bounds is achieved using 4,096 pivots. Thus, the effects
of distance approximation errors becomes more evident when we re-rank larger set of data. Nev-
ertheless, even when considering k′ = 1, 000 as candidate set size, the improvements in the recall
of our approach with respect to the Perms baseline is considerable (from 0.35 to 0.59)

Finally, Figures 8 and 9 show some examples of 10-NN search results on a 10 million subset
of YFCC100M deep features. Specifically, these results were obtained by using

1. the permutations compared with the Spearman’s rho with location parameter l (S ρ,l) with-
out any re-ranking step (see Fig. 8b and 9b),

2. our approach for re-ranking the permutation-based results using the nSimplexnormalized
mean (S norm.mean) measure (see Fig. 8c and 9c),

3. brute-force, i.e. the exact search via sequential scan using the Euclidean distance (`2) for
the image features comparison (see Fig. 8d and 9d).

We considered the case l = 800 and we selected two query examples (Fig. 8a and 9a) for
which our technique achieved the worse and the best recall@10 over all the 1, 000 tested queries,
which are 0.1 (Fig. 8c) and 1 (Fig. 9c) respectively. In the first example, it is interesting to note
that even if the recall of our technique is very low, from a visual similarity point of view our

18

(a) Query (id: 3528451473)

(b) Perms, recall@10 = 0.1

(c) Perms, re-rank(Simplex Normalized mean), recall@10 = 0.1

(d) Exact search via sequential scan (Ground-truth)

Figure 8: Example of 10-NN search results obtained on 10 million images of YFCC100M us-
ing the permutations without any re-ranking (b), our Simplex re-ranking technique (c), and the
sequential scan (ground-truth) (d).

19

(a) Query (id: 9330452712)

(b) Perms, recall@10 = 0.3

(c) Perms, re-rank(Simplex Normalized mean), recall@10 = 1

(d) Exact search via sequential scan (Ground-truth)

Figure 9: Example of 10-NN search results obtained on 10 million images of YFCC100M us-
ing the permutations without any re-ranking (b), our Simplex re-ranking technique (c), and the
sequential scan (ground-truth) (d).

20

Table 2: Intrinsic dimensionalities for experimental Euclidean spaces

Dim IDIM
10 10.23
20 20.85
30 31.24
40 42.18
50 52.98
60 63.31
70 75.05

Dim IDim
80 85.93
90 95.35

100 106.35
200 212.55
300 319.80
400 423.71
500 525.78

results are not so worse than the ground-truth images. The second example shows a case in
which we achieved the maximum recall (1.0), allowing us to highly improve the recall obtained
by the permutation-based search (0.3). Note that in this case, even though the set of our results
coincides with the ground-truth set, the ordering of the results is different because for l = 800
the Simplex bounds are not converged yet to the actual distance.

A demo of the k-NN search results on YFCC100M for various data set sizes (from 1 to
96M) and various re-ranking approaches is available at the link http://deepfeatures.org/

rerankingPerms/.

5.5. Results for Increasing Data Dimensionality

To evaluate the performance of our technique as the intrinsic dimensionality of the data rises,
we conducted experiments on 14 synthetic data sets. Specifically, we generated pseudo-random
data sets of half million vectors with Gaussian distributed values within RD with D ∈ {10, 20,
30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500}. Table 2 gives values for the intrinsic
dimensionality (IDim) calculated for each space. The IDim was computed as proposed in [35],
that is IDim= µ2/2σ2 where µ and σ are, respectively, the mean and the standard deviation of
the distances between points of the space.

For each space, we evaluated the recall@10 obtained by re-ranking the permutation-based
results. As proposed in [14], we computed the permutation-based representations by using a
number of pivots greater than twice the size of the data set. Specifically, we used 2, 000 pivots
for each set of data. Then, we varied the prefix length from 10 to 1000 using a logarithmic scale,
i.e. we considered l =10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700,
800, 900, 1000. For each data set and each prefix length l we evaluated the recall achieved by
various re-ranking approaches. In Figure 10, we reported the results for the permutation-based
search without any re-ranking, and the results for the re-ranking based either on the nSimplex
normalized mean measure or the actual distance. For all the tested spaces and prefix lengths, our
technique improved the recall obtained using the Perms baseline. Moreover, we experimentally
observed that when the prefix length l was three times the dimensionality of the data, our re-
ranking techniques achieved the same recall as the re-ranking based on the actual distance. On
average the relative improvement of our re-ranking approach over the Perms baseline decreases
as the spaces become less tractable, that is as the intrinsic dimensionality increases. However,
for large prefix lengths our technique still achieves the same performance of the re-ranking based
on the actual distance. Note that for data with very high intrinsic dimensionality the recall values
are very low due to the less tractability of the space. For example, on the Euclidean space of

21

Figure 10: Recall@10 obtained by searching synthetic Euclidean spaces of various dimension-
alities (from 10 to 500) varying the re-ranking approach and the permutation prefix length l. For
each data set and each re-ranking technique, the graph shows 19 grey points (∗) that are the recall
values obtained varying l form 10 to 1000 (logarithmically increasing values) and a box-plot dis-
playing the distribution of these values. Each box is delimited by the first and the third quartile,
4 is the maximum value (corresponding to l = 1, 000), 5 is the minimum value (corresponding
to l = 10), ◦ is the median value (corresponding to l = 100).

dimension 500, the maximum recall (achieved with l = 1, 000) is 0, 12 for the Perms without re-
ranking and 0, 37 for the re-ranking based either on the nSimplex measure or the actual distance.
We also noticed that for relatively small IDim (e.g. dim = 10, 20) and for small prefix lengths, the
results obtained using the re-ranking based on the nSimplex mean and zenith measures achieved
much better results than that obtained using their normalized version. However, in our tests, the
nSimplex normalized measures worked the best for dim > 30.

5.6. Results using quantized distances
In the experiments analysed so far, the object-pivot distances used to perform the re-rankings

were indexed within the object permutation prefixes by using inverted files (as discussed in Sec-
tion 4). The disk space needed by the inverted index can be estimated in general assuming to
encode each entry of the posting lists with dlog2|X|e + 32 bits, where |X| is the size of the data
set. This space is largely sufficient to encode both the ID of the object and its distance from the
pivot corresponding to the list to which the entry belongs to. As observed in [14], the positions of
the objects can be neglected by ordering the entries of the posting list according to the position
of the objects. Therefore, for a fixed l, the size of the inverted index used by our approaches
is l|X|(dlog2|X|e + 32) bits. For reference we also observe that (i) the size of the inverted index
of the Perms approach (i.e. the one that does not store the distances) is l|X|(dlog2|X|e) bits; (ii)

22

Table 3: Examples of disk space in Gigabytes needed by various approaches to index and search
the YFCC100M data set using inverted files. The re-ranking based on the Simplex measures
requires to store the object-pivot distances within the permutation prefixes. The re-ranking based
on the actual distance needs to store the permutation prefixes as well as the original data.

Approach
Disk space (GB)

1M deep features 100M deep features
l = 300 l = 800 l = 300 l = 800

Perms 0.7 1.9 94.3 251.5
Perms,re-rank(actual dist.) 16.0 17.1 1620.5 1777.7
Perms,re-rank(Simplex) 1.8 4.8 206.1 549.5
Perms,re-rank(Simplex) with
distances quantized to 8 bits 1.0 2.6 122.2 326.0

the search approach relied on the re-ranking of the permutation-based results according to the
actual distance requires to store both the Perms index and the original data set, thus it needs
l|X|(dlog2|X|e) + |X|(dlog2|X|e + D ∗ 32) bits, if the data objects are D-dimensional real-valued
vectors.

For example, the disk space required to index and search 1M deep fearures (D = 4, 096) of
YFCC100M using permutation prefixes of length l = 300 are about 1.8 GB for our techniques,
0.7 GB for the Perms approach, and 16 GB for the Perms, re-rank(actual distance)

technique (see also Table 3).
Since the re-rankings based on the nSimplex measures or on the actual distance need to store

more information than the Perms baseline, to have a fair comparison we show in Figure 11
the recall obtained on 10M images of YFCC100M as a function of the disk space used. We
observed that the the only case in which the performance of the Perms baseline is better then
our approach is when we use indexes with very limited size. However, in that case the achieved
recall does not exceed 0.3. For all the other cases, our re-reranking approach showed the best
compromise between used disk space and recall. Nevertheless, our approach would be even more
advantageous if we were able to achieve the same effectiveness but reducing the disk space used
to store distances.

To reduce the size of our inverted index, we investigated the idea of compressing the posting
lists by storing quantized distances. Since the quantized distances are then used to compute the
Simplex projection of the data objects, the performance of our re-ranking techniques may de-
grade due to the quantization errors. We investigated this aspect by testing several floating-point
quantization approaches in conjunction with our Simplex-based re-ranking technique. Specifi-
cally, for a value x in a finite range (xmin, xmax) we tested the following scalar quantizers.5

Uniform quantizer is probably the simplest type of quantizer. It divides the interval (xmin, xmax)
into L intervals of the same length Q = (xmax − xmin)/L. Each value x is then mapped to
the middle value of the interval it belong to, i.e.,

quni f (x) = xmin + Q/2 + Qb(x − xmin)/Qc (9)

5Note that in our case xmin = 0 since we are considering distance values.

23

10

50

100

500

1000

10

50

100

500 1000

10

50

100

500

1000

10

50
100

500 1000

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

100 1000 10000 100000

re
ca

ll@
1

0

Index Size (MB)

Perms

Perms, re-rank(actual distance)

Perms, re-rank(S_norm. mean)

Perms, re-rank(P_mean)

Figure 11: YFCC100M (10 million images subset), Euclidean distance: Recall@10
as a function of the disk space used to store the index/features by various re-ranking techniques.
For each approach that graph shows the results varying the prefix length l from 10 to 1000.

Nonuniform quantizer is typically modeled as a cascade of a non-linear mapping (compres-
sor) followed by a uniform quantizer and an inverse non-linear mapping (expander). The
non-linear mapping before the uniform quantization allows us to keep the number of quan-
tization intervals constant but differentiating the size of those intervals so as to better to
approximate the input in certain regions (e.g. regions that have more probability mass).
We considered the following nonuniform quantizers:

µ-law quantizer uses the µ-law mapping as compressor function, which is defined as

Fµ(x) = V
log (1 + µ

|x|
V

)

log (1 + µ)
sign(x) (10)

where V = max{|xmin|, |xmax|}, and µ is a compression parameter (e.g. µ = 255
is used in the North American and Japanese standards for digital telecommunication
signals). The transformed values are then quantized using a uniform quantizer for the
trasformed interval. Thus, the final quantized value associated to x is quni f (Fµ(x)).
To transform a quantized value y back, we use the inverse µ-law:

F−1
µ (y) =

V
µ

(
(1 + µ)|y|/V − 1

)
sign(y). (11)

Since the values close to zero are less compressed than values with greater absolute
values (the quantization intervals increase logarithmically), usually the values are
mean-centered before the quantization.

24

Table 4: Results of various quantization approaches (YFCC100M data set). The quantizers
are applied to the distances of the data objects to their l nearest pivots, i.e. the distances store
in the posting lists. The reported results were obtained using the Perms,re-rank(S norm.mean)

approach, distance quantized to 8 bits, and permutation prefixes of length l = 800.

Quantizer Compressor parameter MSE recall@10
Uniform 3.24E-03 0.228
µ-law µ = 48 2.64E-07 0.698
A-law A = 3 1.04E-06 0.696
No quantization 0 0.698

A-law quantizer uses the A-law compressor, which is defined as

FA(x) = Vsign(x)

A|x|/V

1 + ln(A)
|x| < V/A

1 + ln(A|x|/V)
1 + ln(A)

V/A ≤ |x| ≤ V
(12)

where A is a compression parameter and V = max{|xmin|, |xmax|}. The compressed
values are then quantized using an uniform quatizer. The mapping used as expander
is the inverse A-law:

F−1
A (y) =

Vsign(y)
A

|y|
V

(1 + ln(A)) |y| <
V

1 + ln(A)

exp(
|y|
V

(1 + ln(A)) − 1)
V

1 + ln(A)
≤ |y| < V

(13)

Also in this case the data are centered before the quantization.

The number L of intervals we used for each quantizer is L = 2nBits, where nBits are the
number of bits used to store each distance. For each approach, we computed the Mean Squared
Error (MSE) on a sample set of data. The MSE is a frequently used to evaluate how close are the

(reconstructed) quantized values x′ to the original values x, and it is defined as
1
m

∑m
i=1(xi − x′i)

2,
where m is the number of samples.

For the µ-law and A-law quantizer, we select the optimal µ and A parameters as the ones
providing us the lowest MSE over a sample set of object-pivots distances. We then evaluate
the recall obtained by re-ranking the permutation-based candidate set according to the Simplex
bounds computed using the quantized distances. Table 4 shows comparative results on 1M subset
of YFCC100M using a prefix length of l = 800 and nBits = 8.

As expected the uniform quantizer has really poor results since the distribution of the dis-
tances is not uniform. The tested nonuniform quantizers have results similar to each other. We
decided to use the µ-law quantizer since it showed slightly better results.

We then thoroughly tested the performance of our technique by varying the data set, the
permutation prefix length l, and the number of bits used to store each object-pivot distance.
Figures 12, 13, and 14 illustrate the results on YFCCC100M, SISAP Colors, and Twitter GloVe,
respectively. For the sake of simplicity, we show results obtained using a fixed parameter µ for all
tested permutation prefix lengths. This parameter was selected as the one minimising the MSE

25

error in approximating the distances of the objects to all the n pivots. In facts, we observe that
results obtained in this way are practically equivalent to that obtained by estimating an optimal
parameter µ for each different choice of the parameter l.

On YFCC100M (Euclidean distance) and SISAP Colors (Jensen-Shannon distance), we were
able to satisfactorily preserve the quality of the re-ranked results when using at least 8 bits to store
each distance. However, we observed a huge degradation when using fewer bits. For example,
the re-ranked results became worse than the permutation-results when we use less than 5 bits.
The problem is that the quantized object-pivot distances are then used to compute the Simplex
projection of the object, so the quantization errors propagate in the Simplex-based estimation of
the query-object distance. The effect of this error propagation is more evident in Twitter Glove
data (cosine distance), where the results obtained for l ≥ 300 is highly degraded using quantized
distances. On this data set, we needed about 14 bits to preserve the quality of the re-ranked
results even though the MSE errors related to distances quantized using fewer bits were in line
with that obtained in the other tested data sets.

6. Conclusions

In this article, we presented an approach that exploits a pivot-based local embedding to refine
a set of candidate results of a similarity query. We focused our attention on refining of a set
of approximate nearest neighbour results retrieved using a permutation-based search system.
However, our approach can be generalized to other types of approximate search provided that
they are based on the use of anchor objects (pivots) from which we pre-calculate the distances
for other purposes. For example, some data structures use inverted indices, as the inverted multi-
index [36], in which objects belonging to a Voronoi cell are inserted in a posting list associated
with the centroid of the cell from which we calculated the distance. Other indexes that can benefit
from our approach are those based on permutation prefix trees, like PP-Index [2] and PPP-Index
[16].

The core idea of the proposed technique is using the distances between an object and a set
of pivots (pre-computed at indexing time) to embed the data objects in a metric space where it
is possible to compute upper- and lower-bounds for the actual distance. Dissimilarity functions
defined upon those bounds are then adopted for re-ranking the candidate objects. The main
advantage is that the proposed approach does not need to access the original data as done, instead,
by the most commonly used refining technique that relies on computing the actual distances
between the query and each candidate object.

We analysed the refining based on two data embeddings, namely the Pivoted embedding and
the nSimplex projection, and several dissimilarity functions derived by these space transforma-
tions. The refining approaches using the nSimplex projection resulted to be particularly effective
for refining permutation-based results. For example, using the refining according to the nSimplex
normalized mean function, we were able to almost double the precision of the permutation-based
results even on a data set of about 100 million objects.

Acknowledgements

The work was supported by Smart News, “Social sensing for breaking news” (CUP CIPE
D58C15000270008), VISECH ARCO-CNR (CUP B56J17001330004), and AI4EU project (funded
by the EC, H2020 - Contract n. 825619).

26

YFCC100M

0 0.5 1 1.5

Euclidean Distance object-pivot

0

2

4

6

8

10

P
D

F
 e

st
im

at
e

(a) Probability distribution of the distances between the data
objects and the n pivots

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1 10 100 1000

M
e

an
 S

q
u

ar
e

d
 E

rr
o

r

μ

4 bits
5 bits
6 bits
7 bits
8 bits

(b) Mean Squared Error for the µ-law quantization varying
µ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000

re
ca

ll@
1

0

permutation prefix length l

Perms
Perms, re-rank(S_norm. mean), no quantization
Perms, re-rank(S_norm. mean), 8 bits
Perms, re-rank(S_norm. mean), 7 bits
Perms, re-rank(S_norm. mean), 6 bits
Perms, re-rank(S_norm. mean), 5 bits

(c) Recall@10 varying the permutation prefix length l (µ = 57)

Figure 12: YFCC100M (1M), Euclidean distance, n = 4, 000 pivots

27

SISAP colors

0 0.2 0.4 0.6 0.8 1

J-S Distance object-pivot

0

0.5

1

1.5

2

2.5

3

P
D

F
 e

st
im

at
e

(a) Probability distribution of the distances between the data
objects and the n pivots

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1 10 100 1000

M
e

an
 S

q
u

ar
e

d
 E

rr
o

r

μ

4 bits
5 bits
6 bits
7 bits
8 bits

(b) Mean Squared Error for the µ-law quantization varying µ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000

re
ca

ll@
1

0

permutation prefix length l

Perms
Perms, re-rank(Simplex norm. mean) no quantization
Perms, re-rank(Simplex norm. mean), 8 bits
Perms, re-rank(Simplex norm. mean), 7 bits
Perms, re-rank(Simplex norm. mean), 6 bits
Perms, re-rank(Simplex norm. mean), 5 bits

(c) Recall@10 varying the permutation prefix length l (µ = 3)

Figure 13: SISAP colors, Jensen-Shannon distance, n = 1, 000

28

0 0.5 1 1.5 2

Cosine Distance object-pivot

0

1

2

3

4

5

6

P
D

F
 e

st
im

at
e

(a) Probability distribution of the distances between the data
objects and the n pivots

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1 10 100 1000

M
e

an
 S

q
u

ar
e

d
 E

rr
o

r

μ

8 bits

9 bits

10 bits

11 bits

12 bits

13 bits

14 bits

(b) Mean Squared Error for the µ-law quantization varying
µ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000

re
ca

ll@
1

0

permutation prefix length l

Perms
Perms, re-rank(Simplex norm. mean)
Perms, re-rank(Simplex norm. mean), 14 bits
Perms, re-rank(Simplex norm. mean), 13 bits
Perms, re-rank(Simplex norm. mean), 12 bits
Perms, re-rank(Simplex norm. mean), 11 bits
Perms, re-rank(Simplex norm. mean), 10 bits
Perms, re-rank(Simplex norm. mean), 9 bits
Perms, re-rank(Simplex norm. mean), 8 bits

(c) Recall@10 varying the permutation prefix length l (µ = 40)

Figure 14: Twitter Glove, Cosine distance, n = 4, 000

29

References

[1] P. Zezula, G. Amato, V. Dohnal, M. Batko, Similarity search: the metric space approach, Vol. 32, Springer Science
& Business Media, 2006.

[2] A. Esuli, Use of permutation prefixes for efficient and scalable approximate similarity search, Information Process-
ing & Management 48 (5) (2012) 889–902. doi:10.1016/j.ipm.2010.11.011.

[3] M. Patella, P. Ciaccia, Approximate similarity search: A multi-faceted problem, Journal of Discrete Algorithms
7 (1) (2009) 36–48. doi:10.1016/j.jda.2008.09.014.

[4] R. Weber, H.-J. Schek, S. Blott, A quantitative analysis and performance study for similarity-search methods in
high-dimensional spaces, in: Proceedings of 24rd International Conference on Very Large Data Bases (VLDB’98),
Vol. 98, Morgan Kaufmann, 1998, pp. 194–205.

[5] B. Naidan, L. Boytsov, E. Nyberg, Permutation search methods are efficient, yet faster search is possible, Pro-
ceedings of the 41st International Conference on Very Large Data Bases (VLDB) 8 (12) (2015) 1618–1629.
doi:10.14778/2824032.2824059.

[6] V. Pestov, Indexability, concentration, and vc theory, Journal of Discrete Algorithms 13 (2012) 2–18.
doi:10.1016/j.jda.2011.10.002.

[7] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, A. El Abbadi, Approximate nearest neighbor searching in multimedia
databases, in: Proceedings 17th International Conference on Data Engineering (ICDE 2001), IEEE Computer
Society, 2001, pp. 503–511. doi:10.1109/ICDE.2001.914864.

[8] R. Connor, F. A. Cardillo, L. Vadicamo, F. Rabitti, Hilbert Exclusion: Improved metric search through fi-
nite isometric embeddings, ACM Transactions on Information Systems (TOIS) 35 (3) (2016) 17:1–17:27.
doi:10.1145/3001583.

[9] R. Connor, L. Vadicamo, F. A. Cardillo, F. Rabitti, Supermetric search, Information Systems 80 (2019) 108–123.
doi:10.1016/j.is.2018.01.002.

[10] R. Connor, L. Vadicamo, F. Rabitti, High-dimensional simplexes for supermetric search, in: Proceedings of 10th
International Conference on Similarity Search and Applications (SISAP 2017), Lecture Notes in Computer Science,
Springer International Publishing, 2017, pp. 96–109. doi:10.1007/978-3-319-68474-1 7.

[11] G. Amato, E. Chávez, R. Connor, F. Falchi, C. Gennaro, L. Vadicamo, Re-ranking permutation-based candidate
sets with the n-Simplex projection, in: Proceedings of 10th International Conference on Similarity Search and
Applications (SISAP 2018), Lecture Notes in Computer Science, Springer International Publishing, 2018, pp. 3–
17. doi:10.1007/978-3-030-02224-2 1.

[12] G. Amato, P. Savino, Approximate similarity search in metric spaces using inverted files, in: Proceedings of 3rd
International ICST Conference on Scalable Information Systems (INFOSCALE 2008), ICST / ACM, 2008, pp.
28:1–28:10. doi:10.4108/ICST.INFOSCALE2008.3486.

[13] E. Chávez, K. Figueroa, G. Navarro, Effective proximity retrieval by ordering permutations, IEEE Transactions on
Pattern Analysis and Machine Intelligence 30 (9) (2008) 1647–1658. doi:10.1109/TPAMI.2007.70815.

[14] G. Amato, C. Gennaro, P. Savino, MI-File: Using inverted files for scalable approximate similarity search, Multi-
media Tools and Applications (3) (2014) 1333–1362. doi:10.1007/s11042-012-1271-1.

[15] E. S. Tellez, E. Chávez, G. Navarro, Succinct nearest neighbor search, Information Systems 38 (7) (2013) 1019–
1030. doi:10.1016/j.is.2012.06.005.

[16] D. Novak, P. Zezula, PPP-Codes for large-scale similarity searching 24 (2016) 61–87. doi:10.1007/978-3-662-
49214-7 2.

[17] E. Chávez, M. Graff, G. Navarro, E. S. Téllez, Near neighbor searching with K nearest references, Information
Systems 51 (2015) 43–61. doi:10.1016/j.is.2015.02.001.

[18] G. Amato, F. Falchi, F. Rabitti, L. Vadicamo, Some theoretical and experimental observations on permutation
spaces and similarity search, in: Proceedings of 7th International Conference on Similarity Search and Appli-
cations (SISAP 2014), Lecture Notes in Computer Science, Springer International Publishing, 2014, pp. 37–49.
doi:10.1007/978-3-319-11988-5 4.

[19] G. Amato, F. Falchi, C. Gennaro, L. Vadicamo, Deep Permutations: Deep convolutional neural networks and
permutation-based indexing, in: Proceedings of 9th International Conference on Similarity Search and Applica-
tions (SISAP 2016), Lecture Notes in Computer Science, Springer International Publishing, 2016, pp. 93–106.
doi:10.1007/978-3-319-46759-7 7.

[20] K. Figueroa, R. Paredes, N. Reyes, New permutation dissimilarity measures for proximity searching, in: Pro-
ceedings of 11th International Conference on Similarity Search and Applications (SISAP 2018), Lecture Notes in
Computer Science, Springer International Publishing, 2018, pp. 122–133. doi:10.1007/978-3-030-02224-2 10.

[21] M. L. Micó, J. Oncina, E. Vidal, A new version of the nearest-neighbour approximating and eliminating search
algorithm (AESA) with linear preprocessing time and memory requirements, Pattern Recognition Letters 15 (1)
(1994) 9–17. doi:10.1016/0167-8655(94)90095-7.

[22] R. Connor, L. Vadicamo, F. A. Cardillo, F. Rabitti, Supermetric search with the four-point property, in: Proceedings

30

of 9th International Conference on Similarity Search and Applications (SISAP 2016), Lecture Notes in Computer
Science, Springer International Publishing, 2016, pp. 51–64. doi:10.1007/978-3-319-46759-7 4.

[23] L. M. Blumenthal, Theory and applications of distance geometry, Clarendon Press, 1953.
[24] I. J. Schoenberg, Metric spaces and completely monotone functions, Annals of Mathematics 39 (4) (1938) 811–841.
[25] L. Vadicamo, R. Connor, F. Falchi, C. Gennaro, F. Rabitti, SPLX-Perm: A novel permutation-based representation

for approximate metric search, in: Similarity Search and Applications, Springer International Publishing, 2019, pp.
40–48. doi:10.1007/978-3-030-32047-8 4.

[26] R. Fagin, R. Kumar, D. Sivakumar, Comparing top k lists, SIAM Journal on discrete mathematics 17 (1) (2003)
134–160.

[27] L. Vadicamo, Enhancing content-based image retrieval using aggregation of binary features, deep learning, and
supermetric search, Ph.D. thesis, University of Pisa (2018).
URL https://etd.adm.unipi.it/theses/available/etd-04242018-161334/

[28] M. Deza, H. Maehara, Metric transforms and euclidean embeddings, Transactions of the American Mathematical
Society 317 (2) (1990) 661–671. doi:10.1090/S0002-9947-1990-0974513-6.

[29] R. Connor, A. Dearle, L. Vadicamo, Modelling string structure in vector spaces, in: Proceedings of the 27th Italian
Symposium on Advanced Database Systems (SEBD 2019), CEUR-WS.org, 2019.
URL http://ceur-ws.org/Vol-2400/paper-45.pdf

[30] B. Thomee, B. Elizalde, D. A. Shamma, K. Ni, G. Friedland, D. Poland, D. Borth, L.-J. Li, YFCC100M: The new
data in multimedia research, Communications of the ACM 59 (2) (2016) 64–73. doi:10.1145/2812802.

[31] J. Pennington, R.Socher, C. D. Manning, GloVe: Global Vectors for Word Representation, in: Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP 2014), ACL, 2014, pp. 1532–
1543.
URL http://www.aclweb.org/anthology/D14-1162

[32] K. Figueroa, G. Navarro, E. Chávez, Metric spaces library, www.sisap.org/library/manual.pdf (2007).
[33] G. Amato, F. Falchi, C. Gennaro, F. Rabitti, YFCC100M-HNfc6: a large-scale deep features benchmark for similar-

ity search, in: Proceedings of 9th International Conference on Similarity Search and Applications (SISAP 2016),
Lecture Notes in Computer Science, Springer International Publishing, 2016, pp. 196–209. doi:10.1007/978-3-
319-46759-7 15.

[34] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, A. Oliva, Learning deep features for scene recognition using places
database, in: Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, Curran Associates, Inc., 2014, pp. 487–495.

[35] E. Chávez, G. Navarro, R. Baeza-Yates, J. L. Marroquı́n, Searching in metric spaces, ACM computing surveys
(CSUR) 33 (3) (2001) 273–321. doi:10.1145/502807.502808.

[36] A. Babenko, V. S. Lempitsky, The inverted multi-index, IEEE transactions on pattern analysis and machine intelli-
gence 37 (6) (2015) 1247–1260. doi:10.1109/TPAMI.2014.2361319.
URL https://doi.org/10.1109/TPAMI.2014.2361319

31

