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ABSTRACT

Face Recognition is among the best examples of computer vision problems where the supremacy of
deep learning techniques compared to standard ones is undeniable. Unfortunately, it has been shown
that they are vulnerable to adversarial examples - input images to which a human imperceptible per-
turbation is added to lead a learning model to output a wrong prediction. Moreover, in applications
such as biometric systems and forensics, cross-resolution scenarios are easily met with a non-negli-
gible impact on the recognition performance and adversary’s success. Despite the existence of such
vulnerabilities set a harsh limit to the spread of deep learning-based face recognition systems to real–
world applications, a comprehensive analysis of their behavior when threatened in a cross-resolution
setting is missing in the literature. In this context, we posit our study, where we harness several of
the strongest adversarial attacks against deep learning-based face recognition systems considering the
cross-resolution domain. To craft adversarial instances, we exploit attacks based on three different
metrics, i.e., L1, L2, and L∞, and we study the resilience of the models across resolutions. We then
evaluate the performance of the systems against the face identification protocol, open- and close-set.
In our study, we find that the deep representation attacks represents a much dangerous menace to a
face recognition system than the ones based on the classification output independently from the used
metric. Furthermore, we notice that the input image’s resolution has a non-negligible impact on an
adversary’s success in deceiving a learning model. Finally, by comparing the performance of the
threatened networks under analysis, we show how they can benefit from a cross-resolution training
approach in terms of resilience to adversarial attacks.

c© 2020 Elsevier Ltd. All rights reserved.

1. Introduction1

Face Recognition (Wang and Deng, 2018; Deng et al., 2019)2
(FR) represents one of the most astonishing applications of3
Neural Networks (NNs), especially considering Deep Convo-4
lutional Neural Networks (DCNNs), that ultimately overcame5
standard computer vision techniques such as Gabor-Fisher (Liu6
and Wechsler, 2002) and local binary patterns (Ahonen et al.,7
2006). The study of such a problem began in the early 90s8
when Turk and Pentland (1991) proposed the Eigenfaces ap-9
proach, and it only required two decades for Deep Learning10
(DL) approaches to start to dominate the field reaching recog-11
nition performance up to 99.80% Wang and Deng (2018), thus12
overcoming human ability. DL-based FR systems do not ex-13
ploit the output of a classifier directly. Instead, they leverage14
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the representation power (LeCun et al., 2015) of the learning 15
models to extract face descriptors, i.e., multidimensional vec- 16
tors, also called deep features or deep representations, to fulfill 17
the recognition task. 18

Although FR systems obtain very high performance when 19
trained with datasets comprising images acquired under con- 20
trolled conditions, e.g., high-resolution, they suffer a drastic 21
drop in reliability when tested against cross-resolution (CR) 22
scenarios (Massoli et al., 2019) that naturally arise, for ex- 23
ample, in surveillance applications (Zou and Yuen, 2011; Am- 24
ato et al., 2019; Cheng et al., 2018). To counteract such a weak- 25
ness, Ekenel and Sankur (2005) and Luo et al. (2019) proposed 26
approaches that were not based on NNs. Instead, only recently 27
such a problem has been tackled in the DL field (Massoli et al., 28
2020; Zhang et al., 2018). 29

To make the situation even worse, recently Szegedy et al. 30
(2013); Biggio et al. (2013) showed that DL models are vulner- 31
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able to the so-called adversarial examples - images to which a32
specific amount of noise, undetectable to humans, is added to33
induce a NN to output a wrong prediction. Unfortunately, the34
ability of an insightful adversary to jeopardize these learning35
models, considering both the digital (Dong et al., 2019; Song36
et al., 2018; Qiu et al., 2019; Kakizaki and Yoshida, 2019;37
Goswami et al., 2018) and physical (Sharif et al., 2016; Kur-38
akin et al., 2016) domains, represents a significant concern in39
security-related applications such as DL-based biometrics sys-40
tems (Sundararajan and Woodard, 2018) and forensics (Spaun,41
2011). Thus, limiting their adoption in these fields.42

In this context, we posit our contribution that we summarize43
as follows: i) we threaten two DCNNs by exploiting adversarial44
attacks based on three different metrics, i.e., L1, L2, and L∞; ii)45
we generate attacks not only towards a classification objective46
but also against a similarity one. Indeed, FR systems typic-47
ally do not exploit a DCNN classification output. Instead, they48
leverage the ability of NNs to generate discriminative deep rep-49
resentations among which a similarity criterion is evaluated to50
fulfill the recognition task; iii) we conduct the attacks in a cross-51
resolution domain, thus emulating a real-world scenario for an52
FR system; iv) we analyze the success rates of the various at-53
tacks across resolutions, studying if a DL model can benefit54
from a cross-resolution training procedure in terms of robust-55
ness to adversarial attacks; v) we analyze the robustness of the56
models through the face identification protocol (Grother et al.,57
2019) considering both the open- and close-set settings.58

The rest of the paper is structured as follows. In Section 2, we59
briefly present some related works, while in Section 3, we de-60
scribe the attacks algorithms we use. Subsequently, in section 4,61
we explain our experimental procedure and the dataset we use,62
while in Section 5, we present the results from the experimental63
campaign. Finally, in Section 6, we report our conclusions.64

2. Related Works65

To the best of our knowledge, this is the first work that tackles66
the problem of adversarial attacks against FR systems in a CR67
scenario. For such a reason, in what follows, we briefly cite a68
few articles related to the topics of the cross-resolution FR and69
adversarial attacks against an FR system.70

2.1. Cross-Resolution Face Recognition71

CR scenarios are met whenever images at different resolu-72
tions have to be matched. Such a situation typically happens,73
for example, in biometric and forensics applications. Super-74
Resolution (SR) techniques are among the most studied solu-75
tions to such a problem, and Singh et al. (2018) proposed to76
synthesize high-resolution faces from low-resolution ones by77
employing a multi-level sparse representation of the given in-78
puts. Zangeneh et al. (2020) formulated a mapping of the low-79
and the high-resolution images to a common space by lever-80
aging a DL architecture made by two distinct branches, one for81
each image. Luo et al. (2019) exploited the dictionary learning82
approach based on learning multiple dictionaries, each being83
associated with a resolution. The most comprehensive study84

and widely tested method to improve an FR system’s perform- 85
ance in a CR scenario was recently proposed by Massoli et al. 86
(2020). In their work, the authors formulated a training proced- 87
ure to fine-tune a state-of-the-art model to the CR domain. They 88
tested their models on several benchmark datasets by showing 89
their superior performance compared to the results available in 90
the literature. 91

2.2. Face Recognition Adversarial Attacks 92

As we mentioned at the beginning of this section, we are 93
the first to study adversarial attacks in a cross-resolution do- 94
main. Due to the lack of papers than can be directly compared 95
to our study, in what follows we only briefly cite a few art- 96
icles concerning adversarial attacks against FR systems. Sharif 97
et al. (2016) demonstrated the feasibility and effectiveness of 98
physical attacks by impersonating other identities using eye- 99
glass frames with a malicious texture. Zhong and Deng (2020) 100
observed the superior transferability properties of feature-based 101
attacks compared to label-based ones. Moreover, they proposed 102
a drop-out method for DCNNs to enhance further the transfer- 103
ability of the attacks. Song et al. (2018) proposed a three-player 104
GAN architecture that leveraged a face recognition network as 105
the third player in the competition between generator and dis- 106
criminator. Dong et al. (2019) successfully performed black- 107
box attacks on FR models and demonstrated their effectiveness 108
in a real-world deployed system. 109

3. Adversarial Attacks 110

3.1. Carlini and Wagner 111

Carlini and Wagner (Carlini and Wagner, 2017) (CW) for- 112
mulated one of the strongest currently available attacks. The 113
CW-L2 attack is formalized as: 114
min c · f ( 1

2 tanh(w) + 1)+ ‖ 1
2 (tanh(w) + 1) − x ‖22, 115

where f (·) is the objective function, x is the input image, w is 116
the adversarial example in the tanh space, and c is a positive 117
constant which value is set by exploiting a binary search pro- 118
cedure. 119

3.2. Elastic Net Attack to DNNs 120

The Elastic Net Attack (Chen et al., 2018) (EAD), leverages 121
the elastic-net regularization which is a well known technique 122
in solving high-dimensional feature selection problems (Zou 123
and Hastie, 2005). It is based on the objective proposed 124
in Carlini and Wagner (2017) and it conceives the CW-L2 at- 125
tack as a special case. EAD is formulated as: 126
min

x
c · f (x, t) + β ‖ x − x0 ‖1 + ‖ x − x0 ‖

2
2, 127

where f (·) is the objective as in the CW-L2 attack, t is the target 128
class, x0 is the input image, t is the target label, x is the ad- 129
versarial instance, c is a parameter found by binary search, and 130
β represents the weight of the L1 penalty term. 131
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3.3. Jacobian Saliency Map Attack132

The Jacobian Saliency Map Attack (Papernot et al., 2016)133
(JSMA) exploits an “input-perturbation-to-output” mapping.134
Differently from the backpropagation-based attacks, JSMA135
leverages the model derivative concerning the classification out-136
put rather than the derivative of the loss function. The attack is137
formalized as: arg min

δx

‖ δx ‖ s.t. F(X + δx) = Y∗, where138

F is the function learned by the DNN, X and Y∗ are the input139
and output of the model, respectively, and δx is the adversarial140
perturbation defined upon the evaluation of the model input sa-141
liency map.142

3.4. Deep Representations Attacks143

Differently from the previously mentioned attacks, the Deep144
Representations (Sabour et al., 2015) (DR) attack focuses on145
the manipulation of image features. It is formulated as an op-146
timization problem which aims at finding the closest perturbed147
image, to the original one, whose descriptor is as close as pos-148
sible to the one of a target image named the “guide image”.149
Specifically, the adversarials crafting procedure is the follow-150
ing: Iα = arg min

I
‖ φk(I) − φk(Ig) ‖22 ; subject to ‖ I − Is ‖∞<151

δ, where φ(·)k is the descriptor extracted at layer k of the152
threatened model, Is and Ig are the source and target images, re-153
spectively, Iα is the adversarial example, and δ is he maximum154
allowed perturbation in terms of the L∞ norm.155

4. Experimental Approach156

4.1. Dataset and Models157

In our experiments, we use the ∼2.9M images shared among158
the 8631 identities contained in the training set of the VGG-159
Face2 (Cao et al., 2018) dataset. To construct the gallery and160
the queries, we divide the training set into two splits. Concern-161
ing the gallery, we evaluate a single template for each identity162
as the average features vector among all the corresponding face163
images. Regarding the queries, we randomly select 100 iden-164
tities, and for each of them, we randomly pick ten correctly165
classified images, ending up with 1000 queries.166

Concerning the learning models, we analyze the performance167
of two DCNNs: the face classifier from Cao et al. (2018) and168
the CR-trained one from Massoli et al. (2020). They share the169
same structure, i.e., a ResNet-50 (He et al., 2016) architecture170
equipped with Squeeze-and-Excitation (Hu et al., 2017) blocks.171
For both models, we adopt the same preprocessing steps for172
the images. First, following the same procedure as in Massoli173
et al. (2020), we synthesize different resolution versions of the174
input that allow us to evaluate the performance of the models175
in a cross-resolution scenario. Specifically, in our analysis, we176
consider images at 16, 24, 64, and 256 pixels (shortest side).177
Next, each image is resized to have the shortest side of 256178
pixels, and then it is cropped to a square picture of size 224x224179
pixels. Finally, we subtract the channel mean from each pixel.180

4.2. Adversarial Attacks 181

Concerning the generation of the adversarial instances, we 182
exploit the five algorithms we described in Section 3. We 183
use the implementations available in the foolbox library (https: 184
//foolbox.readthedocs.io/en/stable/), with the only exception of 185
the DR one that we build on top of the L-Broyden-Fletcher- 186
Goldfarb-Shanno (L-BFGS) (Szegedy et al., 2013), optimiza- 187
tion procedure. More precisely, the L-BFGS algorithm requires 188
a function to optimize. To our aim, we implement such a func- 189
tion by employing a k-NN algorithm as guidance in the ad- 190
versarial search. We fit the classifier to the gallery templates 191
we mentioned at the beginning of this section. Then, we start 192
the crafting procedure and stop it as soon as the k-NN classifies 193
the malicious image as belonging to the targeted identity. In 194
Figure 1, we report a schematic view of the procedure we just 195
described. 196

Figure 1: Schematic representation of our approach to crafting DR attacks.
The colored regions are the k-NN decision boundaries for ten different identity
templates (white triangles). The initial location of the green star represents
a correctly classified features vector. The adversarial features vector’s final
position is represented by the red encircled star.

4.3. Face Identification Metrics 197

FR systems typically deal with sensitive scenarios such as 198
biometric and forensics applications. Hence, different error 199
types have distinct relevance while evaluating system perform- 200
ance, and a simple accuracy measure is not enough to properly 201
evaluate and compare the performance of FR systems. Instead, 202
as mentioned in Section 1, we focus our study on the face iden- 203
tification protocol. Specifically, we consider both the close- and 204
open-set settings. 205

Concerning the close-set setting, we evaluate the Cumulative 206
Match Characteristic (CMC), a metric that represents a sum- 207
marized accuracy evaluated on mated searches only, i.e., con- 208
sidering queries that correspond to identities already available 209
the gallery. The CMC value at rank one is usually named “hit 210
rate,” and it is the most typical summary indicator of an al- 211
gorithm’s efficacy. As we mentioned above, we select 100 iden- 212
tities to construct the queries. Thus, we end up with a gallery 213
containing 8631 identities that comprise a hundred mated ones 214
and 8531 un-mated ones acting as “distractors”. 215

In the open-set setting, differently from the close-set one, we 216
consider both mated and un-mated queries. To this aim, we re- 217
move half of the queries identities from the gallery, ending up 218
with 50 mated and 50 un-mated persons and a gallery contain- 219
ing 8581 templates. With that set, there are two different types 220

https://foolbox.readthedocs.io/en/stable/
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of errors that are usually evaluated, i.e., the False Positive Iden-221
tification Rate (FPIR) and the False Negative Identification Rate222
(FNIR) or “miss rate”. Concerning the former, it represents the223
number of un-mated queries that return a positive match at or224
above a specific similarity threshold. On the other hand, the225
FNIR represents the number of mated searches that return can-226
didates with a similarity score below the threshold or outside227
the top R ranks.228

The FNIR and FPIR, parametrized by the similarity229
threshold, can be combined to construct the Detection Error230
Tradeoff (DET), which is typically used to report the two types231
of error trade-off. We use the DET to evaluate the performance232
of the learning models in the experiments.233

5. Experimental Results234

We dedicate this section to report the results of our experi-235
mental campaigns. As we mentioned in Section 1, we aim to236
study the behavior of DL-based FR systems when threatened237
by adversarial attacks in a CR domain. Concerning the FR,238
as backbone features extractors, we consider the well-known239
DCNN from Cao et al. (2018) that set the state-of-the-art on240
the NIST datasets (Klare et al., 2015; Whitelam et al., 2017;241
Maze et al., 2018) and the CR model from Massoli et al. (2020)242
that set the state-of-the-art in the cross-resolution domain.243

To craft adversarial examples, we harness the algorithms we244
described in Section 3. Moreover, being interested in the CR245
scenario, we consider input faces at 16, 24, 64, and 256 pixels246
(shortest side). Concerning the FR task, we keep the gallery at247
the original resolution.248

As mentioned in Section 2, to our knowledge, we are the first249
to conduct this type of study. Thus, a direct comparison with250
previously published works is not possible. Hence, in what fol-251
lows, we only report our results. We hope that our study will252
stimulate further researches in this direction. Throughout this253
section, we refer to the model from Cao et al. (2018) as “Base”254
model and to the one from Massoli et al. (2020) as “Cross-255
Resolution” model.256

5.1. Threatening the Classification 257

We report the results from the attacks against the classifica- 258
tion in Table 1. Concerning the attacks, we use the following 259
configurations. For JSMA, we consider 1000 iterations, a per- 260
turbation per pixel equals to 0.1, 0.3, and 0.5 (percentage over 261
the allowed pixel range), and a maximum number of times each 262
pixel can be modified of 10. For CW-L2, we consider 10 binary 263
search steps and 10 and 100 iterations. Concerning EAD, we 264
use the same parameters as for the CW-L2 attack and a value 265
for the weight of the L1 penalty term equals to 0.1 and 1. Fur- 266
thermore, since the DR (Sabour et al., 2015) attack is the least 267
time demanding compared to the others, we enlarge the set of 268
hyperparameters for it. Thus, we dedicate Figure 2 to report 269
their results. 270

From Table 1, we notice that there is no clear signature for 271
which model is more robust against adversarial attacks. On the 272
other hand, we see that, on average, an adversary’s success rate 273
decreases as the resolution increases while keeping the attack 274
configuration fixed. Let us now turn our attention to a single at- 275
tack, for example, CW-L2. It is interesting to notice the impact 276
of a different choice of hyperparameters. Indeed, even though 277
from the configuration (10-10), the “Base” model seems to be 278
more resilient compared to the “Cross-Resolution” one, this is 279
not true. Indeed, by just increasing the strength of the attack, 280
i.e., (10-100) configuration for which we grow the number of 281
steps, we reach 100% of attack success rate for both models. 282

From Figure 2 we observe that it is undeniable that the deep 283
features extracted by the “Cross-Resolution” model are much 284
more robust than those extracted from the “Base” NN. Thus, 285
confirming our previous assertion about the benefit of CR train- 286
ing. From the first plot of Figure 2, we see that the success rate 287
of the attack is almost 0% for the “Base” model. Instead, in the 288
second plot, it looks like that both models have the same resi- 289
lience. This is not in contrast with our previous conclusions. 290
Indeed, as it has been shown in appendix 1 of Massoli et al. 291
(2020), the “Base” model is not able to generate meaningful 292
deep representation at very low resolutions. Thus, it is almost 293
impossible to craft targeted attacks based on deep features. To 294
sustain even more our assertion, we run a test with untargeted 295
DR attacks in which we easily reach a success rate of 100% for 296

Table 1: Attack success rate against classification for “Base” and “Cross-Resolution” models. The first column reports the specific configuration used for each
attack. The four values reported in the second and third main columns represent the success rate at a resolution of 16, 24, 64, and 256 pixels, respectively.

Attack Success Rate (%)
Attack Configuration Base Model Cross-Resolution Model

16 24 64 256 16 24 64 256
JSMA (1000-0.1-1.0) 76.1 61.8 25.5 11.5 65.5 62.8 17.1 6.9
JSMA (1000-0.3-1.0) 96.6 92.5 75.7 61.2 96.0 94.7 70.0 50.1
JSMA (1000-0.5-1.0) 98.5 95.8 86.4 76.6 97.6 97.0 100. 69.6
CW-L2 (10-10) 82.9 72.9 45.9 32.7 86.4 83.3 52.8 37.4
CW-L2 (10-100) 100. 100. 100. 100. 100. 100. 100. 100.
EAD (10-0.1-10) 95.7 98.2 94.5 87.0 96.7 99.6 98.8 98.5
EAD (10-0.1-100) 100. 100. 100. 100. 100. 100. 100. 100.
EAD (10-1.0-10) 83.4 85.1 50.2 27.9 72.6 94.4 86.9 73.8
EAD (10-1.0-100) 98.5 99.8 98.7 91.0 97.5 99.8 100. 99.6
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Figure 2: DR (Sabour et al., 2015) attack success rate as function of the maximum allowed perturbation δ considering 100 and 1000 iteration steps. Each plot
represents a different input resolution.

the “Base” model.297
Finally, we can notice that from our results, there is no clear298

evidence in favor of a specific metric since with the proper hy-299
perparameters, we reached high success rates with the L1, L2,300
and L∞.301

5.2. Threatening the Face Recognition302

We now turn our attention to DL-based FR systems. We be-303
gin our analysis by considering the face identification protocol304
in the close-set scenario, and we then move the open-set one.305
We refer the reader to Section 4 for a detailed description of the306
metrics we use to assess the performance of the systems under307
analysis.308

5.2.1. Close-set309
As mentioned in Section 4, we use the CMC to evaluate the310

performance of the threatened models in the close-set scenario.311
Specifically, we summarize our results in Table 2 by reporting312
the hit rate, i.e., the CMC value at a rank equals to one, with313
the exception of the DR (Sabour et al., 2015) attack to which314
we dedicate Figure 3. From a defensive point of view, the more315
resilient a model, the lower the hit rate, while from an attacker316
perspective, it is the other way round.317

By looking at Table 2 and Figure 3 we can assert that the DR318
attack is much more effective in fooling a DL-based FR sys-319

tem than the classification-based ones with respect to any type 320
of metric. From the attacker’s point of view, this is a funda- 321
mental result. Indeed, by comparing the results from Table 1 322
and Table 2, we see that even though the attacks fool the clas- 323
sification, it is not guaranteed that they can evade a similarity- 324
based system. Thus, deep representation attacks might be a 325
better choice to attack an FR system. Moreover, we see how 326
the “Cross-Resolution”-based system exhibits higher robust- 327
ness than the one based on the “Base” model. Thus, again, we 328
find that DCNNs benefit from a CR training approach (Mas- 329
soli et al., 2020) in terms of resilience to adversarial attacks. 330
Indeed, it is undeniable that the “Cross-Resolution”-based sys- 331
tem is much more resilient against adversarial attacks than the 332
“Base”-based one across all resolutions. 333

5.2.2. Open-set 334
To report the results for the face identification protocol in 335

the open-set setting, we exploit the DET. Two fundamental as- 336
pects differentiate the DET from the CMC. Indeed, the former 337
applies a threshold among the similarity of the features, and it 338
comprises queries of identities that are not present in the gal- 339
lery. Instead, the latter does not use any threshold, i.e., it does 340
not discern among “weak” and “strong” similarity scores, and 341
it requires queries related to already known identities. 342

As we mentioned in Section 4, the DET represents the er- 343

Table 2: Attacks hit rate. The first column reports the configuration for each attack. The four values reported in the second and third main columns are the results
at a resolution of 16, 24, 64, and 256 pixels, respectively As a reference, we report in the first row the hit rate for the authentic images.

Hit Rate (%)
Attack Configuration Base Model Cross-Resolution Model

16 24 64 256 16 24 64 256
Auth 79.5 95.3 99.8 99.9 96.7 98.8 99.4 99.7
JSMA (1000-0.1-1.0) 12.1 10.7 12.9 12.2 11.9 9.8 9.4 13.0
JSMA (1000-0.3-1.0) 14.0 9.3 10.7 10.6 9.8 10.0 7.4 8.9
JSMA (1000-0.5-1.0) 13.6 10.6 10.0 10.3 10.0 10.2 3.0 6.8
CW-L2 (10-10) 10.9 6.5 6.1 3.7 10.8 9.3 5.5 5.1
CW-L2 (10-100) 7.6 4.1 6.1 2.3 9.2 9.3 3.6 4.6
EAD (10-0.1-10) 31.8 32.6 27.8 25.1 19.2 16.8 19.4 19.7
EAD (10-0.1-100) 17.5 9.7 6.3 6.2 13.8 11.6 6.8 5.3
EAD (10-1.0-10) 44.8 38.0 26.7 25.5 20.8 25.7 20.1 21.7
EAD (10-1.0-100) 34.8 30.3 20.7 16.8 17.3 16.5 17.4 17.2



6

1 3 5 8 16 32 64
Perturbation (a.u.)

0.4

0.6

0.8

Hi
t R

at
e 

(%
)

Image Resolution: 16 pxs

Base (100)
Base (1000)
Cross-Rsolution (100)
Cross-Rsolution (1000)

1 3 5 8 16 32 64
Perturbation (a.u.)

0.4

0.6

0.8

Image Resolution: 24 pxs

Base (100)
Base (1000)
Cross-Rsolution (100)
Cross-Rsolution (1000)

1 3 5 8 16 32 64
Perturbation (a.u.)

0.4

0.6

0.8

Image Resolution: 64 pxs

Base (100)
Base (1000)
Cross-Rsolution (100)
Cross-Rsolution (1000)

1 3 5 8 16 32 64
Perturbation (a.u.)

0.4

0.6

0.8

Image Resolution: 256 pxs

Base (100)
Base (1000)
Cross-Rsolution (100)
Cross-Rsolution (1000)

Figure 3: DR (Sabour et al., 2015) hit rate as function of the maximum allowed perturbation δ considering 100 and 1000 attack steps. Each plot represents a
different input resolution.

ror trade-off between the FNIR and the FPIR. To summarize344
the performance of the FR systems, we report the FPIR at a345
reference value of the FNIR equals to 1.e−2. Compared to the346
close-set settings, the adversary’s goal is to lower the curve as347
much as possible, while from a defensive point of view, a higher348
curve represents a more resilient model. The results are repor-349
ted in Table 3 with the exception of DR (Sabour et al., 2015) to350
which we dedicate Figure 4.351

Analyzing the results reported in Table 3 and Figure 4 we352
obtain the same conclusions we report for the close-set setting.353
Specifically, by comparing the results from Table 3 to the ones354
in Figure 4 we see that the DR attack is much more effect-355
ive in fooling the FR system compared to others and that the356
“Cross-Resolution”-based system is much more resilient than357
the “Base”-based one against adversarial attacks.358

6. Conclusions359

DCNN-based FR systems leverage the representation power360
of learning models. Unfortunately, they also share their weak-361
nesses. Indeed, it has been recently shown that these systems362
suffer a drastic drop in their performance when tested in a cross-363
resolution domain. The situation becomes even worse when364
an adversary comes into play. Indeed, an FR system can be365
deceived by adversarial examples. These weaknesses pose a366

severe limit to the spread of these systems to sensitive real- 367
world applications such as biometric systems and forensics. 368

In such a context, we proposed our analysis in which we 369
compared the resilience to adversarial attacks of FR systems 370
based on the deep features extracted by NNs in a CR scenario. 371
We studied two different DCNN models: a former one, trained 372
only on high-resolution images and a latter one, trained on a 373
cross-resolution domain. To generate adversarial instances, we 374
harnessed several algorithms based on different metrics and ob- 375
jectives, and we craft malicious samples considering input im- 376
ages at a resolution of 16, 24, 64, and 256 pixels. Concerning 377
the measures of the performance of the FR systems, we adopted 378
the face identification protocol. Specifically, we considered the 379
close- and open-set settings for which we evaluated the CMC 380
and DET. 381

From our analysis, we notice that, given a specific configur- 382
ation, the attack success rate is higher at lower resolutions, for 383
example, at 16 and 24 pixels, than at higher ones, such as 64 384
and 256 pixels. Such behavior was somehow expected since, at 385
a very low-resolution part of the face information can be lost, 386
thus simplifying the effort of an adversary. 387

By looking at the results from the FR systems, it is evident 388
that a DCNN benefits from a CR training procedure since it 389
empowers the learning model to extract more robust deep rep- 390
resentations. Moreover, we observed that DR attacks represent 391

Table 3: FPIR@FNIR=1.e−2. The first column reports the configuration for each attack. The four values reported in the second and third main columns are the
results at a resolution of 16, 24, 64, and 256 pixels, respectively. As a reference, we report in the first row the results for the authentic images.

FPIR@FNIR=1.e−2

Attack Configuration Base Model Cross-Resolution Model
16 24 64 256 16 24 64 256

Auth 75.0 40.8 0.8 1.0 38.6 20.2 3.6 3.2
JSMA (1000-0.1-1.0) 99.3 99.1 100. 95.1 99.1 98.4 100. 98.1
JSMA (1000-0.3-1.0) 99.0 99.1 97.2 99.7 97.8 98.6 99.0 100.
JSMA (1000-0.5-1.0) 98.0 98.1 98.2 97.0 99.4 98.6 99.0 98.7
CW-L2 (10-10) 99.5 98.1 99.5 97.4 99.0 98.1 98.9 98.9
CW-L2 (10-100) 100. 99.0 99.5 99.4 99.6 98.1 99.6 99.2
EAD (10-0.1-10) 95.3 93.2 98.7 99.5 98.4 98.8 96.0 97.6
EAD (10-0.1-100) 98.0 99.4 99.4 99.0 100. 98.8 98.6 99.2
EAD (10-1.0-10) 95.6 96.3 98.3 95.3 96.3 98.1 96.7 96.7
EAD (10-1.0-100) 98.8 97.9 97.1 98.6 98.6 98.1 99.0 97.7
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Figure 4: FPIR@FNIR=1.e−2 for the DR (Sabour et al., 2015) attack as function of the maximum allowed perturbation δ considering 100 and 1000 attack steps.
Each plot represents a different input resolution.

a much greater menace to an FR system than the ones based392
on the classification output of the threatened models for each of393
the considered metrics, i.e., L1, L2 and L∞. Such a result held394
for the close- as well as for the open-set settings.395
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