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Abstract

In many working and recreational activities, there are scenarios where both
individual and collective safety have to be constantly checked and properly
signaled, as occurring in dangerous workplaces or during pandemic events like
the recent COVID-19 disease. From wearing personal protective equipment
to filling physical spaces with an adequate number of people, it is clear that a
possibly automatic solution would help to check compliance with the established
rules. Based on an off-the-shelf compact and low-cost hardware, we present a
deployed real use-case embedded system capable of perceiving people’s behavior
and aggregations and supervising the appliance of a set of rules relying on a
configurable plug-in framework. Working on indoor and outdoor environments,
we show that our implementation of counting people aggregations, measuring
their reciprocal physical distances, and checking the proper usage of protective
equipment is an effective yet open framework for monitoring human activities
in critical conditions.

Keywords: Deep Learning, Computer Vision, Machine Learning, Personal
Protective Equipment, Counting, Homography, Embedded System

1. Introduction

As occurs during a severe health emergency event, there exist scenarios in
which ensuring compliance to a set of guidelines becomes crucial to secure a
safe living environment in which human activities can be conducted. As evi-
denced during the recent COVID-19 pandemic, wearing medical masks, avoid-
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ing the creation of large gatherings in confined places, and keeping a certain
physical distance among people were the most common rules every government
applied in their jurisdiction territories. However, human supervision could not
always guarantee this task, especially in crowded scenes where checking usage
of personal protection equipment or enforcing strict social behavior has to be
continuously assessed to preserve global health.

In the past decades, Computer Vision applications have shown astonishing
results in several daily life tasks. Automatic image analysis aimed at classify-
ing, locating, and counting objects, as well as estimating the distance between
different instances of objects, are typical examples of applications of Computer
Vision technology, which can be a valuable tool to automatically monitor hu-
man activities in critical environments through images captured by networked
cameras.

This work presents an embedded modular Computer Vision-based and AI-
assisted system that can carry out several tasks to help monitor individual
and collective human safety rules. We strive for a real-time but low-cost
system, thus complying with the compute- and storage-limited resources avail-
ability typical of off-the-shelves embedded devices, where images are captured
and processed directly onboard. Our solution consists of multiple modules rely-
ing on well-researched neural network components, each responsible for specific
functionalities that the user can easily enable and configure. In particular, by
exploiting one of these modules or combining some of them, our framework
makes available many capabilities. They range from the ability to estimate the
so-called social distance (i.e., the physical distance among pedestrians) to the
estimation of the number of people present in the monitored scene, as well as the
possibility to localize and classify personal protective equipment (PPE) worn by
people (such as helmets, high-visibility clothing, and face masks) that the World
Health Organizations has recommended as one of the primary tools to curb the
spread of the disease, like, for example, the recent COVID-19 pandemic.

To validate our solution, we test all the functionalities that our framework
makes available, exploiting two novel datasets that we collected and annotated
on purpose and representing another contribution of our work. Specifically, we
gathered the first dataset of images captured by a smart camera located in a pub-
lic square in the city of Pisa, Italy, that represents a typical scenario for which it
is crucial to check compliance with the safety rules, such as the maintaining of
the social distance or the monitoring of the occupancy area. Moreover, we col-
lected and annotated a second dataset comprising images containing pedestrians
with and without PPE, such as helmets, high-visibility vests, and face masks.
The peculiarity of this dataset is that part of the images are gathered from the
GTA V video game and automatically annotated by the graphical engine. Ex-
periments show that our system can effectively carry out all the functionalities
that the user can set up, providing a valuable asset to monitor compliance with
safety rules automatically.

To summarize, the main contributions of this work are the following:

• We introduce an expandable and flexible Computer Vision-based and AI-
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assisted embedded system, deployed in a real use-case scenario, capable of
automatically monitoring human activities in critical environments, where
individual and collective safety must be constantly checked. We base our
solution on modules responsible for specific tasks that the user can easily
configure and add to the whole system, providing many functionalities
such as estimating the number of pedestrians present in the scene, mea-
suring the social distances among people, and detecting PPE worn by
individuals.

• We collect and annotate two novel datasets that we exploit to validate
our framework. The first one, named CrowdVisorPisa, is gathered from
a camera in a public square of the city of Pisa, Italy, and represents a
typical scenario for which it can be essential to monitor compliance with
the safety rules, such as the observation of social distance. The second is
instead a collection of images, partially synthetic, representing pedestrians
with and without wearable PPE.

• We conduct experiments evaluating all the modules and the functionali-
ties, which our framework makes available in an embedded and deployed
off-the-shelf device, showing that our solution may be a valid aid to moni-
tor and handle critical environments drastically reducing human supervi-
sion.

We organize the rest of this paper as follows. We review similar works in
Section 2, and we introduce our modular framework and its plug-ins in Section
3. In Section 4, we describe the exploited datasets along with the adopted
training procedures. In Section 5, we show our experiments, also discussing and
analyzing the obtained results. Finally, we conclude the paper with Section 6,
suggesting some insights on future directions.

2. Related Work

Due to the COVID-19 pandemic, many Computer Vision-based works have
been recently published to help monitor human activities analyzing images, es-
pecially on the specific task of evaluating the social distance between people.
For example, the Inter-Homines framework, presented in Fabbri et al. (2020),
evaluates in real-time the contagion risk in a monitored area by analyzing video
streams. The system includes occlusion correction, homography transforma-
tion, and people anonymization. People are located in the space exploiting the
CenterNet (Zhou et al., 2019) object detector, and interpersonal distances are
then calculated. Results are evaluated on the JTA dataset (Fabbri et al., 2018)
(i.e., in a virtual world). In Saponara et al. (2021), the YOLO9000 detector
(Redmon & Farhadi, 2017) has been exploited to detect people; centroids of
the found bounding boxes are then computed to evaluate the distance between
them. Similarly, in Ahmed et al. (2021b), a platform for social distance track-
ing in top perspective video frames based on YOLOv3 (Redmon & Farhadi,
2018) was presented. Here too, centroids of the bounding boxes are used to
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estimate distances. A subset of the same authors also presented in Ahmed et al.
(2021a) a social distance framework based on the Faster-RCNN detector (Ren
et al., 2017). On the other hand, the authors in Punn et al. (2020) exploited
YOLOv3 (Redmon & Farhadi, 2018) to detect humans and Deepsort (Wojke
et al., 2017) to track people. They conducted experiments on the Oxford town
center surveillance footages (Benfold & Reid, 2011). The usage of Faster R-CNN
(Ren et al., 2017) and YOLOv4 (Bochkovskiy et al., 2020) to detect pedestrians
are discussed in Yang et al. (2021) to monitor social distancing and density.
Monitoring of workers to detect social distancing violation that uses Mobilenet-
V2 (Sandler et al., 2018) to detect people is introduced in Khandelwal et al.
(2020).

Another task recently tackled in literature, again related to the COVID-19
pandemic, is face mask detection. For example, the authors in Kong et al. (2021)
presented an edge computing-based mask identification framework (ECMask).
It consists of three main stages: video restoration, face detection (inspired by
FaceBoxes (Zhang et al., 2017b)), and mask identification (based on Mobilenet-
V2 (Sandler et al., 2018)). Deep learning models were trained and evaluated on
the Bus Drive Monitoring Dataset, which unfortunately is not publicly available.
Authors in Eyiokur et al. (2021) developed a deep learning-based computer
vision system able to perform face mask detection but also face-hand interaction
detection. A more comprehensive literature review of applications of artificial
intelligence in battling against COVID-19 is given in N. (2021) including social
distancing and face mask detection.

Differently from most other works, in this paper, we present a modular and
expandable Computer Vision-based embedded system that can fulfill multiple
tasks to help monitor compliance of individual and collective human safety rules
in critical scenarios, like the one caused by the COVID-19 pandemic. The
main peculiarities are that it runs directly on a low-cost computing device.
The user can easily enable and configure the available functionalities ranging
from computing social distances, estimating the number of people present in
the scene, or detecting PPEs, by combining more modules and building more
complex tasks.

3. Modular Framework

The general purpose of our monitoring system is to be embeddable on low-
cost devices and, above all, to be expandable to different features in demanding
situations. To this end, we designed a framework able to orchestrate a set of
internal and user-defined plugins, each dedicated to a single task. Specifying
inputs and outputs makes it possible to create a dependency graph. Each sub-
module represents a node, and each pair of matching input-output represents
an edge. In this way, given the desired output, a topological sort is executed
to minimize and linearize the sequential execution of computations. Although
an easier solution may exist in the context of the plugins, our methodology
is relatively simple to implement and allows low-cost systems to execute any
complex compute graphs in a sequential and semantically-correct way.
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Figure 1: Overview of our modular framework. Multiple video streams can be multiplexed
and handled by a single instance. Results are generated in JSON format and can be routed to
downstream services. Our system is flexible and expandable, as modules can be activated or
deactivated depending on the user’s needs, and novel functionalities can be introduced with
additional custom modules.

An overview of our modular framework is depicted in Figure 1. Video
frames are taken at regular intervals from one or more cameras and processed
locally. Multiple video streams can be multiplexed and handled by a single
system instance. Current modules include a) Pedestrian Detector, b) Density-
based Pedestrian Counter, c) Instance-based Pedestrian Counter, d) Pedestrian
Tracker, e) PPE Detector, and f) Interpersonal Distance Measurer; Figure 2
exemplifies the results of the analyses performed by each module, whereas their
detailed description is reported in the following sections. All the modules are
toggleable; the Instance-based Pedestrian Counter, Pedestrian Tracker, Inter-
personal Distance Measurer, and PPE Detector modules depend on the output
of the Pedestrian Detector module and require it to be active. Results of the
active modules are combined and provided in JSON format to be consumed by
downstream services. Note that video frames are analyzed onboard and never
stored; this enables privacy-aware solutions where captured images never leave
the edge devices.

3.1. Detecting Pedestrians

The pedestrian detector is the system’s main component on which almost
all other plug-ins rely. Its primary purpose is to localize and classify pedestrian
instances from input images. These detections constitute the main data that
will be exploited, in different ways, by the other nodes of the system.

We base our pedestrian detector on Faster R-CNN Ren et al. (2017), a
popular state-of-the-art CNN-based object detection system. It operates as
a two-stage algorithm, exploiting two different modules during the different
phases of its detection pipeline. In the first stage, a CNN acts as a backbone by
extracting input image features. Starting from this features’ space, the Region
Proposal Network (RPN) is responsible for generating the region proposals that
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Figure 2: Visualization of output examples of the modules currently available in our system.
The outputs of each module are the following. Pedestrian Detection & Instance-based
Counting: list of pedestrian bounding boxes and respective count. Pedestrian Tracking:
numeric ID assigned to detected pedestrians persisting through frames. Density-Based
Pedestrian Counting: estimated number of pedestrians (and, optionally, the density map).
Distance Measurement: IDs of groups of pedestrians violating a predefined distance. PPE
Detection: list of PPE bounding boxes detected per pedestrian.

might contain objects, slicing pre-defined region boxes (called anchors), and
ranking them, suggesting the ones most likely containing objects. The second
module is the Fast R-CNN detector (Girshick, 2015) that classifies and localizes
the objects inside the proposed regions, outputting class scores together with
bounding boxes coordinates.

We preferred a two-stage detector to single-shot detectors, as we could easily
extract features from the region proposal stage and make them directly available
for subsequent processing. We used the extracted features when tracking pedes-
trians, and they could be used in other future modules, such as cross-camera
pedestrian re-identification. Moreover, Faster R-CNN is widely adopted and
usually guarantees a state-of-the-art detection performance. However, the mod-
ularity of our system does not limit us to Faster R-CNN, and another object
detector can be easily adopted in the future, just replacing the related module.

We specialize the Faster R-CNN detector to localize pedestrian instances,
performing a supervised domain adaption that exploits several pedestrian datasets.
We detail all these strategies in Section 4.

3.2. Tracking Pedestrians

Object tracking can be an essential tool to increase the robustness to spurious
detections and achieve temporal consistency in video analysis. To this end, we
implement and apply an object tracker over pedestrian detection to reidentify
people among consecutive video frames. This step is beneficial for assessing
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temporal rules, such as raising alarms after the same pedestrian occupies a
forbidden area for more than a predefined amount of time.

The implementation of the tracker follows the formulation of DeepSort (Wo-
jke et al., 2017). It is based on SORT (Bewley et al., 2016), a simple causal
tracking algorithm for 2D objects in which targets are represented by the po-
sition and area of the bounding box and their speed of variation. The state of
each target (also known as tracklet) is updated with available detections using
a Kalman filter framework. DeepSort builds upon SORT by adding a match-
ing scheme between predicted and actual targets based on feature vectors that
describe the appearance of tracked objects; tracklets can be confirmed if the
cosine score between feature vectors of the predicted and actual target is above
a programmable threshold. We refer the reader to Wojke et al. (2017) for an
evaluation of DeepSORT compared to other tracking methods.

Feature vectors in DeepSort must be provided by extracting representations
from detected regions with an additional pre-trained network. In our implemen-
tation, we avoid this step by reusing the feature vectors of detected regions that
the object detection network has already extracted; in particular, we perform a
Region of Interest (RoI) average pooling of the features extracted by the CNN
backbone using only the regions provided by the pedestrian detection module.

3.3. Crowd Counting

In some scenarios where individual and collective safety has to be constantly
monitored, like people aggregations during the recent COVID-19 pandemic,
estimating the number of people present in a region of interest is crucial to
monitor the occupancy area. By measuring and limiting the number of people
who can visit a location at any one time, it is possible to drastically reduce the
likelihood of setting up people gatherings and, consequently, minimize human
virus transmission. Our solution relies on a dedicated plug-in that can work in
two different modalities that the user can conveniently pick out, depending on
the considered scenario. The first one, named Counting by Instances, is better
suited for not particularly crowded environments and relies on the pedestrian
detector described in Section 3.1. The second, named Counting by Density
Estimation, is instead a more holistic approach more appropriate for highly
crowded scenarios; it aims at computing a mapping between the features of
the captured image and its pedestrian density maps, skipping the detection of
the single instances. The estimated number of people present in the controlled
area can then be obtained by integrating this density map. In the following
paragraphs, we describe in detail both modalities.

Counting by Instances. This counting modality depends entirely on the pedes-
trian detector. Specifically, the pedestrian detection module provides the input,
i.e., the localized pedestrian instances. The counting by instances plug-in is only
responsible for counting them. As already mentioned, this approach has some
limitations in highly crowded scenarios since, in this case, people instances are
heavily occluded and not easily identifiable.
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Counting by Density Estimation. This modality tackles the counting task as a
supervised regression problem from the image features to an associated density
map, following the seminal work Lempitsky & Zisserman (2010), avoiding the
detection of individual object instances. As mentioned above, this approach
is desirable in highly congested scenarios, where the instances of the objects
are not completely visible due to occlusions. The input of this module consists
directly of the captured image, so this node does not depend on the pedestrian
detector module.

In this scenario, the most widely used labels needed for the supervised train-
ing are the dotted annotations, obtained by putting a single dot on each object
instance in each image. Formally, we assume to have a set of N training images
I1, I2, ..., IN . We also assume that each image Ii is labeled with a set of 2D
points Pi = P1, ..., PK(i), where K(i) is the total number of annotated objects
(in our case pedestrians). For a training image Ii, we define the ground truth
density map as

∀p ∈ Ii, Hi(p) =
∑
P∈Pi

δ(p− P ). (1)

Here, p denotes a pixel, while a point identifying a pedestrian is represented as a
delta function. Converting it into a continuous density function with Gaussian
kernel Gσ we obtain

∀p ∈ Ii, Fi(p) =
∑
P∈Pi

δ(p− P ) ∗Gσ. (2)

The sum of the density map is equivalent to the total number of pedestrians. It is
worth noting that the Gaussian spread parameter σ depends on the size of each
pedestrian in the image, considering the perspective transformation. However,
it is almost impossible to obtain the occluded object’s size manually in a high-
density environment. So this parameter is a dataset-specific quantity empirically
estimated. Then, given a set of training images together with their ground truth
densities, we aim to learn a transformation of the feature representation of the
image that approximates the density function at each pixel to minimize the sum
of the mismatches between the ground truth and the estimated density functions
(the loss function).

We build our density map estimator upon the Congested Scene Recognition
Network (CSRNet) (Li et al., 2018), a CNN-based algorithm that can under-
stand highly congested scenes and that has been successfully adopted in many
crowded scenarios. It comprises two major components. For the image features
extraction, it exploits a modified version of the well-known VGG-16 network
(Simonyan & Zisserman, 2015), where the final classification part, i.e., the final
fully-connected layers, is removed. The output size of this front-end network
is 1/8 of the original input size. Following other works (Yu & Koltun, 2016;
Chen et al., 2018, 2017), a back-end composed of dilated convolutional layers
are stacked upon this front-end to extract deeper information of saliency and,
at the same time, maintain the output resolution. Using dilated convolutions,
we can deliver larger reception fields while replacing pooling operations (e.g.,
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Figure 3: An example of homography. A set of four points in the acquired image is mapped
through homography to its projection on a Euclidean metric space laying on a virtual planar
surface.

the max pool operation) that are often responsible for losing quality in the den-
sity generation procedure. We refer the reader to Li et al. (2018) for a detailed
comparison of CSRNet against other state-of-the-art methods.

3.4. Measuring Social Distances

A critical condition that must be kept under control in dynamic environ-
ments where an infection is ongoing is represented by the physical distance
among individuals. In the case of air-borne diseases, it is thus very common to
issue rules to avoid people gatherings in confined places and keep a specific re-
ciprocal separation to contrast the spread of pathogen agents. Although crowd
counting is effective in monitoring aggregations, measuring distances among peo-
ple becomes critical during pandemic events. Assuming that individuals mostly
hang out on the same planar floor, we decided to measure their actual distance
by applying a simple pre-calibrating step to the fixed monitoring camera, using
a proper geometrical transformation that places detected items on a common
system of reference. Our solution is to pre-compute a mapping between real
points in the scene whose relative position is known and their projection on
the acquired frame image. This process is well known in Computer Vision and
consists of finding a homography, i.e., a perspective transformation that projects
on two different points of view a set of 3D points lying on the same plane.
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More in detail, a d-dimensional homography represents the linear operation

x′ = Hx x, x′ ∈ Rd,

and is expanded in homogeneous 3D coordinates as an approximation of the
projection operation of a pinhole camera, represented by a 4 × 4 matrix with
the translation and projective components added. In the case of coplanar points,
we can consider the input z component as a constant and thus eliminate it from
the above formulation: x′y′

w′

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

xy
1

 .
Thus, the eight hij unknown can be found if we can relate two sets of four
2D points through homography. To calculate its elements, we minimize the
matching error of the two sets after perspective projection (i.e., dividing by the
homogeneous component to take point distance to the camera into account, see
Parent (2012)) to bring coordinates from homogeneous to euclidean space:

w′ = h31x+ h32y + h33,

x′ =
h11x+ h12y + h13

w′
,

y′ =
h21x+ h22y + h23

w′
.

We can set up the projected image of four coplanar (but not collinear) points to a
virtual flat surface and then use the found transformation matrix to approximate
the relative location of any point laying on the same plane, as shown in Figure
3. This calibration step is kept as straightforward as possible for an untrained
operator, as it is easy to select four points of a known-sized quadrangle (e.g.,
a standardized manhole). As perturbations may occur with point selection, we
also allow to select more than four coplanar points whose relative position is
known and then use a random sample consensus (RANSAC (Fischler & Bolles,
1987)) algorithm to iterate through a random selection of four points for a first
approximation of the plane equation, which is eventually refitted to minimize
the error.

3.5. Detecting Personal Protective Equipment

A simple intervention for protecting health and well-being is wearing Per-
sonal Protective Equipment (PPE). It is particularly true in dangerous working
environments, such as wearing harnesses and helmets on construction sites. Still,
it also became evident in light of the recent COVID-19 pandemic, where wearing
face masks can prevent infections. Therefore, we implement a module dedicated
to detecting worn PPE, essential for ensuring compliance with regulations that
imply personal protection.

Our solution for PPE detection follows the same methodology already adopted
for pedestrian detection: specifically, we adopt the same detector architecture
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based on Faster-RCNN (see Section 3.1 for details). The PPE detector network,
differently from the pedestrian detector, takes a rather small image depicting
a pedestrian as input. It is trained to distinguish and detect several classes
of worn PPE, i.e., surgical/face masks, helmets, and high-visibility vests. The
pedestrian detector module provides the input of this module: once detected,
the patch of the video frame depicting a pedestrian is given as input to the PPE
detector that provides bounding boxes of PPE if the pedestrian wears them.

Conceptually, the detection of PPE could be tackled by the pedestrian de-
tector module by adding the PPE classes to the base detection model. However,
we empirically noticed that merging the PPE detection with the pedestrian de-
tection module leads to performance degradation in both tasks. Using separate
modules provides a more flexible solution in which the input image resolution of
both detectors can be adjusted separately and better adapted to the monitored
scenario. For example, when wide areas are monitored, PPE detection is in-
voked several times, depending on how many pedestrians are detected, on small
patches of pedestrians. In this case, the PPE detection network can be config-
ured to work on lower resolution inputs to maintain an affordable computational
cost.

4. Datasets and Architecture Adaptions

A key point in producing a verification system that can generalize on a
broad spectrum of working conditions is to generate a training set based on an
adequately large amount of environmental conditions. In our case, this means
accessing a massive amount of images involving people under different scenarios.
Manually annotating new images collections is expensive and requires a notable
human effort. Instead, a recently promising approach is to gather data from
virtual world environments that resemble the characteristics of the real-world
scenarios and where the labels can be acquired with an automated process.
Thus, in this work, we build vast training datasets, considering both real-world
and synthetic images from public datasets when available, and collecting others
when needed, covering a multitude of different scenarios and contexts. Here-
after, we describe these data, dividing them according to the module for which
they are employed. Furthermore, we describe the exploited training procedures,
highlighting the changes we made to the architectures to adapt them to our
specific scenarios.

4.1. Datasets for Pedestrian Detection

We use many popular publicly available pedestrian detection datasets to
train the pedestrian detector module. Furthermore, we introduce a novel dataset,
named CrowdVisorPisa, that we also employ for evaluating our solution. In the
following, we detail all the exploited datasets.

Virtual Pedestrian Dataset (ViPeD) (Amato et al., 2019; Ciampi et al., 2020).
The Virtual Pedestrian Dataset is a synthetic collection of images generated
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exploiting the highly photo-realistic graphical engine of the video game Grand
Theft Auto V (GTA V) by Rockstar North. It comprises about 500K images
belonging to 512 different urban environments (256 for training and 256 for
testing) characterized by various weather conditions, illumination, perspectives,
viewpoints, and density of people. Labels are automatically provided by the
game engine and consist of bounding boxes precisely localizing the pedestrians
present in the scenes. More details on the generation of ViPeD can be found in
Amato et al. (2019); Ciampi et al. (2020).

MOT17Det (Milan et al., 2016) and MOT20Det (Dendorfer et al., 2019). The
MOT17Det and MOT20Det datasets are two collections of images (5,316 and
8,931, respectively), annotated with bounding boxes, taken from multiple se-
quences describing crowded scenarios having different characteristics, like view-
points, weather conditions, and camera motions. The authors provided training
and test subsets, but they released only the ground-truth labels for the for-
mer. The main difference between MOT20Det and MOT17Det is that the first
contains more crowded scenarios.

CityPersons (Zhang et al., 2017a). The CityPersons dataset consists of a set
of stereo video sequences recorded from a moving car in streets from different
cities in Germany and neighboring countries. In particular, the authors pro-
vide 5,000 frames from 27 cities labeled with bounding boxes and split across
train/validation/test subsets.

CrowdHuman (Shao et al., 2018). CrowdHuman is a benchmark dataset for
pedestrian detection. It comprises 15,000, 4,370, and 5,000 images for training,
validation, and testing, respectively, describing diverse, crowded scenarios, with
an average number of persons in an image of 22.6. The authors annotated each
human instance with a head bounding box, a human visible-region bounding
box, and a full-body bounding box.

PRW (Zheng et al., 2017). The PRW dataset contains 11,816 frames where
932 different pedestrian identities are annotated with their bounding boxes.
The authors provide the training and the test splits.

CUHK-SYSU (Xiao et al., 2017). The CUHK-SYSU is a large-scale bench-
mark dataset containing 18,184 images, 8,432 different identities, and 96,143
pedestrian bounding boxes. It is divided into training and test subsets.

CrowdVisorPisa (ours). The CrowdVisorPisa dataset2 is a novel collection of
images that we collected and annotated on purpose for this work. In particular,
we stored 15 different sequences gathered from a webcam located in a public
square of the city of Pisa, Italy, each of which comprises ten images captured
with a time interval of 1 second. We manually labeled all frames, localizing

2 We provide the CrowdVisorPisa and CrowdVisorPPE datasets upon request.
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Figure 4: A sample from our novel CrowdVisorPisa dataset, together with bounding box
annotations localizing pedestrians.

the pedestrian instances with bounding boxes. Furthermore, we also annotated
each sequence taking track of the different pedestrian entities entering or exit-
ing the scene. We divided the dataset into train and test splits, considering 10
and 5 different sequences, respectively. The former split is exploited to train
the pedestrian detector module, while the latter is used to evaluate the per-
formance of some modules of our framework. It is worth noting that, due to
camera positioning not modifiable for local restrictions, this dataset represents
a particularly challenging scenario as people instances are small and sometimes
difficult to localize. A sample of the dataset is shown in Figure 4.

4.2. Datasets for PPE Detection

CrowdVisorPPE (ours). We collect and annotate a novel dataset (named Crowd-
VisorPPE 2) to train and evaluate our PPE detection module. It comprises
54,017 images representing pedestrians with and without wearable PPE. Roughly
half of the dataset comprises synthetic images procedurally generated using the
GTA V video game engine as in Di Benedetto et al. (2020), whereas the other
half comprises real-world photographic images taken from the Web and manu-
ally annotated. The PPE classes of interest, i.e., helmets, high-visibility vests
(HVVs), and face masks, are annotated with bounding boxes. The real-world
subset is the only source of face mask instances since they are not available
for rendering in GTA V. We hold out a subset of real images as the test split,
whereas synthetic images and the remaining real ones form the training split.
We show the dataset details in Table 1 and some samples in Figure 5.
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# PPE instances

Train Split # img Helmet HVV Mask

GTA V (V) 28,078 9,575 21,374 0
Web (R) 21,820 10,673 10,686 1,630

Test Split

Web (R) 4,119 2,163 2,017 271

Table 1: Details of the CrowdVisorPPE dataset. V = virtual/synthetic data; R =
real/photographic data.

4.3. Datasets for Crowd Counting by Density Estimation

To train the module responsible for crowd counting by density estimation,
we exploit many publicly available datasets, detailed in the following.

GTA5 Crowd Counting (GCC) (Wang et al., 2019). The GCC dataset is a
large-scale and diverse synthetic crowd counting dataset, gathered from the
video-game Grand Theft Auto V (GTA5) and automatically annotated. It con-
sists of 15,212 images, with a resolution of 1080 × 1920, containing 7,625,843
persons in 400 different scenarios with various locations, weather conditions,
and crowd densities. Compared with the existing datasets, GCC is a more
large-scale crowd counting dataset in both the number of images and persons.

ShanghaiTech (Zhang et al., 2016). The ShanghaiTech dataset is a large-scale
crowd dataset of nearly 1,200 manually dot-annotated images with a total of
330,165 people with centers of their heads. This dataset consists of two parts:
part A, containing 482 images crawled randomly from the Internet, and part B,
composed of 716 images taken from the busy streets of metropolitan areas in
Shanghai. The crowd density varies significantly between the two subsets, mak-
ing this dataset more challenging. The two parts are divided into training and
testing subsets: 300 images of part A are used for training, and the remaining
182 images for testing, while 400 images of part B are for training and 316 for
testing.

UCF-QNRF (Idrees et al., 2018). The UCF-QNRF dataset is a collection of
images gathered from three sources: Flickr, Web Search, and the Hajj footage.
The authors performed the entire annotation process in two stages, the first
one for the labeling and the second one for the verification, for a total of 2,000
human-hours spent through to its completion. This dataset comprises 1,535 im-
ages with more than 1 million dot-annotations on the centers of the pedestrian’s
heads, divided into training and test subsets.

NWPU-Crowd (Wang et al., 2021). The NWPU dataset is a large-scale con-
gested crowd counting and localization dataset consisting of 5,109 images, in a
total of 2,133,375 annotated heads with points and boxes. Compared with other
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(a) GTA V (Virtual) (b) Web (Real)

Figure 5: Samples from our novel CrowdVisorPPE dataset. PPE classes are color coded:

helmet , high-visibility vest , face mask .

real-world datasets, it has the most extensive density range. Another peculiarity
of this dataset is that it also comprises some negative samples like high-density
crowd images to assess the robustness of models.

4.4. Adaptation for Pedestrian Detection

To make the pedestrian detector able to run efficiently directly on computational-
and resource-limited devices, we employ, as the backbone of Faster R-CNN, the
ResNet50 architecture, a lighter version of the popular ResNet101 (He et al.,
2016). We start considering the detector pre-trained on the COCO dataset (Lin
et al., 2014), a large collection of images depicting complex everyday scenes of
ordinary objects in their natural context, categorized into 80 different classes.
In our case, we have to localize and identify objects belonging to just one class
(i.e., pedestrian). To this end, we further simplify the model by reducing the
number of the final fully convolutional layers responsible for classifying the de-
tected objects, making our detector lighter. We call Light this modified version
of the pedestrian detector module to distinguish it from the Full original one,
having instead the ResNet101 backbone and a larger number of fully connected
layers.
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Intending to specialize the detector in finding the specific pedestrian ob-
ject category, we adopt a supervised domain adaptation strategy, exploiting
the datasets described in Section 4.1 and fine-tuning the network to this spe-
cific task. Following Ciampi et al. (2020), we employ the Balanced Gradient
Contribution (BGC) (Ros et al., 2016a,b) strategy, where, during the training
phase, we mix the synthetic data, taken from ViPeD, and the real-world images
gathered from the remaining datasets. In this way, as already demonstrated in
Ciampi et al. (2020), we boost the performance of the detector compared to a
model relying only on real-world data, taking advantage of the great variability
and size of ViPeD, and, at the same time, mitigating the existing domain shift
between these synthetic data and the real-world ones. In particular, during the
training phase, we exploit batches composed of 2/3 of synthetic images and 1/3
of real-world data, thus considering statistics from both domains throughout the
entire procedure and where the real-world data acts as a regularization term over
the synthetic data training loss. We refer the reader to Ciampi et al. (2020) for
details performance comparisons against other state-of-the-art methods.

4.5. Adaptation for PPE Detection

As in the pedestrian detector, we adopt the Faster R-CNN model with the
ResNet50 backbone as the PPE detector architecture. The methodology used to
obtain the trained PPE detector follows Di Benedetto et al. (2020) and reaches
a comparable detection performance: we start from a detector pre-trained on
COCO with a new detection head that matches the number of the PPE classes,
and then we use a mixture of synthetic and real images of pedestrians with PPE
when training the model, to finally testing it on real data only. We refer the
reader to Di Benedetto et al. (2020) for comparisons against other detection
models and the model trained only on real-world data. The only difference
concerning the object detector and Di Benedetto et al. (2020) is that we perform
PPE detection only on pre-segmented patches containing a single pedestrian
instead of searching for PPE in the entire video frame. This simplifies the task
for the model and enables us to save computational budget by processing smaller
images.

4.6. Adaptation for Crowd Counting by Density Estimation

To train the density-based pedestrian counter module, we adopt a supervised
domain adaptation strategy consisting of training the network with the synthetic
data and then fine-tuning it exploiting the real-world images, that has already
been proved to be effective in Amato et al. (2019) and Ciampi et al. (2020),
providing a performance boost compared to models trained only on real-world
data. In particular, we set the initial weights of the network layers with values
coming from a Gaussian distribution with 0.01 standard deviation. Then, we
train the network exploiting the GCC dataset, and, finally, we fine-tune it using
the real-world data.
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PD DC PPE SysRAM GpuRAM

Light

7 7 2.36 0.55
3 7 2.44 0.86
7 3 2.35 2.10
3 3 2.44 2.20

Full

7 7 2.51 0.62
3 7 2.52 0.94
7 3 2.51 2.20
3 3 2.51 2.30

Table 2: System and GPU Memory Usage in GB. PD = pedestrian detector model type;
DC = whether the density counter module is active; PPE = whether the PPE detector
module is active. The modular framework is assumed to always use the object detector in
its Light or Full models, along with the enabled distance measure plug-in that consumes a
fixed and negligible (less than 1 MB) amount of memory. Video stream size is 1173 × 880
RGB pixels. System memory is calculated with /usr/bin/time -f "%M", GPU memory with
torch.cuda.max memory allocated().

5. Experiments and Results

We evaluate all the modules making up our framework, considering different
scenarios and exploiting appropriate metrics depending on the task. For all the
experiments, we consider the Light version of our object detector module since
it has shown similar performance compared with the Full version, and it is more
appropriate in combination with low-cost and computational-limited hardware.

Being our target a deployable monitoring system, we selected the NVIDIA
Jetson TX2 embedded device as the hardware host. It comprises two 64-bit
CPUs with two and four cores each, an NVIDIA Pascal GPU with 256 CUDA
cores, 8 GB of RAM shared between the system and the graphics accelerator,
and a 32 GB solid-state storage volume. The operating system is NVIDIA’s
Linux4Tegra (L4T) distribution based on Ubuntu. At the time of writing, the
cost of the device was less than USD 500. We installed Python 3.8 with OpenCV
4.5 and the deep learning framework PyTorch 1.8. As detailed in Table 2,
memory usage is kept within 5 GB of both system and GPU RAM. An external
USB camera completes the whole installation.

5.1. Counting by Instances

In this setting, we test and evaluate the counting by instance functionality.
We consider our CrowdVisorPisa dataset and, in particular, the five sequences
belonging to the test subset, performing two different sets of experiments over
it; the first one involves only the pedestrian detector module, and the second
instead takes also into account the tracker module. More in detail, in the first
case, we evaluate the effectiveness of our framework to estimate the number of
people present in the single frames. On the other hand, in the second scenario,
we also consider the temporal relation existing between consecutive images,
tracking the found pedestrian instances over time.

We report in Figure 6 the obtained results concerning the first scenario.
Each row of the figure represents a different sequence. The first column shows

17



Number of detected people

10

20

30

Co
un

t
Seq. 'apr02_19'

thr
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
GT

10

20

30

Co
un

t

Seq. 'apr06_12'

20

40

Co
un

t

Seq. 'apr10_12'

20

40

Co
un

t

Seq. 'apr12_19'

0 1 2 3 4 5 6 7 8 9
Frame

20

30

Co
un

t

Seq. 'apr13_12'

Counting Errors

0

10

Er
ro

r

Seq. 'apr02_19' - (MAE@0.5 = 2.0)

thr
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9

0

10

Er
ro

r

Seq. 'apr06_12' - (MAE@0.6 = 1.1)

10

0

10

Er
ro

r

Seq. 'apr10_12' - (MAE@0.45 = 1.9)

0

20
Er

ro
r

Seq. 'apr12_19' - (MAE@0.6 = 2.4)

0 1 2 3 4 5 6 7 8 9
Frame

0

10

20

Er
ro

r

Seq. 'apr13_12' - (MAE@0.6 = 1.0)

Figure 6: Evaluation of counting by instances functionality of our framework, considering the
single still frames of the five test sequences of our CrowdVisorPisa dataset. In the first column,
we report the number of people located by our detector, varying the detection thresholds. The
black line (GT) indicates the actual number of pedestrians in the frame. The second column
shows the counting errors and the best MAE obtained with a specific detection threshold.

the number of people that our detector module can localize for each frame
comprising a sequence, varying the detection threshold. On the other hand,
in the second column, we illustrate the errors in terms of counting. We also
report, for each sequence, the best Mean Absolute Error (MAE), i.e., the mean
of the sum of the absolute errors, obtained with a specific threshold. As can
be seen, we get a MAE close to 1 or 2, depending on the considered scenario,
demonstrating that the module provides a reliable estimation of the number
of pedestrians present in the monitored scene. The optimal threshold may
vary depending on the scenario and the desired behavior, e.g., the user may
prefer under- or over-estimation in case of errors. Due to the empirical nature
of its choice, in our system, we provide the dynamical configuration of several
parameters, including detection thresholds.

On the other hand, in Figure 7, we show the results concerning the second
scenario. Each row of the figure corresponds to a different sequence. We report
the results about the single frames making up a sequence for three different
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PD PPE DC

mAP ↑ mAP ↑ MAE ↓ RMSE ↓ SSIM ↑
0.836 0.606 92.28 365.4 0.79

Table 3: Evaluation metrics of the Pedestrian Detection (PD), Density Counter (DC), and
PPE Detector modules, measured on the corresponding test sets. The mean Average Precision
(mAP) measures the average precision of the detection when varying the score threshold in
detection-based modules (PD, PPE). For DC, MAE and RMSE measure the counting error,
while SSIM measures the quality of the predicted density map.

detection thresholds, one for each column. In particular, we indicate the pedes-
trians that enter and exit from the scene at each frame, exploiting the tracklets
provided by the tracker module that represents the recognized identities of the
people instances over time. Solid lines represent the actual number of people
present in a frame over time, and green/red candles represent the number of
people entering/exiting the scene. Similarly, dashed lines represent the number
of people predicted by our system, and yellow/blue candles represent the esti-
mated number of people entering/exiting the scene as predicted by the tracker
module. We notice that with a low (resp. high) threshold value, our system
tends to overestimate (resp. underestimate) the total number of people present
in a sequence, thus finding its optimal threshold values in the 0.5 - 0.6 range.
We also note that false-positive detections tend to create spurious peaks in the
people count. However, they often recovered in the immediate following frame.

5.2. Counting by Density Estimation

Given that the annotation procedure for labeling datasets having these char-
acteristics is highly costly in terms of manual human effort, we exploited the
test subsets of the already publicly available datasets described in Section 4.

We report in Table 3 the obtained results in terms of Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE). It is worth noting that, as a
result of the squaring operation, RMSE effectively penalizes large errors more
heavily than small ones, thus more suitable when outliers are particularly unde-
sirable. Furthermore, we also compute the Structural Similarity Index Measure
(SSIM) (Wang et al., 2004) to measure the density map quality, which mea-
sures images’ similarities under three aspects: brightness, contrast, and struc-
ture. The value of SSIM is in the [0, 1] range: the larger it is, the less distortion
of the image is measured. Finally, in Figure 8 we show some examples of the
considered images, together with the ground truth and the predicted density
maps.

5.3. Detecting Pedestrians and Personal Protection Equipment

We validate pedestrian and worn PPE detection, performed respectively by
the Pedestrian Detector and the Personal Protection Equipment Detector mod-
ules. For the former, we focus on the five test sequences of our CrowdVisorPisa
dataset, whereas for the latter, we consider the CrowdVisorPPE test subset.

19



10

15

20

25

# 
Pe

de
st

ria
ns

thr = 0.3

10

15

20

25
thr = 0.5

10

15

20

25 Seq. 'apr02_19'

thr = 0.7

10

15

20

25

# 
Pe

de
st

ria
ns

5

10

15

20

5

10

15

20 Seq. 'apr06_12'

20

25

30

35

# 
Pe

de
st

ria
ns

20

25

30

35

20

25

30

35 Seq. 'apr10_12'

20

25

30

35

# 
Pe

de
st

ria
ns

15

20

25

30

15

20

25

30 Seq. 'apr12_19'

1 2 3 4 5 6 7 8 9
Frame Number

15

20

25

30

# 
Pe

de
st

ria
ns

In Scene (Pred) In Scene (GT) Enter (Pred) Exit (Pred) Enter (GT) Exit (GT)

1 2 3 4 5 6 7 8 9
Frame Number

10

15

20

25

1 2 3 4 5 6 7 8 9
Frame Number

10

15

20

25

Seq. 'apr13_12'

Figure 7: Evaluation of the counting by instances functionality of our framework, taking into
account also the tracker module. We considered the five test sequences of our CrowdVisorPisa
dataset reported one for each row. Columns represent the results obtained for three different
detection thresholds. For each plot, we show the pedestrians that enter and exit from the
scene, relying on the tracklets describing the recognized identities of the people instances over
time.
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Image Groundtruth Density Map Predicted Density Map

Figure 8: Some samples of the test subsets exploited for the evaluation of our counting by
density estimation functionality, together with the ground truth and the predicted density
maps. Integrating these density maps, i.e., summing up the pixel values, we can estimate the
number of people present in the image.
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Figure 9: Examples of predictions of the PPE Detection module on our CrowdVisorPPE test

set. PPE classes are color coded ( helmet , high-visibility vest , face mask ), and the detection

score is reported in parenthesis.

As a performance metric, we adopt the mean Average Precision (mAP)
with an IoU value >= 0.5, a popular metric in measuring the accuracy of object
detectors that computes the average precision value for recall values spanning 0
to 1. We prefer the mAP over other threshold-dependent metrics, such as True
Positive Rate, False Positive Rate, or F1-score. Indeed, threshold-dependent
metrics are scenario- and application-specific; end-users may accept different
levels of false positive or negative rates and may decide to tune thresholds
differently depending on their needs. On the other hand, mAP provides a
unique metric summarizing the performance at multiple operational points. We
report the obtained results in Table 3, showing that our modules can reach a
mAP of 0.836 and 0.606 for the pedestrian detection and the PPE detection
tasks, respectively. Figure 9 shows some predictions of PPE detections on the
CrowdVisorPPE test set.

5.4. Measuring Social Distances

To establish a correspondence between the acquired image and a planar met-
ric surface onto which objects (i.e., pedestrians) positions can be evaluated, we
used a known-sized manhole in the monitored scene to calculate the homogra-
phy. The computed matrix is exploited to unwarp pixel position into real-world
relative locations. The homography reprojection is a closed-form mathematical
process, so no previous training is needed.

Our measuring results can be seen in Figure 10: in the examples shown, the
precision of measurements is relative to both the initial calibration (i.e., manhole
real size mapped to its projection on the input image) and the accuracy of the
pedestrian bounding boxes (i.e., rectangles) predicted by the object detector.
We measured the manhole with an upper bound precision of 1 cm and a pixel
area error of about 3 cm, thus confining the overall measurements below the 10
cm error. For pedestrian positions, we used the midpoint of the lower edge of
its predicted bounding box. As can be seen from the gridded unprojection of
the examples, results are consistent within the above error gap.
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Figure 10: Examples of detections and distance warnings under different lighting conditions.
Each of the eight images represents, on its left side, pedestrians detected and tracked in the
example scenario, while showing on its right side their 2D projection on a virtual planar
surface obtained through homography, with a reference 1-meter-spacing overlay grid. The
green color means a safe placement, and the red indicates violations of the 1-meter physical
distance rule. Some failure examples are outlined in white and zoomed.
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6. Conclusion

In this work, we presented a modular framework based on Computer Vision
and AI technologies, deployed in a real use-case scenario on a low-cost off-the-
shelf embedded platform and aimed at monitoring human activities in critical
conditions. Our goal was to provide a system having the peculiarity to be ex-
pandable in the future, simply adding new modules in charge of performing new
functionalities that the user can easily enable (or disable) according to their
needs. In this way, our framework turns out to be flexible since the tasks to
be accomplished can change in time, and it is always possible to insert a new
module responsible for performing it. As an effective setup, we implemented
a set of visual-based modules for pedestrian detection, tracking, aggregation
counting based on instances and density maps, social distancing calculations,
and personal protection environment detection. Specifically, we trained artificial
neural models with publicly available and, for the purpose of the physical device
installation, custom datasets; at the same time, we applied a transfer learning
approach to expand detection capabilities by using computer-generated training
imagery. To test the effectiveness of our solution, we monitored a known place
in Italy during the restrictions imposed from the COVID-19 pandemic, prov-
ing satisfactory accuracy in terms of detection, counting, and physical distance
measurements.

6.1. Future Work

In the next iteration of this project, we plan to develop an algorithm that
can automatically select the best counting modality between instancing and
density map, which is currently chosen manually by the user. At the same time,
we will try to integrate and expand modules with further visual analyses, like
gesture/posture recognition and the assessment of appropriate PPE wearing.
Finally, we will attempt to apply a transfer learning approach to predict physical
distances among people by using an automatically labeled computer-generated
training set based on a rendering engine simulation.
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