Evaluation of continuous image features learned by ODE Nets

Fabio Carrara, Giuseppe Amato, Fabrizio Falchi, Claudio Gennaro

fabio.carrara@isti.cnr.it \succ

ODE-Nets [1]

- net defined by ordinary differential equations (ODE)
- forward/backward computed by generic ODE solver
- trained with standard gradient-based optimizers

[1] Chen, Tian Qi, et al. "Neural ordinary differential equations." Advances in neural

Properties of ODE Nets

 \rightarrow O(1) memory consumption reversibility \circ adaptive solver \rightarrow *per-sample adaptive computation* o adaptive solver → speed-accuracy trade-off at test \rightarrow natural continuous-time modeling continuity

NA 7

ODE Block dh(t $f(\mathbf{h}(t), t, \theta)$ Invoke ODE solver to find solution: $(t, \theta) dt$

Continuous Image Features Evaluation

- image classifiers with ODE blocks
- continuously evolving feature representation $\mathbf{h}(t)$
- sample (potentially infinite) features with $t \in [0, 1]$
- evaluate features in transfer learning task

Experiments & Results

• Train feature extractors on CIFAR-10 dataset • Evaluate on Tiny-IN-200 classification (SVM + feats.) Iess parameters, better transferability currently slow (slower as training proceeds)

				_
	CIFAR-10	Model	ODE Solver	-
Model	Test Error	Parameters	Steps	
Res-Net	7.28%	7.92M	_	-
Res-ODE	7.80%	2.02M	3.8 ± 0.4	
ODE-only (our)	9.17%	1.20M	7.8 ± 1.5	

high NFE NFE = num. of function evaluations done by adaptive solver low NFE