
University of Pisa

Department of
Information Engineering

Doctoral Course in
Information Engineering

Masaryk University
Faculty of Informatics

Department of
Information Technologies

Doctoral Course in
Informatics

Ph.D. Thesis

A Content-Addressable Network
for Similarity Search

in Metric Spaces

Fabrizio Falchi

Supervisor

Lanfranco Lopriore

Supervisor

Fausto Rabitti

Supervisor

Pavel Zezula

2007

Abstract

Because of the ongoing digital data explosion, more advanced search
paradigms than the traditional exact match are needed for content-
based retrieval in huge and ever growing collections of data pro-
duced in application areas such as multimedia, molecular biology,
marketing, computer-aided design and purchasing assistance. As
the variety of data types is fast going towards creating a database
utilized by people, the computer systems must be able to model hu-
man fundamental reasoning paradigms, which are naturally based
on similarity. The ability to perceive similarities is crucial for recog-
nition, classification, and learning, and it plays an important role
in scientific discovery and creativity. Recently, the mathematical
notion of metric space has become a useful abstraction of similarity
and many similarity search indexes have been developed.

In this thesis, we accept the metric space similarity paradigm
and concentrate on the scalability issues. By exploiting computer
networks and applying the Peer-to-Peer communication paradigms,
we build a structured network of computers able to process similar-
ity queries in parallel. Since no centralized entities are used, such
architectures are fully scalable. Specifically, we propose a Peer-
to-Peer system for similarity search in metric spaces called Met-
ric Content-Addressable Network (MCAN) which is an extension
of the well known Content-Addressable Network (CAN) used for
hash lookup. A prototype implementation of MCAN was tested
on real-life datasets of image features, protein symbols, and text
— observed results are reported. We also compared the perfor-
mance of MCAN with three other, recently proposed, distributed
data structures for similarity search in metric spaces.

Acknowledgments

It is a great honor and privilege for me to have an international joint
supervision of my Ph.D. dissertation. I want to thank the Univer-
sity of Pisa and the Masaryk University, Brno for their agreement
regarding this joint supervision. I am grateful to my supervisors
Lanfranco Lopriore, Fausto Rabitti and Pavel Zezula for their guid-
ance and encouragement. Since I was not just a Ph.D. student at
the University of Pisa but also at the Masaryk University, I had the
opportunity to work with several researchers in Brno, especially
Michal Batko, David Novak and Vlastislav Dohnal. The discus-
sions we had and the work we did together were fundamental for
the completion of this thesis.

This thesis would not have been possible without the substan-
tial help from Claudio Gennaro and without the discussions I had
with Giuseppe Amato and Pasquale Savino. I also thank all the
other people at the Networked Multimedia Information Systems
laboratory of the Institute of Information Science and Technolo-
gies, especially Fausto Rabitti who is the head of the laboratory
and his predecessor Costantino Thanos. I would also like to thank
Cosimo Antonio Prete and Sandro Bartolini for teaching me the
basics of research during my master thesis. Finally, I thank my
mother and father for supporting me during my studies.

To Moly

Contents

Abstract iii

Acknowledgments v

Table of Contents vii

Introduction xiii
I.1 Similarity Search xiv
I.2 Statement of the Problem xv

I.2.1 Purpose of the Study xvi
I.2.2 Significance of the Study xvii
I.2.3 Limitations of the Study xviii
I.2.4 Summary xix

1 The Similarity Search Problem 1
1.1 Similarity Search 1
1.2 Similarity Queries 3

1.2.1 Range Query 4
1.2.2 Nearest Neighbor Query 4
1.2.3 Combinations of Queries 5
1.2.4 Complex Similarity Queries 5

1.3 Metric Spaces . 7
1.3.1 Metric Distance Measures 9

1.4 Access Methods for Metric Spaces 12
1.4.1 Ball Partitioning 12
1.4.2 Generalized Hyperplane Partitioning 12
1.4.3 Exploiting Pre-Computed Distances 13

ix

x CONTENTS

1.4.4 Hybrid Indexing Approaches 13

2 Distributed Indexes 15
2.1 Scalable and Distr. Data Structures 16
2.2 Peer-to-Peer Systems 19

2.2.1 Characterization 21
2.2.2 The lookup problem 25

2.3 Unstructured Peer-to-Peer Systems 27
2.4 Structured Peer-to-Peer Systems 29

2.4.1 Introduction to DHTs 29
2.4.2 Chord . 36
2.4.3 Pastry . 39
2.4.4 Tapestry . 41
2.4.5 Chimera . 42
2.4.6 Z-Ring . 42
2.4.7 Content Addressable Network CAN 43
2.4.8 Kademlia 43
2.4.9 Symphony 46
2.4.10 Viceroy . 47
2.4.11 DHTs Comparison 49
2.4.12 DHTs Related Works 49
2.4.13 P-Grid . 50
2.4.14 Small-World and Scale-Free 51
2.4.15 Other Works 52

2.5 Metric Peer-to-Peer Structures 52
2.5.1 GHT∗ and VPT∗ 53
2.5.2 M-Chord . 57

2.6 Peer-to-Peer and Grid Computing 59

3 Content-Addressable Network (CAN) 63
3.1 Node arrivals . 64

3.1.1 Finding a Zone 66
3.1.2 Joining the Routing 67

3.2 Routing . 67
3.3 Node departures . 69
3.4 Load Balancing . 70

0.0. CONTENTS xi

3.5 M-CAN: CAN-based Multicast 70

3.6 CAN Related Works 74

4 MCAN 77

4.1 Mapping . 78

4.1.1 Pivot Selection 79

4.2 Filtering . 80

4.3 Regions . 81

4.4 Construction . 82

4.5 Insert . 83

4.6 Split . 84

4.7 Execution End Detection 85

4.8 Range Query . 86

4.9 Nearest Neighbor query 88

5 MCAN Evaluation 95

5.1 Dimensionality of the Mapped Space 95

5.2 Range query . 98

5.3 Nearest Neighbor query 103

5.3.1 Number of peers involved in query execution 106

5.3.2 Total number of distance computations . . . 107

5.3.3 Parallel cost of kNN 112

5.3.4 Candidate results 112

6 MCAN Comparison with other structures 117

6.1 Experiments Settings 118

6.2 Measurements . 119

6.3 Scalability with Respect to the Size of the Query . 120

6.4 Scalability with Respect to the Size of Datasets . . 130

6.5 Number of Simultaneous Queries 136

6.6 Comparison Summary 140

7 Conclusions 143

7.1 Research Directions 144

Bibliography 145

xii CONTENTS

Index 174

Introduction

Traditionally, search has been applied to structured (attribute-
type) data yielding records that exactly match the query. However,
to find images similar to a given one, time series with similar devel-
opment, or groups of customers with common buying patterns in
respective data collections, the traditional search technologies sim-
ply fail. In these cases, the required comparison is gradual, rather
than binary, because once a reference (query) pattern is given, each
instance in a search file and the pattern are in a certain relation
which is measured by a user-defined dissimilarity function.

These types of search are more and more important for a va-
riety of current complex digital data collections and are generally
designated as similarity search. Thus similarity search has become
a fundamental computational task in many applications. Unfortu-
nately, its cost is still high and grows linearly with respect to the
dataset size which prevents the realization of efficient applications
for the ever-increasing amount of digital information being created
today.

In the last few years, Peer-to-Peer systems have been widely
used particularly for file-sharing, distributed computing, Internet-
based telephony and video multicast. The growth in the usage of
these applications “is enormous and even more rapid than that of
the World Wide Web” [183]. In a Peer-to-Peer system autonomous
entities (peers) aim for the shared usage of distributed autonomous
resources in a networked environment. Taking advantage of these
distributed resources, scalability issues of centralized solutions for
specific applications have been overcome.

In this thesis we present a scalable distributed similarity search

xiv INTRODUCTION

structure for similarity search in metric spaces, which is called Met-
ric Content-Addressable Network (MCAN). MCAN extends the
well known structured Peer-to-Peer system CAN described in Chap-
ter 3 [p.63], to generic metric space objects. MCAN uses the Peer-
to-Peer paradigm to overcome scalability issues of centralized struc-
tures for similarity search, taking advantage of distributed resources
over the Peer-to-Peer network.

I.1 Similarity Search

Similarity search is based on gradual rather than exact relevance
and is used in content-based retrieval for queries involving complex
data types such as images, videos, time series, text and DNA se-
quences. For instance, for the experimental results reported in this
thesis, we use 3 datasets which cover very different topics: vectors
of color image features, protein symbol sequences, and titles and
subtitles of books and periodicals from several academic libraries.

In similarity search, discussed in Chapter 1 [p.1], a distance
between objects is used to quantify the proximity, similarity or dis-
similarity of a query object versus the objects stored in a database
to be searched. Although many similarity search approaches have
been proposed, the most generic one considers the mathematical
notion of metric space (see Section 1.3 [p.7]) as a suitable abstrac-
tion of similarity. The simple but powerful concept of the metric
space consists of a domain of objects and a distance function which
satisfies a set of constraints. It can be applied not only to multi-
dimensional vector spaces, but also to different forms of string ob-
jects, as well as to sets or groups of various natures, etc. However,
the similarity search is inherently expensive and for centralized in-
dexes the search costs increase linearly as the stored dataset grows,
thus preventing them from being applied to huge files that have
become common and are continuously growing.

Applications of similarity search for multimedia objects have
been studied extensively. In the last few years, standardization pro-
cesses have took place to make multimedia features interchangeable,

I.2. STATEMENT OF THE PROBLEM xv

thus moving the problem of comparing two multimedia objects to
the problem of comparing their standardized features which could
be automatic extracted by different software. In particular in the
Multimedia Content Description Interface standard MPEG-7 [87],
a great number of low level features for multimedia objects have
been defined. Moreover, distance functions to evaluate the dis-
similarity of two multimedia objects have been suggested by the
Moving Picture Experts Group (MPEG) [154]. The low level fea-
tures of MPEG-7 have been largely used in advanced multimedia
information systems (e.g. MILOS Photo Book [9, 10]).

I.2 Statement of the Problem

Current centralized similarity search structures for metric spaces
reveal linear scalability with respect to the data set size. Obviously,
this is not sufficient for the expected data volume dimension of the
problem, and this is why there is no web search engine able to
search the web for images similar to a given one. In fact, the image
search application available (e.g. Google Image Search1, Yahoo!
Image Search2) are simply based on the accompanying or manual
annotated text (e.g. Google Image Labeler3).

Peer-to-Peer systems are today widely used to perform unscal-
able tasks in network of volunteer nodes (e.g. file sharing, search
for extraterrestrial intelligence, video broadcasting over the Inter-
net, etc.). However, centralized indexes for exact match queries
are still largely used in file sharing communities. In this context,
distributed indexes are mostly used because it is more difficult for
the authorities to shut down them. Distributed Peer-to-Peer web
search engines have also been proposed to avoid the existence of a
centralized control (e.g. Google).

In recent years various structured Peer-to-Peer systems have
been proposed for exact match indexing (see Section 2.4 [p.29]).

1http://images.google.com/
2http://images.search.yahoo.com/
3http://images.google.com/imagelabeler/

xvi INTRODUCTION

However, their use is still limited because of the good performance
achievable by the centralized structures. We believe that structured
Peer-to-Peer systems for similarity search are more attractive be-
cause their centralized counterparts do not scale well and thus they
can not be used for huge amount of data.

Very recently four scalable distributed similarity search struc-
tures for metric data have been proposed. One is the MCAN which
is the object of this thesis. The other three are GHT*, VPT*
and M-Chord which we describe in Section 2.5 [p.52]. Each of
these structures is able to execute similarity queries for any metric
dataset, and they all exploit parallelism for query execution. All
these distributed similarity search structures adopt the Peer-to-Peer
paradigm trying to overcome scalability issues of similarity search
structures using distributed resources over a Peer-to-Peer network.

I.2.1 Purpose of the Study

In this thesis we consider the Peer-to-Peer paradigm to develop
a scalable and distributed data structure for similarity search in
metric spaces. Structured Peer-to-Peer systems have been proposed
to efficiently find data in a scalable manner in large Peer-to-Peer
systems using exact match. Almost all of them belong to the class
of Distributed Hash Tables (DHTs) discussed in Section 2.4 [p.29].

Our objective is to study the possibility of combining the capa-
bilities of metric space similarity search with the power and high
scalability of the Peer-to-Peer systems, especially DHTs, employing
their virtually unlimited storage and computational resources. For
this purpose we extend the Content-Addressable Network (CAN),
which is a well-known DHT, to support storage and retrieval of
generic metric space objects. More precisely, we want to address
the problem of executing Range and Nearest Neighbor queries (see
Section 1.2 [p.3]). Particular attention is given to the scalability of
the proposed solution with respect to the dataset size.

Because of the great variety of forms of data that do satisfy the
metric assumptions, we evaluate the performance of the proposed
solution using different datasets (i.e. of image features, protein

I.2. STATEMENT OF THE PROBLEM xvii

symbols and text) and different metric distance functions.

Considering that almost at the same time that we were de-
veloping our MCAN, other three similar structures (i.e. GHT*,
VPT* and M-Chord) were proposed, we want to compare their
performance considering various performance measures and vari-
ous datasets.

I.2.2 Significance of the Study

The proposed MCAN has been proved to be scalable with respect
to the dataset size considering the response time of Range queries.
Three different strategies for performing Nearest Neighbor queries
were studied. The study demonstrated that the mixed mode exe-
cution is the best choice in general. It responds well to the demand
of the scalability in terms of response time and consumes fewer
resources than the complete parallel approaches.

Implementing MCAN over the same framework in which, al-
most at the same time, three similar structures (i.e. GHT*, VPT*
and M-Chord) were built, it was possible to explore the perfor-
mance characteristics of the proposed algorithms by showing their
advantages and disadvantages.

The distributed similarity search structure approach is the core
of the European project SAPIR4 (Search on Audio-visual content
using Peer-to-peer Information Retrieval) that aims at finding new
ways to analyze, index, and retrieve the tremendous amounts of
speech, image, video, and music that are filling our digital universe,
going beyond what the most popular engines are still doing, that is,
searching using text tags that have been associated with multimedia
files. SAPIR is a three-year research project that aims at breaking
this technological barrier by developing a large-scale, distributed
Peer-to-Peer architecture that will make it possible to search for
audio-visual content by querying the specific characteristics (i.e.
features) of the content. SAPIR’s goal is to establish a giant Peer-
to-Peer network, where users are peers that produce audiovisual

4http://sysrun.haifa.il.ibm.com/sapir/

http://sysrun.haifa.il.ibm.com/sapir/

xviii INTRODUCTION

content using multiple devices and service providers are super-peers
that maintain indexes and provide search capabilities.

MCAN will be also used in the context of the Networked Peers
for Business (NeP4B)5, an Italian FIRB project which aims to con-
tribute innovative Information and Communication Technologies
solutions for small and medium enterprises by developing an ad-
vanced technological infrastructure to enable companies of any na-
ture, size and geographic location to search for partners, exchange
data, negotiate and collaborate without limitations and constraints.

I.2.3 Limitations of the Study

MCAN efficiently supports similarity search of a single type of fea-
ture. However, even for the same type of data, different features
can be used for searching. For instance, in content based image
retrieval parts of the entire images, obtained using image segmen-
tation software, can be searched considering different aspects, e.g.
the colors, the shape, the edges and the texture. Moreover, in most
cases a combination of features is requested. Whenever the com-
bination is fixed and the combined distance function is metric, our
proposed solution could be used, considering the combined features
as a whole. However, in some cases, the users would like to dynami-
cally specify the features to combine, the importance to give to each
feature and the combination function. To this purpose, the state of
the art complex queries algorithms that should be used (see Subsec-
tion 1.2.4 [p.5]), typically require an Incremental Nearest Neighbor
algorithm to be implemented for each feature. Moving from the
Nearest Neighbor algorithm presented in this thesis, it should be
possible to define an Incremental version. However, this is still an
open question which will be investigated in the near future.

Using CAN as the basis, MCAN inherited a lot of functionalities
that were proposed in the literature for the CAN (e.g. load balanc-
ing, multicast, recovering from node failures, etc.). However, the
performance of these functionalities should be extensively studied.

5http://www.dbgroup.unimo.it/nep4b/

http://www.dbgroup.unimo.it/nep4b/

I.2. STATEMENT OF THE PROBLEM xix

With distributed data structures for similarity search as the
MCAN, we achieved scalability of similarity queries with respect to
the dataset size adding resources as the dataset grows. Basically, we
supposed that resources (i.e. nodes) are at least proportional to the
dataset size which is quite common in Peer-to-Peer systems used
by communities. However, similarity queries do remain expensive
tasks which require a lot of resources.

I.2.4 Summary

The thesis is organized as follows. In Chapter 1 backgrounds and
definitions of the similarity search problem are given, with partic-
ular attention to the metric space abstraction. Scalable indexing
mechanisms in distributed systems are the topic of Chapter 2 where
the Scalable and Distributed Data Structures (SDDSs) and Peer-to-
Peer approaches are discussed. The Content-Addressable Network,
which is the base of our structure, is then discussed in Chapter 3.
Our Metric Content-Addressable Network, which is our Peer-to-
Peer similarity search structure, is defined in Chapter 4. Exhaus-
tive experimental evaluation is provided in Chapter 5. Finally, the
results of a comprehensive experimental comparison between our
and other three scalable distributed similarity search structures are
reported in Chapter 6.

Chapter 1

The Similarity Search
Problem

Similarity search, particularly in metric spaces, has been receiving
increasing attention in the last decade, due to its many applications
in widely different areas. Two recent books [191, 157], two surveys
in ACM Computing Surveys (CSUR) [46, 29] and ACM Transac-
tions on Database Systems (TODS) [84, 30], and the sharp increase
in publications in recent years witness the momentum gained by this
important problem.

The chapter is organized as follows. In Section 1.1 we discuss the
notion of similarity and we define the search problem. In Section 1.2
we will report the most used similarity queries. The metric space
abstraction is presented in Section 1.3 together with some metric
distance measures. Finally, we illustrate the most important cen-
tralized access method for metric spaces that has been presented in
the literature.

1.1 Similarity Search

The notion of similarity has been studied extensively in the field
of psychology and the given definition characterizes that similarity
has been found to have an important role in cognitive sciences. In
[75], R.L. Goldstone and S.J. Yun say:

1

2 CHAPTER 1. THE SIMILARITY SEARCH PROBLEM

An ability to assess similarity lies close to the core of
cognition. In the time-honored tradition of legitimiz-
ing fields of psychology by citing William James, “This
sense of Sameness is the very keel and backbone of our
thinking” [89, p.459]. An understanding of problem
solving, categorization, memory retrieval, inductive rea-
soning, and other cognitive processes requires that we
understand how humans assess similarity. Four major
psychological models of similarity are geometric, featu-
ral, alignment-based, and transformational.

From a database prospective, similarity search is based on grad-
ual rather than exact relevance. A distance between objects is used
to quantify the proximity, similarity or dissimilarity of a query ob-
ject versus the objects stored in a database to be searched.

A similarity search can be seen as a process of obtaining data
objects in order of their distance or dissimilarity from a given query
object. It is a kind of sorting, ordering, or ranking of objects with
respect to the query object, where the ranking criterion is the dis-
tance measure. Though this principle works for any distance mea-
sure, we restrict the possible set of measure to the metric distance
(see Section 1.3 [p.7]). Because of the mathematical foundations
of the metric space notion, partitioning and pruning rules can be
constructed for developing efficient index structures. Therefore, in
the past years research has focused on metric spaces.

On the other hand, since many data domains in use are repre-
sented by vectors, we could restrict to this special case of coordinate
spaces which is a special case of metric space in which objects can
be seen as vectors. Unfortunately existing solutions for searching
in coordinate space suffer from the so-called dimensionality curse,
i.e. either become slower than naive algorithms with linear search
times or they use too much space. Moreover, some spaces have co-
ordinates restricted to small sets of values, so that the use of such
coordinates could not be helpful. Therefore, even if the use of co-
ordinates can be advantageous in special cases, as Clarkson said in
[53]:

1.2. SIMILARITY QUERIES 3

to strip the problem down to its essentials by only con-
sidering distances, it is reasonable to find the minimal
properties needed for fast algorithms.

As in [191], we consider the problem of organizing and searching
large datasets from the perspective of generic or arbitrary metric
space, sometimes conveniently labelled distance space. In general,
the search problem can be described as follows:

Problem 1. Let D be the domain, d a distance measure on D, and
M = (D, d) a metric space. Given a set X ⊆ D of elements, prepro-
cess or structure the data so that proximity queries are answered
efficiently.

From a practical point of view, X can be seen as a file (a dataset
or a collection) of objects that takes values from the domain D, with
d as the proximity measure, i.e. the distance function defined for
an arbitrary pair of objects from D. In (Section 1.2 [p.3]) the most
common similarity queries will be presented.

In this thesis we will only considering metric distance functions
(see Section 1.3 [p.7]). The most important ones are presented in
Subsection 1.3.1 [p.9].

1.2 Similarity Queries

A similarity query is defined by a query object and a constraint on
the proximity required for an object to be in the result set. The
response to a query returns all the objects that satisfy the selection
conditions.

In this section we present the two basic types of similarity
queries, i.e. Range and Nearest Neighbor. We also consider the
Incremental Nearest Neighbor search and the problematics of com-
bining similarity queries and of complex similarity queries. For a
more complete description of similarity queries see [191, ch. 4].

4 CHAPTER 1. THE SIMILARITY SEARCH PROBLEM

1.2.1 Range Query

The simlarity range query R(q,r) is probably the most common
type of similarity search. The query is specified by a query object
q ∈ D, with some query radius r ∈ R as the distance constraint.
The query retrieves all the objects within distance r of q, formally:

R(q, r) = {x ∈ X ⊆ D, d(x, q) ≤ r} .

If need, individual objects in the response set can be ranked ac-
cording to their distance with respect to q. Observer that the query
object q needs not exist in the collection X ⊆ D to be searched.
The only restriction on q is that it belongs to the domain D. When
the range radius is zero, the range query R(q,r) is called a point
query or exact match. In this case, we are looking for an identical
copy (or copies) of the query object q. The most usual use of this
type of query is in delete algorithms, when we want to locate an
object to remove it from the database.

1.2.2 Nearest Neighbor Query

Whenever we want to search for similar objects using a range search,
we must specify a maximal distance for objects to qualify. But it
can be difficult to specify the radius without some knowledge of
the data and the distance function. For example, the range r = 3
of the edit distance metric represents less than four edit operations
between compared strings. This has a clear semantic meaning.
However, a distance of two color-histogram vectors of images is a
real number whose quantification cannot be so easily interpreted. If
too small a query radius is specified, the empty set may be returned
and a new search with a larger radius will be needed to get any
result. On the other hand, if query radii are too large, the query
may be computationally expensive and the response sets contain
many non significant objects.

An alternative way to search for similar objects is to use Near-
est Neighbor query. The elementary version of this query finds the
closest object to the given query object, that is the nearest neigh-

1.2. SIMILARITY QUERIES 5

bor of q. The concept can be generalized to the case where we
look for the k nearest neighbors. Specifically kNN(q) query re-
trieves the k nearest neighbors of the object q. If the collection
to be searched consists of fewer than k objects, the query returns
the whole database. Formally, the response set can be defined as
follows:

kNN(q) =

{R ⊆ X , |R| = k ∧ ∀x ∈ R, y ∈ X −R : d(q, x) ≤ d(q, y)} .

When several objects lie at the same distance from the k-th
nearest neighbor, the ties are solved arbitrarily.

1.2.3 Combinations of Queries

As an extension of the query types defined above, we can define ad-
ditional types of queries as combinations of the previous ones. For
example we might combine a range query with a nearest neighbor
query to get kNN(q,r) with the response set:

kNN(q, r) = {R ⊆ X , |R| ≤ k ∧ ∀x ∈ R, y ∈ X −R :

: d(q, x) ≤ d(q, y) ∧ d(q, x) ≤ r} .

In fact, we have constrained the result from two sides. First, all
objects in the result-set should lie at a distance not greater than r,
and if there are more than k of them, just the first (i.e. the nearest)
k are returned.

1.2.4 Complex Similarity Queries

Complex similarity queries are queries consisting of more than one
similarity predicate. Efficient processing of such kind of queries
differs substantially from traditional (Boolean) query processing.
The problem was studied first by Fagin in [60] (related works are

6 CHAPTER 1. THE SIMILARITY SEARCH PROBLEM

[61, 62, 63, 64]. The similarity score (or grade) a retrieved ob-
ject receives as a whole depends not only on the scores it gets for
individual predicates, but also on how such score are combined.

To this aim, Fagin has proposed the A0 algorithm [60]. This
algorithm assumes that for each query predicate we have an index
structure able to return objects in order of decreasing similarity.
Other related papers are [78, 134].

Ciaccia, Patella, and Zezula [51] have concentrated on complex
similarity queries expressed through a generic language. On the
other hand, they assume that query predicates are from a single
feature domain, i.e. from the same metric space. The proposed
evaluation process is based on distances between feature values,
because metric indexes can use just distances to evaluate predicates.
In [49] an extension of M-tree [50] is given. It outperforms the A0

algorithm but has the main drawback is that even though it is
able to employ more features during the search, these features are
compared using a single distance function.

A generalization of relational algebra to allow the formulation
of complex similarity queries over multimedia database called sim-
ilarity algebra with weights has been introduced in [48].

Incremental Nearest Neighbor Search

When finding k nearest neighbors to the query object using a kNN
algorithm (see Section 1.2.2 [p.4]), k is known prior to the invoca-
tion of the algorithm. Thus if the (k+1)-th neighbor is needed, the
kNN needs to be reinvoked for (k + 1) neighbors from scratch. To
resolve this problem, the authors of the Incremental Nearest Neigh-
bor algorithm [83] proposed the concept of distance browsing which
is to obtain the neighbors incrementally (i.e. one by one) as they
are needed. This operation means browsing through the database
on the basis of distance.

An incremental similarity search can provide objects in order
of decreasing similarity without explicitly specifying the number
of nearest neighbors in advance. This is especially important in
interactive database applications, as it makes it possible to display

1.3. METRIC SPACES 7

partial query results early. For more detail see [32] and [83]. The
incremental aspect also provides significant benefits in situations
where the number of desired neighbors is unknown beforehand, for
example when complex similarity queries are processed (see [62]).

1.3 Metric Spaces

Although many similarity search approaches have been proposed,
the most generic one considers the mathematical metric space as a
suitable abstraction of similarity.

Let M = (D, d) be a metric space defined for a domain of
objects (or the objects’keys or indexed feature), D and a total (dis-
tance) function d. In this metric space, the properties of the func-
tion d : D ×D → R, sometimes called the metric space postulates,
are typically characterized as:

∀x, y ∈ D, d(x, y) ≥ 0 non-negativity,

∀x, y ∈ D, d(x, y) = d(y, x) symmetry,

∀x, y ∈ D, x = y ⇔ d(x, y) = 0 identity,

∀x, y, z ∈ D, d(x, z) ≤ d(x, y) + d(y, z) triangle inequality.

d(x, y) is called the distance from x to y. A function d satisfying
the metric postulates is called a metric function [96] or simply the
metric. Therefore, if d is a metric function can be called metric
distance.

There are also several variations of metric spaces. In order to
specify them more easily, we first transform the metric space pos-
tulates given above, into an equivalent form in which the identity
postulate is decomposed into reflexivity (1.3) and positiveness (1.4):

8 CHAPTER 1. THE SIMILARITY SEARCH PROBLEM

∀x, y ∈ D, d(x, y) ≥ 0 non-negativity, (1.1)

∀x, y ∈ D, d(x, y) = d(y, x) symmetry, (1.2)

∀x ∈ D, d(x, x) = 0 reflexivity, (1.3)

∀x, y ∈ D, x 6= y ⇒ d(x, y) > 0 positiveness, (1.4)

∀x, y, z ∈ D, d(x, z) ≤ d(x, y) + d(y, z) triangle inequality.(1.5)

If the total (distance) function d does not satisfy the positive-
ness property (1.4), it is called a pseudo-metric [96]. Although for
simplicity we do not consider pseudo-metric spaces in this work,
such functions can be transformed to the standard metric by re-
garding any pair of objects with zero distance as a single object. In
fact if d is a pseudo-metric function, using triangle inequality (1.5):

d(x, y) = 0 ⇒ ∀z ∈ D, d(x, z,) = d(y, z) .

If the symmetry property (1.2) does not hold, we talk about
a quasi-metric. For eample, let the objects be different locations
within a city, and the distance function the physical distance a
car must travel between them. The existence of one-way streets
implies the function must be asymmetrical. There are techniques to
transform asymmetric distances into symmetric form, for example:

dsym(x, y) = dasym(x, y) + dasym(y, x,) .

If the function d satisfies a stronger constraint on the triangle
equality:

∀x, y, z ∈ D, d(x, z) ≤ max{d(x, y), d(y, z)} .

d is called super-metric or ultra-metric. The geometric char-
acterization of the super-metric requires every triangle to have at
least two sides of equal length, i.e. to be isosceles, which implies
that the third side must be shorter than the others. Ultra-metrics
are widely used in the field of biology, particularly in evolution-
ary biology. By comparing the DNA sequences of pairs of species,

1.3. METRIC SPACES 9

evolutionary biologists obtain an estimate of the time which has
elapsed since the species separated. From these distances, an evo-
lutionary tree (sometimes called phylogenetic tree) can be recon-
structed, where the weights of the tree edges are determined by the
time elapsed between two speciation events [142, 143]. Having a set
of extant species, the evolutionary tree forms an ultra-metric tree
with all the species stored in leaves and an identical distance from
root to leaves. The ultra-metric tree is a model of the underlying
ultra-metric distance function.

1.3.1 Metric Distance Measures

In the following, we present examples of distance functions used
in practice on various types of data. Typically, distance functions
are specified by domain experts. Depending on the character of
values returned, distance measures can be divided into two groups:
discrete (i.e. distance functions that return only a predefined small
set of values) and continuous (i.e. distance functions in which the
cardinality of the set of values returned is very large or infinite).

A survey of the most important metric distances can be found
in [191, ch. 3].

Minkowski Distances

The Minkowski distance functions form a whole family of metric
functions. They are usually designated as the Lp metrics where p is
a parameter. These functions are defined on n-dimensional vectors
of real numbers as:

Lp [(x1, . . . , x2) , (y1, . . . , y2)] = p

√√√√ n∑
i=1

|xi − yi|p .

The L1 distance is known as the Manhattan distance (also called
the City-Block distance. The L2 distance denotes the well-known
Euclidean distance. The maximum distance or infinite distance or
chessboard distance is defined as:

10 CHAPTER 1. THE SIMILARITY SEARCH PROBLEM

L∞ =
n

max
i=1

|xi − yi| .

The Lp metrics are used in measurements of scientific experi-
ments, environmental observations, or the study of different aspects
of the business process.

Quadratic Form Distance

The quadratic form distance function has been successfully applied
to vectors that have individual components correlated, i.e. a kind
of cross-talk exists between individual dimensions (e.g. color his-
tograms of images [67, 80, 158]).

A generalized quadratic distance measure is defined as

dM(~x, ~y) =
√

(~x− ~y)T ·M · (~x− ~y) ,

where M is a semi-definite matrix where the weights mi,j de-
note how strong the connection between two components i and j
of vectors ~x and ~y is.

Observe that this definition also subsumes the Euclidean dis-
tance when M is the identity matrix. When M = diag(w1, . . . , wn)
the quadratic form distance collapse to the so called weighted Eu-
clidean distance:

dM(~x, ~y) =

√√√√ n∑
i=1

wi(xi − yi)2 .

Edit Distance

The closeness of sequences of symbols (strings) can be effectively
measured by the edit distance, also called the Levenshtein distance
presented in [101]. The distance between two string x and y is
defined as the minimum number of atomic edit operations (insert,
delete and replace) needed to transform string x into string y.

1.3. METRIC SPACES 11

The generalized edit distance function assigns weights (positive
real numbers) to individual atomic operations. Hence, the gener-
alized edit distance is the minimum value of the sum of weighted
atomic operations needed to transform x into y. In case the weight
of insert and delete operations differ the generalized edit distance
is not metric.

Using weighting functions, we can define a most generic edit dis-
tance which assigns different costs even to operations on individual
characters. In this case, to retain the metric postulates some addi-
tional limits must be placed on weight functions (e.g. symmetry of
substitutions).

A survey on string matching can be found in [131].

Tree Edit Distance

A proximity measure for trees is the tree edit distance (see [77,
117] which defines a distance between two tree structures as the
minimum cost needed to convert the source tree to the target tree
using a predefined set of tree edit operation, such as the insertion
or deletion of a node (i.e. a generalization of the edit distance
to labeled trees). Since XML documents are typically modeled
as rooted labeled trees, the tree edit distance can also be used to
measure the structural dissimilarity of XML documents.

Jacard’s Coeeficient

Assuming two sets A and B, Jacard’s coefficient is defined as fol-
lows:

d(A, B) = 1− A ∩B

A ∪B
.

An example of an application is measuring similarity of users
search interest considering the URLs the accessed browsing the In-
ternet. An application of this metric to vector data is called the
Tanimoto similarity measure. An even more complicated distance
measure defined on sets is the Hausdorff distance [86].

12 CHAPTER 1. THE SIMILARITY SEARCH PROBLEM

1.4 Access Methods for Metric Spaces

Relevant surveys on indexing techniques in metric spaces have been
published by Chávez, Navarro, Baeza-Yates, and Marroqúın in 2001
[46], by Hjaltason and Samet in 2003 [84] and by Zezula, Amato,
Dohnal, and Batko in 2006 [191, ch. 2] .

As in [191] we divide the individual techniques into four groups:
Ball Partitioning, Generalized Hyperplane Partitioning, Exploiting
Pre-Computed Distances, Hybrid Indexing Approaches. We will
not take into account techniques for approximate similarity search.
For a survey of approximate similarity search see [191, ch. 2.5]).

1.4.1 Ball Partitioning

Ball partitioning requires only one pivot and, provided the median
distance is known, the resulting subsets contain the same amount of
data. Numerous indexing approaches based on this simple concept
have being defined.

The most important techniques using ball partitioning are: Burk-
hard-Keller Tree (BKT) [34], Fixed Queries Tree (FQT) [14], Fixed
Queries Array (FQA) [45], Vantage Point Tree (VPT) [188], Ex-
cluded middle Vantage Point Forest [189].

1.4.2 Generalized Hyperplane Partitioning

An orthogonal approach to ball partitioning is Generalized Hyper-
plane Partitioning. Two reference objects (pivots) are arbitrarily
chosen and assigned to two distinct objects subset. All objects are
assigned to the subset containing the pivot which is nearest to the
object itself. In contrast to ball partitioning the generalized hyper-
plane does not guarantee a balanced split, and a suitable choice of
reference points to achieve this objective is an interesting challenge.

The most important techniques of this type are: Bisector Tree
(BST) [92], Generalized Hyperplane Tree (GHT) [176].

1.4. ACCESS METHODS FOR METRIC SPACES 13

1.4.3 Exploiting Pre-Computed Distances

In [160] Shasha and Wang suggested using pre-compouted distances
between data objects. Pairwise distance which are not stored (typ-
ically those from a query object to database objects) are esti-
mated as intervals using the pre-computed distances. This tech-
nique of storing and using pre-computed distances may be effective
for datasets of small cardinality, but space requirements and search
complexity become overwhelming for larger files.

The most important techniques of this type are: Approximat-
ing and Eliminating Search Algorithm (AESA) [177, 178], Linear
AESA (LAESA) [122] Spaghettis [44]. LAESA and Spaghettis, in
particular, store distances from objects to only a fixed number of
pivots chosen with specific algorithms.

1.4.4 Hybrid Indexing Approaches

Indexing methods that employ pre-computed distances provide high
performance boosts in terms of computational costs. However, the
price to pay for their performance is their enormous space require-
ments. A straightforward remedy is to combine both the parti-
tioning principle and the pre-computed distances technique into a
single index structure.

The most important hybrid indexing approaches are: Multi
Vantage Point Tree (MVPT) [30], Geometric Near-neighbor Access
Tree(GNAT) [31], Spatial Approximation Tree (SAT) [130, 132],
Metric Tree (M-tree) [50] (see [191, ch. 3] for a survey of M-Trees
variants), Similarity Hashing (SH) [73], D-Index [57].

Chapter 2

Distributed Indexes

During the last few years, numerous papers have been published
about scalable indexes in distributed environments. As Aberer
suggested in [3], two classes have been studied in the literature:
Scalable and Distributed Data Structures (SDDSs) and Distributed
Hash Tables (DHTs).

SDDSs have been investigated for indexing scalable and dis-
tributed databases on workstation clusters. In most of the cases,
they are variants of distributed search trees and hash-based access
structures. SDDSs are characterized by a client-server architecture,
a medium number of nodes, and typical by some form of global co-
ordination, such as split coordinators or global directories. SDDSs
are analyzed in more details in Section 2.1.

DHTs, which represent the most important class of structured
Peer-to-Peer systems, have been studied for implementing global-
scale resource access in Peer-to-Peer architectures. DHTs differ
from SDDSs through complete (or almost complete) degree of de-
centralization. They implement routing schemes for quickly locat-
ing resources identified by a data key in a network of N peers (typ-
ically in O(log(N)) time). The search can be started at any peer,
without relying on a centralized directory. In Section 2.2 an intro-
duction to the Peer-to-Peer paradigm is given while unstructured
and structured Peer-to-Peer systems are discussed in Section 2.3
and Section 2.4 respectively. Finally in Section 2.5 we illustrate

15

16 CHAPTER 2. DISTRIBUTED INDEXES

other 3 distributed similarity search structures that were developed
at the same time we developed our MCAN.

2.1 Scalable and Distr. Data Structures

In 1993 the use of mass produced PCs and WSs, interconnected
through high speed networks (10 Mb/s - 1 Gb/s) were becoming
prevalent in many organizations. Multicomputers needed new sys-
tem software, fully taking advantage of the distributed RAM and
of parallel processing on multiple CPUs. As Litwin, Neimat, and
Schneider said in [113], a frequent problem of developing such kind
of software is that:

[. . .] while the use of too many sites may deteriorate
performance, the best number of sites to use is either
unknown in advance or could evolve during processing.
Given a client/server architecture, we are interested in
methods for gracefully adjusting the number of servers,
i.e. the number of sites or processors involved.

Basically, the problem was to find data structures that efficiently
would use the servers.

Litwin, Neimat, and Schneider in [111, 113] defined Scalable
Distributed Data Structure (SDDS) to solve this problem. They
defined a SDDS as a structure that meets tree constraints:

1. A file expands to new servers gracefully, and only when servers
already used are efficiently loaded.

2. There is no master site that object address computations must
go through, e.g. to access a centralized directory.

3. The file access and maintenance primitives, e.g. search, in-
sertion, split, etc., never require atomic updates to multiple
clients.

2.1. SCALABLE AND DISTR. DATA STRUCTURES 17

As Zezula, Amato, Dohnal, and Batko in [191], we refer these
tree constraints respectively as: scalability, no hot-spot and inde-
pendence.

In [112] the same authors gave a slightly different definition of
an SDDS:

An SDDS stores data on some sites called server,
and is used from some sites called clients, basically dis-
tinct, but not necessarily. [. . .] Every SDDS must re-
spect three design requirements.

1. First, no central directory is used for data address-
ing, to avoid a hot-spot.

2. Next, a client image can be outdated, being up-
dated only through messages, called Image Adjust-
ment Messages (IAMs). These are sent only when
a client makes an addressing error. A client au-
tonomy is preserved in this way, which is a major
requirement for multicomputers [126].

3. Finally, a client with an outdated image can send a
key to an incorrect server, in which case the struc-
ture should deliver it to the right server, and trigger
an IAM.

While the no hot-spot and independence properties, as they are
called in [191], are present in both the definitions (i.e. [111, 113] and
[112]), the scalability property is here missed. Obviously SDDS are
still considered scalable (it’s in the name), but the way in which
the scalability is achieve is no more specified. Instead, in [112],
the authors gave a further specification of the message behavior.
Essentially an SDDS must be tolerant to client addressing errors.
This property was already present in the LH* [111], but it was not
considered in the SDDS definition.

From the very beginning it was clear that there are two impor-
tant goals in SDDSs: minimizing the messages and maximizing the
load factor load factor.

As Litwin, Neimat, and Schneider said in [111],

18 CHAPTER 2. DISTRIBUTED INDEXES

to make an SDDS efficient, one should minimize the
messages exchanged through the network, while maxi-
mizing the load factor.

The SDDSs studied in the literature can be grouped in four
classes:

• SDDSs for hashed files.

Distributed Linear Hashing (LH*) [111, 56, 113, 109, 105,
179, 93].

They extend the more traditional dynamic hash data struc-
tures, especially the popular linear hashing [106, 107, 159]
used, e.g. in the Netscape browser, and the dynamic hashing
[99], to the network multicomputers, and switched multicom-
puters.

• SDDSs for ordered files.

RP* (a family of Order Preserving SDDS) [112], Distributed
Random Tree (DRT) [97].

They extend the traditional ordered data structures, B-trees
or binary trees, to the multicomputers.

• SDDSs for multi-attribute (multi-key) files.

k-RP*S [110], [129].

These algorithms extend the traditional k-d data structures
[156] to the multicomputers. Performance of multi-attribute
search may get improved by several orders of magnitude.

• high-availability SDDSs.

LH*s [105, 109].

They have no known counterpart among the traditional data
structures. They are designed to transparently survive fail-
ures of server sites. They apply principles of mirroring, or of
striping, or of grouping of records, revised to support the file
scalability.

2.2. PEER-TO-PEER SYSTEMS 19

A number of systems have been built using SDDSs, by Litwin et
al. (see [108]), as well as the P-Grid system at EPFL in Switzerland
[4] and the Snowball distributed file system at the University of
Kentucky [180].

2.2 Peer-to-Peer Systems

The popularity of Peer-to-Peer has led to a number of (often con-
tradictory) definitions.

Tim O’Reilly in [139, p.40] says:

Ultimately, Peer-to-Peer is about overcoming the bar-
riers to the formation of ad hoc communities, whether
of people, of programs, of devices, or of distributed re-
sources.

The definition [186] currently adopted by Wikipedia [187] says
that:

A Peer-to-Peer (or P2P) computer network is a net-
work that relies primarily on the computing power and
bandwidth of the participants in the network rather than
concentrating it in a relatively low number of servers.

Shirky in [161, p.22] defines Peer-to-Peer as (its definition has
also been adopted by Ian Foster in [71]):

Peer-to-Peer is a class of applications that takes ad-
vantage of resources — storage, cycles, content, human
presence — available at the edges of the Internet.

The Shirky’s definition, as suggested by Androutsellis-Theotokis
and Spinellis in [11], encompasses systems that completely rely
upon centralized servers for their operation (such as SETI@home1,
various instant messaging systems, or even the notorious Napster),
as well as various applications from the field of Grid computing.

Steinmetz refined the Shirky’s definition in [163]:

1http://setiathome.berkeley.edu/

http://setiathome.berkeley.edu/

20 CHAPTER 2. DISTRIBUTED INDEXES

[a Peer-to-Peer system is] a self-organizing system of
equal, autonomous entities (peers) [which] aim for the
shared usage of distributed resources in a networked en-
vironment avoiding central services.

Moreover, Steinmetz and Wehrle in [165] give an equivalent
shorter definition:

[a Peer-to-Peer system is] a system with completely de-
centralized self-organization and resource usage.

The Steinmetz and Wehrle’s definition is the one that we prefer
and thus, it will be used in the rest of the thesis. While the other
ones can be more expressive, the Steinmetz and Wehrle’s definition
is the most technical one.

In [11], the lack of agreement on a definition – or rather the ac-
ceptance of various different definitions -- is attributed to the fact
that systems or applications are labeled Peer-to-Peer not because
of their internal operation or architecture whether they give the
impression of providing direct interaction between computers. As
a result, different definitions of Peer-to-Peer are applied to accom-
modate the various different cases of such systems or applications.
However, they too propose a definition:

Peer-to-peer systems are distributed systems consisting
of interconnected nodes able to self-organize into net-
work topologies with the purpose of sharing resources
such as content, CPU cycles, storage and bandwidth,
capable of adapting to failures and accommodating tran-
sient populations of nodes while maintaining acceptable
connectivity and performance, without requiring the in-
termediation or support of a global centralized server or
authority.

This definition is meant to encompass degrees of centralization
ranging from the pure, completely decentralized systems such as
Gnutella, to partially centralized systems such as Kazaa2.

2http://www.kazaa.com

http://www.kazaa.com

2.2. PEER-TO-PEER SYSTEMS 21

Peer-to-Peer gained visibility with Napster’s support for music
sharing on the Web and its lawsuit with the music companies. How-
ever, the Peer-to-Peer approach is by no means just a technology
for file sharing. Rather,

it forms a fundamental design principle for distributed
systems. It clearly reflects the paradigm shift from coor-
dination to cooperation, from centralization to decen-
tralization, and from control to incentives. Incentive-
based systems raise a large number of important research
issues. Finding a fair balance between give and take
among peers may be crucial to the success of this tech-
nology. [164]

There are a number of books published about Peer-to-Peer sys-
tems [138, 123, 68, 54, 128, 17, 169, 100], mobile networks [140, 85],
Peer-to-Peer Information Retrieval [see 7, 173]. Good surveys of
Peer-to-Peer systems are [124, 11].

2.2.1 Characterization

As suggested by Steinmetz and Wehrle in [165], Peer-to-Peer sys-
tems are characterized as follows (though a single system rarely
exhibits all of these properties):

Decentralized Resource Usage:

1. Resources of interest (bandwidth, storage, processing power)
are used in a manner as equally distributed as possible and are
located at the edges of the network, close to the peers. Thus,
with regard to network topology, Peer-to-Peer systems follow
the end-to-end arguments [155] which are the main reasons
for the success of the Internet.

2. Within a set of peers, each utilizes the resources provided by
other peers. The most prominent examples for such resources
are storage and processing capacity. Other possible resources
are connectivity, human presence, or geographic proximity

22 CHAPTER 2. DISTRIBUTED INDEXES

(with instant messaging and group communication as appli-
cation examples).

3. Peers are interconnected through a network and in most cases
distributed globally.

4. A peer’s Internet address typically changes so the peer is not
constantly reachable at the same address (transient connec-
tivity). Often, they may be disconnected or shut down over
longer periods of time. Among other reasons, this encour-
ages Peer-to-Peer systems to introduce new address and name
spaces above of the traditional Internet address level. Hence,
content is usually addressed through unstructured identifiers
derived from the content with a hash function. Consequently,
data is no longer addressed by location (the address of the
server) but by the data itself. With multiple copies of a data
item, queries may locate any one of those copies. Thus Peer-
to-Peer systems locate data based on content in contrast to
location-based routing in the Internet.

Decentralized Self-Organization:

1. In order to utilize shared resources, peers interact directly
with each other. In general, this interaction is achieved with-
out any central control or coordination. Peer-to-Peer systems
establish a cooperation between equal partners.

2. Peers directly access and exchange the shared resources they
utilize without a centralized service. Thus Peer-to-Peer sys-
tems represent a fundamental decentralization of control mech-
anisms. However, performance considerations may lead to
centralized elements being part of a complete Peer-to-Peer
system, e.g. for efficiently locating resources. Such systems
are commonly called server-based or centralized Peer-to-Peer
systems (see Figure 2.1 [p.23]).

3. In a Peer-to-Peer system, peers can act both as clients and
servers. This is radically different from traditional systems

2.2. PEER-TO-PEER SYSTEMS 23

Figure 2.1: Summary of the characteristic features of Client-Server
and Peer-to-Peer networks

with asymmetric functionality. It leads to additional flexibil-
ity with regard to available functionality and to new require-
ments for the design of Peer-to-Peer systems.

4. Peers are equal partners with symmetric functionality. Each
peer is fully autonomous regarding its respective resources.

5. Ideally, resources can be located without any central entity or
service. Similarly, the system is controlled in a self-organizing
or ad hoc manner. As mentioned above, this guide line may
be violated for reasons of performance. However, the decen-
tralized nature should not be violated. The result of such a
mix is a Peer-to-Peer system with a server-based approach.

As shown in Figure 2.1 (taken from [59]), in a Client-Server
system the server is the only provider of service or content. The
peers (clients) in this context only request content or service from
the server. The clients do not provide any service or content to

24 CHAPTER 2. DISTRIBUTED INDEXES

run this system. Thus generally the clients are lower performance
systems and the server is a high performance system. In contrast,
in Peer-to-Peer systems all resources, i.e. the shared content and
services, are provided by the peers. Some central facility may still
exist, e.g. to locate a given content. A peer in this context is
simply “an application running on a machine” [59], which may be
a personal computer, a handheld or a mobile phone. In contrast to
a Client-Server network, it is generally not possible to distinguish
between a content requestor (client) and a content provider, as one
application participating in the overlay in general offers content to
other peers and requests content from other participants. This is
often expressed by the term servent, composed of the first syllable
of the term Server and the second syllable of the term Client.

Using this basic concept Figure 2.1 outlines various possibili-
ties currently used. In the first generation centralized Peer-to-Peer
systems some central server is still available. However, this server
only stores the IP addresses of peers where some content is avail-
able. The address of that server must be known to the peers in
advance. This concept was widely used and became especially well
known due to Napster, offering free music downloads by providing
the addresses of peers sharing the desired content. This approach
subsequently lost much of its importance due to legal issues.

As a replacement for that scheme decentrally organized schemes,
generally termed pure Peer-to-Peer such as Gnutella 0.4 and Free-
net3 [52] became widely used. These schemes do not rely on any
central facility (except possibly for some bootstrap server to ease
joining such a network), but rely on flooding the desired content
identifier over the network. Contacted peers that share that content
will then respond to the requesting peer which will subsequently
initiate a separate download session. These schemes generate a po-
tentially huge amount of signaling traffic by flooding the requests.

To avoid that, schemes like Gnutella 0.6 or JXTA4 [76] intro-
duced a hierarchy by defining superpeers, which store the content
available at the connected peers together with their IP address. The

3http://freenetproject.org/
4http://www.jxta.org/

http://freenetproject.org/
http://www.jxta.org/

2.2. PEER-TO-PEER SYSTEMS 25

superpeers are often able to answer incoming requests by immedi-
ately providing the respective IP address, so that on average less
hops are required in the search process, thus reducing the signaling
traffic. This second generation Peer-to-Peer systems are generally
named hybrid.

2.2.2 The lookup problem

Because of their completely decentralized character, the distributed
coordination of resources is a major challenge in Peer-to-Peer sys-
tems. One of the research problems is: How do you find any given
data item x in a large Peer-to-Peer system in a scalable manner,
without any centralized server or hierarchy? [15]

More generally, x may be some (small) data item, the location
of some bigger content, or coordination data, e.g. the current status
of a node, or its current IP address, etc. This problem is the heart
of any Peer-to-Peer system and is called the lookup problem.

More precisely the lookup problem can be defined as:

Given a data item x stored at some dynamic set of
nodes in the system, find it. [15]

As underlined in [181], interesting questions about Peer-to-Peer
systems and the lookup problem are:

• Where should a node store a given data item x?

• How do other nodes discover the location of x?

• How can the distributed system5 be organized to assure scal-
ability and efficiency?

Four strategies have been proposed in literature to store and
retrieve data in distributed systems: server-based, hybrid Peer-
to-Peer, flooding search (also called pure Peer-to-Peer), and dis-
tributed indexing (also referred as structured Peer-to-Peer has been
adopted by DHTs).

5 In the context of Peer-to-Peer systems, the distributed system – the col-
lection of participating nodes pursuing the same purpose – is often called the
overlay network or overlay system.

26 CHAPTER 2. DISTRIBUTED INDEXES

Figure 2.2: Strategies to store and retrieve data in distributed sys-
tems comparison.

In Figure 2.2 [181] the three basic strategies (the hybrid is
missed) are compared considering the communication overhead and
storage cost per node. Also bottlenecks and special characteristics
of each approach are named.

Often, systems that adopt centralized and pure approaches are
referred as first generation Peer-to-Peer systems while the flood-
ing search is considered typical of second generation Peer-to-Peer
systems. Both first and second generation Peer-to-Peer systems
are generally termed unstructured because the content stored on
a given node and its IP address are unrelated and do not follow
any specific structure. Instead, systems that adopt the distributed
indexing approach are referred as structured Peer-to-Peer systems.
In Section 2.3 [p.27] and Section 2.4 [p.29] we analyze structured
and unstructured Peer-to-Peer systems respectively.

2.3. UNSTRUCTURED PEER-TO-PEER SYSTEMS 27

2.3 Unstructured Peer-to-Peer Systems

Both first generation (i.e. server-based and pure) and second gener-
ation (i.e. hybrid) (see Figure 2.1 [p.23]) Peer-to-Peer systems are
generally termed “Unstructured”, because the content stored on a
given node and its IP address are unrelated and do not follow any
specific structure.

The server-based approach was adopted by the first Peer-to-
Peer-based file sharing applications. The data was transferred di-
rectly between peers, only after looking up the location of a data
item via the server (Centralized P2P, cf. Figure 2.1 [59]).

First generation Peer-to-Peer systems, such as Napster, main-
tain the current locations of data items in a central server. After
joining the Peer-to-Peer system, a participating node submits to
the central server information about the content it stores and/or
the services it offers. Thus requests are simply directed to the cen-
tral server that responds to the requesting node with the current
location of the data. The transmission of the located content is
then organized in a Peer-to-Peer fashion between the requesting
node and the node storing the requested data.

The centralized server approach has the advantage of retrieving
the location of the desired information with a search complexity
of O(1). Also, fuzzy and complex queries are possible, since the
server has a global overview of all available content. However, the
central server is a critical element within the whole system concern-
ing scalability and availability. The complexity in terms of memory
consumption is O(|X |), with |X | representing the number of items
available in the distributed system. The server also represents a
single point of failure and attack.

Second generation of Peer-to-Peer systems (e.g. Gnutella6 0.4
and Freenet7[52]) pursued an opposite approach. They keep no ex-
plicit information about the location of data items in other nodes.
This means that there is no additional information concerning where
to find a specific item in the distributed system. Thus, to retrieve

6http://www.gnutella.com/
7http://freenetproject.org/

http://www.gnutella.com/
http://freenetproject.org/

28 CHAPTER 2. DISTRIBUTED INDEXES

a data item, the only chance is to ask as much participating nodes
as necessary, whether or not they presently have the requeste data.
Thus, in Peer-to-Peer systems, a request is broadcasted among the
nodes of the distributed system. If a node receives a query, it floods
this message to other nodes until a certain hop count (Time to Live
TTL) is exceeded.

Often, the general assumption is that content is replicated mul-
tiple times in the network, so a query may be answered in a small
number of hops. A well-known example of such an application is
Gnutella [1]. Gnutella includes several mechanisms to avoid request
loops, but it is obvious that such a broadcast mechanism does not
scale well. The number of messages and the bandwidth consumed
is extremely high and increases more than linearly with increasing
numbers of participants. In fact, after the central server of Napster
was shut down in July 2001 due to a court decision [185], an enor-
mous number of Napster users migrated to the Gnutella network
within a few days, and under this heavy network load the system
collapsed [15].

The advantage of flooding-based systems, such as Gnutella, is
that there is no need for proactive efforts to maintain the network.
Also, unsharp queries can be placed, and the nodes implicitly use
proximity due to the expanding search mechanism. Furthermore,
there are efforts to be made when nodes join or leave the network.
But still the complexity of looking up and retrieving a data item is
O(|X |2), or even higher, and search results are not guaranteed, since
the lifetime of request messages is restricted to a limited number of
hops.

On the other hand, storage cost is in the order of O(1) be-
cause data is only stored in the nodes actually providing the data
– whereby multiple sources are possible – and no information for a
faster retrieval of data items is kept in intermediate nodes. Over-
all, flooding search is an adequate technique for file-sharing-like
purposes and complex queries.

It is apparent that neither approach scales well. The server-
based system suffers from exhibiting a single point of attack as well
as being a bottleneck with regard to resources such as memory, pro-

2.4. STRUCTURED PEER-TO-PEER SYSTEMS 29

cessing power, and bandwidth, while the flooding-based approaches
show tremendous bandwidth consumption on the network. Gener-
ally, these unstructured systems were developed in response to user
demands (mainly file sharing and instant messaging) and conse-
quently suffer from ad hoc designs and implementations.

2.4 Structured Peer-to-Peer Systems

Contrary to the unstructured Peer-to-Peer systems, also Peer-to-
Peer approaches have been proposed which establish a link between
the stored content and the IP address of a node. These systems are
generally termed “structured Peer-to-Peer systems” (see Figure 2.1
[p.23]). The link between a content identifier and the IP address is
usually based on Distributed Hash Tables (DHTs).

2.4.1 Introduction to DHTs

As Wehrle, Gtz, and Rieche said in [181],

a Distributed Hash Table manages data by distributing
it across a number of nodes and implementing a routing
scheme which allows efficient look up the node on which
a specific data item is located. In contrast to flooding-
based searches in unstructured systems, each node in a
DHT becomes responsible for a particular range of data
items. Also, each node stores a partial view of the whole
distributed system which effectively distributes the rout-
ing information.

The DHT functionality, is already proving to be a useful sub-
strate for large distributed systems. DHTs have already been used
for distributed file systems [58, 151, 98] application-layer multicast
[146, 195], event notification services [36, 42].

The routing procedure, using the partial view stored by each
node, typically traverses several nodes, getting closer to the desti-
nation until the destination node is reached. Thus DHTs follow a

30 CHAPTER 2. DISTRIBUTED INDEXES

proactive strategy for data retrieval by structuring the search space
and providing a deterministic routing scheme.

As reported in [181], overall, DHTs possess the following char-
acteristics:

• In contrast to unstructured Peer-to-Peer systems, each DHT
node manages a small number of references to other nodes.
By means these are O(log(N)) references, where N depicts
the number of nodes in the system.

• By mapping nodes and data items into a common address
space, routing to a node leads to the data items for which a
certain node is responsible.

• Queries are routed via a small number of nodes to the target
node. Because of the small set of references each node man-
ages, a data item can be located by routing via O(log(N))
hops. The initial node of a lookup request may be any node
of the DHT.

• By distributing the identifiers of nodes and data items nearly
equally throughout the system, the load for retrieving items
should be balanced equally among all nodes.

• Because no node plays a distinct role within the system, the
formation of hot-spots or bottlenecks can be avoided. Also,
the departure or dedicated elimination of a node should have
no considerable effects on the functionality of a DHT. There-
fore, DHTs are considered to be very robust against random
failures and attacks.

• A distributed index provides a definitive answer about results.
If a data item is stored in the system, the DHT guarantees
that the data is found.

Address space

DHTs introduce new address spaces into which data is mapped.
Address spaces typically consist of large integer values. DHTs

2.4. STRUCTURED PEER-TO-PEER SYSTEMS 31

achieve distributed indexing by assigning a contiguous portion of
the address space to each participating node (Figure 7.6). Given
a value from the address space, the main operation provided by a
DHT system is the lookup function (see Subsection 2.2.2 [p.25]).

The mayor difference between DHT approaches is how they in-
ternally manage and partition their address space. In most cases,
these schemes lend themselves to geometric interpretations of ad-
dress spaces.

In a DHT system, each data item is assigned an identifier ID, a
unique value from the address space. This value can be chosen freely
by the application, but it is often derived from the data itself (e.g.
the complete binary file or the file name) via a collision-resistant
hash function, such as SHA-1 [137]. Thus the DHT would store
the file at the node responsible for the portion of the address space
which contains the identifier.

Based on the lookup function, most DHTs also implement a
storage interface similar to a hash table. Thus the put function ac-
cepts an identifier and arbitrary data to store the data. This identi-
fier and the data is often referred to as (key,value)-tuple. Symmetri-
cally, the get function retrieves the data associated with a specified
identifier.

DHTs can be used for a wide variety of applications. Applica-
tions are free to associate arbitrary semantics with identifiers, e.g.
hashes of search keywords, database indexes, geographic coordi-
nates, hierarchical directory like binary names, etc. Thus such di-
verse applications as distributed file systems, distributed databases,
and routing systems have been developed on top of DHTs, e.g.
application-layer multicast [95], email systems [125], storage sys-
tems [98, 58], indirection infrastructures [166], etc.

Load balancing

Most DHT systems attempt to spread the load of routing messages
and of storing data on the participating nodes evenly [150, 135].
However, as suggested in [181],there are at least three reasons why
some nodes in the system may experience higher loads than others:

32 CHAPTER 2. DISTRIBUTED INDEXES

• a node manages a very large portion of the address space,

• a node is responsible for a portion of the address space with
a very large number of data items,

• or a node manages data items which are particularly popular.

Under these circumstances, additional load-balancing mecha-
nisms can help to spread the load more evenly over all nodes. For
example, a node may transfer responsibility for a part of its address
space to other nodes, or several nodes may manage the same por-
tion of address space. In [149] load-balancing schemes are discussed
in details.

Routing

The fundamental principle of the large variety of approaches to
routing implemented by the DHT system is to provide each node
with a limited view of the whole system. Moreover, a bounded
number of links to other nodes are stored on each node. When a
node receives a message for a destination ID it is not responsible for
itself, it forwards the message to one of these other nodes it stores
information about. This process is repeated recursively until the
destination node is found.

The routing algorithm and the routing metric determine the
next-hop node. A typical metric is that of numeric closeness, i.e.
messages are always forwarded to the node managing the identifiers
numerically closest to the destination ID. A challenge for routing
algorithms and metrics designing is that node failures and incor-
rect routing information have limited or little impact on routing
correctness and system stability.

A key difference in the algorithms is the data structure that
they use as a routing table to provide O(log(N)) lookups.

Chord maintains a data structure that resembles a skiplist.
Each node in Kademlia, Pastry, and Tapestry maintains a tree-like
data structure. Viceroy maintains a butterfly data structure, which
requires information about only constant other number nodes, while

2.4. STRUCTURED PEER-TO-PEER SYSTEMS 33

still providing O(log(N)) lookup. A recent variant of Chord (Ko-
orde [91]), uses de Bruijn graphs, which requires each node to know
only about two other nodes, while also providing O(log(N)) lookup.

Data Storage

There are two possibilities for storing data in a DHT. In a DHT
which uses direct storage, the data is copied upon insertion to the
node responsible for it. In this case the node which inserted it can
subsequently leave the DHT without the data becoming unavail-
able. However there is an overhead in terms of storage and network
bandwidth. Since nodes may fail, the data must be replicated to
several nodes to increase its availability.

The other possibility is to store references to the data. The
inserting node only places a pointer to the data into the DHT. The
data itself remains on this node. However, the data is only available
as long as the node is available.

In both cases, the node using the DHT for lookup purposes does
not have to be part of the DHT in order to use its services. Thus
it is possible to realize a DHT service as third-party infrastructure
service (see OpenDHT Project [148]).

Node Arrival

Generally speaking, it takes four steps for a node to join a DHT.

1. The new node has to get in contact with the DHT.

2. The new node gets to know some arbitrary node of the DHT
using a bootstrap method (this node is used as an entry point
to the DHT until the new node is an equivalent member of
the DHT).

3. A partition in the logical address space is assigned to the
new node (the routing information in the system needs to be
updated to reflect the presence of the new node).

4. The new node retrieves all (key, value) pairs under its respon-
sibility from the node that stored them previously.

34 CHAPTER 2. DISTRIBUTED INDEXES

Depending on the DHT implementation, a node may choose
arbitrary or specific partitions on its own or not.

Node Failure

Because DHTs are often composed of poorly connected desktop
machines, failures are usually assumed to occur frequently. Thus
all non-local operations in a DHT need to resist failures of other
nodes, reflecting the self-organizing design of DHT algorithms. For
example, routing and lookup procedures are typically designed to
use alternative routes toward the destination when a failed node is
encountered on the default route. Many DHTs also employ proac-
tive recovery mechanisms, e.g. to maintain their routing informa-
tion. Consequently, they periodically probe other nodes to check
whether these nodes are still operational. Furthermore, node fail-
ures lead to a re-partitioning of the DHT’s address space. This
may in turn require (key, value)-pairs to be moved between nodes
and additional maintenance operations such as adaptation to new
load-balancing requirements. When a node fails, the application
data that it stored is lost unless the DHT uses replication to keep
multiple copies on different nodes. Some DHTs follow the sim-
pler soft-state approach which does not guarantee persistence of
data. Data items are pruned from the DHT unless the application
refreshes them periodically. Therefore, a node failure leads to a
temporary loss of application data until the data is refreshed.

Node Departure

Nodes which voluntarily leave a DHT could be treated the same as
failed nodes. However, DHT implementations often require depart-
ing nodes to notify the system before leaving. This allows other
nodes to copy application data from the leaving node and to im-
mediately update their routing information leading to improved
routing efficiency.

2.4. STRUCTURED PEER-TO-PEER SYSTEMS 35

Performance measures

In [91] five performance measures for DHTs are considered:

• Degree: the number of neighbors with which a node must
maintain continuous contact;

• Hop Count : the number of hops needed to get a message from
any source to any destination;

• The degree of Fault Tolerance: what fraction of the nodes can
fail without eliminating data or preventing successful routing;

• The Maintenance Overhead : how often messages are passed
between nodes and neighbors to maintain coherence as nodes
join and depart;

• The degree of Load Balance: how evenly keys are distributed
among the nodes, and how much load each node experiences
as an intermediate node for other routes.

It is important to note that optimizing one tends to put pressure
on the others. In other words, we agree with [181] that the design
challenges are:

• Routing efficiency : The latency of routing and lookup oper-
ations is influenced by the topology of the address space, the
routing algorithm, the number of references to other nodes,
the awareness of the IP-level topology, etc.

• Management overhead : The costs of maintaining the Dis-
tributed Hash Table under no load depend on such factors as
the number of entries in routing tables, the number of links
to other nodes, and the protocols for detecting failures.

• Dynamics : A large number of nodes joining and leaving a Dis-
tributed Hash Table often referred to as churn concurrently
puts particular stress on the overall stability of the system,
reducing routing efficiency, incurring additional management
traffic, or even resulting in partitioned or defective systems.

36 CHAPTER 2. DISTRIBUTED INDEXES

Figure 2.3: Chord identifier circle (ring) consisting of ten nodes
storing five keys.

2.4.2 Chord

Chord, which is probably the most famous DHTs, has been defined
in [167] and [168]. The elegance of the Chord algorithm derives
from its simplicity. In Chord, the keys are l-bit identifiers (IDs)
that form a one-dimensional circle. Both data items and nodes are
associated with an ID. The (key, value) pair (k, v) is hosted by the
node whose ID is greater than or equal to key k. Such a node is
called the successor of key k. In other words, a node in a Chord
circle with clockwise increasing IDs is responsible for all keys that
precede it counter-clockwise.

In Chord each node stores its successor node on the identifier
circle. When a key is being looked up, each node forwards the
query to its successor in the identifier circle until one of the nodes
determines that the key lies between itself and its successor. The
successor is communicated as the result of the query back to its
originator (the key must be hosted by this successor).

To achieve scalable key lookup, each node also maintains infor-
mation about no-successor nodes in a routing table called finger

2.4. STRUCTURED PEER-TO-PEER SYSTEMS 37

table. Given a circle with l-bit identifiers, a finger table has a max-
imum of l entries. Thus its size is independent of the number of
keys or nodes forming the DHT. Each finger entry consists of a node
ID, an IP address and port pair, and possibly some book-keeping
information. The routing information from finger tables provides
information about nearby nodes and a coarse-grained view of long-
distance links at intervals increasing by powers of two. Using the
finger tables queries are routed over large distances on the identifier
circle in a single hop. In fact a node forwards queries for a given
key to the closest predecessor according to its finger table.

Furthermore, the closer the query gets to k, the more accurate
the routing information of the intermediate nodes on the location of
k becomes. Given the power-of-two intervals of finger IDs, each hop
covers at least half of the remaining distance on the identifier circle
between the current node and the target identifier. This results in
an average of O(log(N)) routing hops for a Chord circle with N
participating nodes. Stoica et al. show that the average lookup
requires 1/2 log(N) steps.

In order to join a Chord identifier circle, the new node first
determines some identifier n. The original Chord protocol does not
impose any restrictions on this choice. There have been several
proposals to restrict node IDs according to certain criteria, e.g. to
exploit network locality or to avoid identity spoofing. For the new
node n, another node n0 must be known which already participates
in the Chord system. By querying n0 for n’s own ID, n retrieves its
successor. It notifies its successor ns of its presence leading to an
update of the predecessor pointer of ns to n. Node n then builds its
finger by iteratively querying o for the successors of n + 21, n + 22,
n+23, etc. At this stage, n has a valid successor pointer and finger
table. However, n does not show up in the routing information of
other nodes. In particular, it is not known to its predecessor as its
new successor since the lookup algorithm is not apt to determine a
node’s predecessor.

Chord introduces a stabilization protocol to validate and update
successor pointers as nodes join and leave the system. Stabilization
requires an additional predecessor pointer and is performed peri-

38 CHAPTER 2. DISTRIBUTED INDEXES

odically on every node. With the stabilization protocol, the new
node n does not actively determine its predecessor. Instead, the
predecessor itself has to detect and fix inconsistencies of successor
and predecessor pointers. After the new node has thus learnt of its
predecessor, it copies all keys it is responsible for. At this stage,
all successor pointers are up to date and queries can be routed
correctly, albeit slowly. Since the new node n is not present in the
finger tables of other nodes, they forward queries to the predecessor
of n even if n would be more suitable. Node n’s predecessor then
needs to forward the query to n via its successor pointer. Chord
updates finger tables lazily. Each node periodically picks a finger
randomly from the finger table at index i(1 < i = l) and looks it
up to find the true current successor of n + 2i− 1.

Chord addresses node failures on several levels. When a node
detects a failure of a finger during a lookup, it chooses the next
best preceding node from its finger table. Failed nodes are removed
from the finger tables. It is particularly important to maintain the
accuracy of the successor information as the correctness of lookups
depends on it. To maintain a valid successor pointer in the presence
of multiple simultaneous node failures, each node holds a successor
list of a certain length that contains the node’s first successors.
When a node detects the failure of its successor, it reverts to the
next live node in its successor list. The Chord ring is affected only if
all nodes from a successor list fail simultaneously. The successor of
a failed node becomes responsible for the keys and data of the failed
node. Thus an application utilizing Chord can replicates data to
successor nodes to reduce the risk of data lost. Chord can use the
successor list to communicate this information and possible changes
to the application.

In Chord a leaving node transfer its keys to its successor and
notify its successor and predecessor. This ensures that data is not
lost and that the routing information remains intact.

Important variations of Chord are Symphony Subsection 2.4.9
[p.46] and Viceroy Subsection 2.4.10 [p.47]. A recent variant of
Chord using the De Bruijn graphs is Koorde [91], which requires
each node to know only about two other nodes, while also providing

2.4. STRUCTURED PEER-TO-PEER SYSTEMS 39

Figure 2.4: Routing table of a Pastry node with nodeID 65a1x,
b=4. Digits in base 16, x represents an arbitrary suffix. The IP
address associated with each entry is not shown.

O(log(N)) lookup.

In [72], Chord has been extended to solve multi-dimensional at-
tributed range queries transforming the original vector space into
a single-dimensional domain. The method is called Space-filling
Curveswith Range Partitioning (SCRAP) and uses space filling
curves in order to mapping.

2.4.3 Pastry

The Pastry distributed routing system was proposed by Rowstron
and Druschel in [152]. In Pastry the routing is based on numeric
closeness of identifiers. In their work, the authors focus not only on
the number of routing hops, but also on network locality as factors
in routing efficiency. In Pastry, nodes and data items uniquely
associate with l-bit identifiers (l is typically 128). Pastry views
identifiers as strings of digits to the base 2b where b is typically
chosen to be 4. A key is located on the node to whose node ID it

40 CHAPTER 2. DISTRIBUTED INDEXES

is numerically closest.

Pastry’s node state is divided into three main elements. The
routing table, similar to Chord’s finger table, stores links into the
identifier space. The leaf set contains nodes which are close in the
identifier space (like Chord’s successor list). Nodes that are close
together in terms of network locality are listed in the neighborhood
set.

Pastry measures network locality based on a given scalar net-
work proximity metric which is assumed to be already available
from the network infrastructure. This metric might range from IP
hops to actual the geographical location of nodes.

A Pastry node’s routing table is made up of l/b rows with 2b−1
entries per row On node n, the entries in row i hold the identities
of Pastry nodes whose node IDs share an i-digit prefix with n but
differ in digit n itself. When there is no node with an appropriate
prefix, the corresponding table entry is left empty.

As in Chord, in Pastry a node has a coarse-grained knowledge
of other nodes which are distant in the identifier space. The detail
of the routing information increases with the proximity of other
nodes in the identifier space. Without a large number of nearby
nodes, the last rows of the routing table are only sparsely populated.
Intuitively, the identifier space would need to be fully exhausted
with node IDs for complete routing tables on all nodes. In a system
with N nodes, only log2b(N) routing table rows are populated on
average.

In populating the routing table, there is a choice from the set
of nodes with the appropriate identifier prefix. During the routing
process, network locality can be exploited by selecting nodes which
are close in terms of a network proximity metric.

To increase lookup efficiency, the leaf set L of node n holds the
|L| nodes numerically closest to n. The routing table and the leaf
set are the two sources of information relevant for routing. The leaf
set also plays a role similar to Chord’s successor lists in recovering
from failures of adjacent nodes.

Instead of numeric closeness, the neighborhood set M is con-
cerned with nodes that are close to the current node with regard to

2.4. STRUCTURED PEER-TO-PEER SYSTEMS 41

the network proximity metric. Thus it is not involved in routing it-
self but in maintaining network locality in the routing information.

Routing in Pastry is divided into two main steps:

1. a node checks whether the key k is within the range of its leaf
set. If this is the case, it implies that k is located on one of
the nearby nodes of the leaf set.

2. the node forwards the query to the leaf set node numerically
closest to k. In case this is the node itself, the routing process
is finished.

If k does not fall into the range of leaf set nodes, the query needs
to be forwarded over a longer distance using the routing table. In
this case, a node n tries to pass the query on to a node which
shares a longer common prefix with k than n itself. If there is no
such entry in the routing table, the query is forwarded to a node
which shares a prefix with k of the same length as n but which is
numerically closer to k than n.

Pastry optimizes two aspects of routing and locating the node
responsible for a given key: it attempts both to achieve a small
number of hops to reach the destination node, and to exploit net-
work locality to reduce the overhead of each individual hop.

For detailed description of Pastry see [152, 37, 39, 41, 38, 114,
79] An open-source implementation of Pastry is FreePastry [175].
A scalable application-level multicast application called Scribe [42]
has been built upon Pastry. In [125] ePost, a Peer-to-Peer email
system built using Pastry, is presented.

2.4.4 Tapestry

Tapestry, defined by Zhao, Kubiatowicz, and Joseph in [193], is
very similar to Pastry (see Subsection 2.4.3 [p.39]) but differs in its
approach to mapping keys to nodes in the sparsely populated id
space, and in how it manages replication. In Tapestry, there is no
leaf set and neighboring nodes in the namespace are not aware of
each other. When a node’s routing table does not have an entry for

42 CHAPTER 2. DISTRIBUTED INDEXES

a node that matches a key’s nth digit, the message is forwarded to
the node in the routing table with the next higher value in the nth
digit modulo 2b. This procedure, called surrogate routing, maps
keys to a unique live node if the node routing tables are consistent.
For fault tolerance, Tapestry inserts replicas of data items using
different keys. The expected number of routing hops is log16(N).

Tapestry has been also described in [194]. OceanStore , a utility
infrastructure designed to span the globe and provide continuous
access to persistent information, presented in [98] uses Tapestry.

In [195]), application-level multicast for Pastry called Bayeux is
presented .

2.4.5 Chimera

Chimera [13] is a light-weight C implementation of a structured
overlay that provides similar functionality as prefix-routing proto-
cols Tapestry (see Subsection 2.4.4 [p.41]) and Pastry (see Subsec-
tion 2.4.3 [p.39]). Chimera gains simplicity and robustness from its
use of Pastry’s leafsets, and efficient routing from Tapestry’s local-
ity algorithms. In addition to these properties, Chimera also pro-
vides efficient detection of node and network failures, and reroutes
messages around them to maintain connectivity and throughput.

2.4.6 Z-Ring

Z-Ring [104] is a fast prefix routing protocol for Peer-to-Peer overlay
networks. The main idea in Z-Ring is to classify peers into different
closed groups at each routing level. Z-Ring uses efficient member-
ship maintenance to support one or two-hop key-based routing in
large dynamic networks. The analysis and simulations presented in
[104] show that it provides efficient routing with very low mainte-
nance overhead.

Most of the DHTs show logarithmic number of hops which
means that they scale well. However, with network size, the latency
they incur can be substantial in practice. Z-Ring tries to achieve
both goals of low routing hops and low maintenance costs in an

2.4. STRUCTURED PEER-TO-PEER SYSTEMS 43

adaptive system by integrating Peer-to-Peer routing with efficient
membership maintenance algorithms.

On each peer Z-Ring uses a membership protocol to maintain
a large routing table, which is the set of active peers belonging to
the same group. They started with Pastry (see Subsection 2.4.3
[p.39]) and expand its prefix routing base b from 16 to 4096. Us-
ing b = 4096, they can achieve one-hop routing with 4096 nodes
and two-hop routing across 16 million peers. While traditional pro-
tocols require a node to periodically probe its links to each of its
neighbors and thus make the maintenance of routing entries with
b = 4096 infeasible, we leverage cost-efficient membership protocols
to maintain routing entries and detect link or node failures.

2.4.7 Content Addressable Network CAN

We analyze in details the CAN, over which we built our MCAN, in
Chapter 3 [p.63].

2.4.8 Kademlia

Presented in [118], Kademlia is probably the most used DHT. The
following are known implementations of Kademlia (see [184] for
Up-to-Date information):

• Overnet network ued in MLDonkey and eDonkey2000 (which
is no longer available);

• Kad Network used by eMule8 (from v0.40), MLDonkey9 (from
v2.5-28) and aMule (from v2.1.0);

• RevConnect10 (from v0.403);

• KadC11. A C library to publish and retrieve information to
and from the Overnet network;

8http://www.emule-project.net/
9http://mldonkey.org/

10http://www.revconnect.com/
11http://kadc.sourceforge.net/

http://www.emule-project.net/
http://mldonkey.org/
http://www.revconnect.com/
http://kadc.sourceforge.net/

44 CHAPTER 2. DISTRIBUTED INDEXES

Figure 2.5: An example of a Kademlia topology

• Khashmir. A Python implementation of Kademlia.

• BitTorrent Azureus12 DHT, a modified Kademlia implemen-
tation for decentralized tracking and various other fetures like
the “Comments and Ratings” plugin used by Azureus (from
v2.3.0.0);

• BitTorrent Mainline DHT, used by BitTorrent13 client (from
v4.1.0), µTorrent14 (from v1.2), BitSpirit15 (from v3.0) Bit-
Comet16 (from v0.59) and KTorrent17. They all share a DHT
based on an implementation of the Kademlia algorithm, for
trackerless torrents.

Many of Kademlia’s benefits result from its use of a XOR metric
for distance between points in the key space. XOR is symmetric,
allowing Kademlia participants to receive lookup queries from pre-
cisely the same distribution of nodes contained in their routing ta-
bles. Without this property, systems such Chord Subsection 2.4.2

12http://sourceforge.net/projects/azureus/
13http://www.bittorrent.com/
14http://www.utorrent.com/
15http://www.167bt.com/intl/
16http://www.bitcomet.com
17http://ktorrent.org/

http://sourceforge.net/projects/azureus/
http://www.bittorrent.com/
http://www.utorrent.com/
http://www.167bt.com/intl/
http://www.bitcomet.com
http://ktorrent.org/

2.4. STRUCTURED PEER-TO-PEER SYSTEMS 45

[p.36] do not learn useful routing information from queries they re-
ceive. Worse yet, asymmetry leads to rigid routing tables. Each
entry in a Chord node’s finger table must store the precise node
preceding some interval in the ID space. Any node actually in the
interval would be too far from nodes preceding it in the same inter-
val. Kademlia, in contrast, can send a query to any node within an
interval, allowing it to select routes based on latency or even send
parallel, asynchronous queries to several equally appropriate nodes.

In their work on Kademlia [118], Maymounkov and Mazi‘eres
observe a mismatch in the design of Pastry: its routing metric
(identifier prefix length) does not necessarily correspond to the ac-
tual numeric closeness of identifiers. As a result, Pastry requires
two routing phases which impacts routing performance and compli-
cates formal analysis. Thus Kademlia uses an XOR routing metric
which improves on these problems and optionally offers additional
parallelism for lookup operations.

Kademlia most resembles Pastry’s (see Subsection 2.4.3 [p.39])
first phase, which successively finds nodes roughly half as far from
the target ID by Kademlia’s XOR metric. In a second phase, how-
ever, Pastry switches distance metrics to the numeric difference
between IDs. It also uses the second, numeric difference metric in
replication. Unfortunately, nodes close by the second metric can be
quite far by the first, creating discontinuities at particular node ID
values, reducing performance, and complicating attempts at formal
analysis of worst-case behavior.

Kademlia’s XOR metric measures the distance between two IDs
by interpreting the result of the bit-wise exclusive OR function on
the two IDs as integers. For example, the distance between the
identifiers 3 and 5 is 6. Considering the shortest unique prefix
of a node identifier, this metric effectively treats nodes and their
identifiers as the leaves of a binary tree. For each node, Kademlia
further divides the tree into subtrees not containing the node, as
illustrated in Figure 2.5 [182].

Each node knows of at least one node in each of the subtrees. A
query for an identifier is forwarded to the subtree with the longest
matching prefix until the destination node is reached. Similar to

46 CHAPTER 2. DISTRIBUTED INDEXES

Chord, this halves the remaining identifier space to search in each
step and implies a routing latency of O(log(N)) routing hops on
average. In many cases, a node knows of more than a single node
per subtree. Similar to Pastry, the Kademlia protocols suggests
forwarding queries to α nodes per subtree in parallel. By biasing
the choice of nodes towards short round-trip times, the latency of
the individual hops can be reduced. With this scheme, a failed node
does not delay the lookup operation. However, bandwidth usage is
increased compared to linear lookups.

When choosing remote nodes in other subtrees, Kademlia fa-
vors old links over nodes that only recently joined the network.
This design choice is based on the observation that nodes with long
uptime have a higher probability of remaining available than fresh
nodes. This increases the stability of the routing topology and also
prevents good links from being flushed from the routing tables by
distributed denial-of-service attacks, as can be the case in other
DHT systems.

With its XOR metric, Kademlia’s routing has been formally
proved consistent and achieves a lookup latency of O(log(N)). The
required amount of node state grows with the size of a Kadem-
lia network. However, it is configurable and together with the
adjustable parallelism factor allows for a trade-off of node state,
bandwidth consumption, and lookup latency.

2.4.9 Symphony

The Symphony protocol, defined in [116], is a variation of Chord
Subsection 2.4.2 [p.36] that exploits the small world phenomenon.
In Symphony each node establishes only a constant number of links
to other nodes. This basic property of Symphony significantly re-
duces the amount of per-node state and network traffic when the
overlay topology changes. However, with an increasing number of
nodes, it does not scale as well as Chord.

In Symphony, the Chord finger table is replaced by a constant
but configurable number k of long distance links which are are
chosen randomly according to harmonic distributions (hence the

2.4. STRUCTURED PEER-TO-PEER SYSTEMS 47

name Symphony). Effectively, the harmonic distribution of long-
distance links favors large distances in the identifier space for a
system with few nodes and decreasingly smaller distances as the
system grows. In Symphony a query is forwarded to the node with
the shortest distance to the destination key.

Symphony additionally employs a 1-lookahead approach. The
lookahead table of each node records those nodes which are reach-
able through the successor, predecessor, and long distance links,
i.e. the neighbors of a node’s neighbors. Instead of routing greed-
ily, a node forwards messages to its direct neighbor (not a neigh-
bor’s neighbor) which promises the best progression towards the
destination. This reduces the average number of routing hops by
40% at the expense of management overhead when nodes join or
leave the system. The main contribution is its constant degree
topology resulting in very low costs of per-node state and of node
arrivals and departures. It also utilizes bidirectional links between
nodes and bi-directional routing. Symphony’s routing performance
O(1/k log2(N)). However, nodes can vary the number of links they
maintain to the rest of the system during run-time based on their
capabilities, which is not permitted by the original designs of Chord,
Pastry, and CAN.

2.4.10 Viceroy

In 2002, Malkhi, Naor, and Ratajczak proposed Viceroy [115], an-
other variation on Chord (see Subsection 2.4.2 [p.36]). Viceroy
maintains a butterfly data structure, which requires information
about only constant other number nodes. Viceroy improves on the
original Chord algorithm through a hierarchical structure of the ID
space with constant degree which approximates a butterfly topol-
ogy. This results in less per-node state and less management traffic
but slightly lower routing performance than Chord. Viceroy bor-
rows from Chord’s fundamental ring topology with successor and
predecessor links on each node. It also introduces a new node state
called a level.

The routing procedure is split into three phases closely related

48 CHAPTER 2. DISTRIBUTED INDEXES

Figure 2.6: An ideal Viceroy network. Up and ring links are omitted
for simplicity.

to the available routing information. First, a query is forwarded to
level one along the uplinks. Second, a query recursively traverses
the downlinks towards the destination. On each level, it chooses
the downlink which leads to a node closer to the destination, with-
out overshooting it in the clockwise direction. After reaching a
node without downlinks, the query is forwarded along ringlevel and
successor links until it reaches the target identifier.

The authors of Viceroy show that this routing algorithm yields
an average number of O(log(N)) routing hops. Like Symphony
(see Subsection 2.4.9 [p.46]), Viceroy features a constant degree
linkage in its node state. However, every node establishes seven
links whereas Symphony keeps this number configurable even at
run-time. Furthermore and similar to Chord, the rigid layout of the
identifier space requires more link updates than Symphony when
nodes join or leave the system. At the same time, the scalability of

2.4. STRUCTURED PEER-TO-PEER SYSTEMS 49

Figure 2.7: Performance comparison of DHT systems. The columns
show the averages for the number of routing hops during a key
lookup, the amount of per-node state, and the number of messages
when nodes join or leave the system.

its routing latency of O(log(N)) surpasses that of Symphony, while
not approaching that of Chord, Pastry, and CAN.

2.4.11 DHTs Comparison

In Figure 2.7 we report the performance comparison results of the
most important DHTs. These results were presented by Wehrle,
Gtz, and Rieche in [182]. Another comparison of DHTs can be
found in [103].

2.4.12 DHTs Related Works

A great number of papers about particular aspects of DHTs can be
found, e.g. topology-aware routing in [40], scalable application-level
multicast in [43], complex queries in DHTs in [81]. load balancing
in Peer-to-Peer systems [74] and [171].

An important project using Chord is MINERVA. In MINERVA18

each peer is considered autonomous and has its own local search
engine with a crawler and a corresponding local index. Peers share

18http://www.mpi-inf.mpg.de/departments/d5/software/minerva/

http://www.mpi-inf.mpg.de/departments/d5/software/minerva/

50 CHAPTER 2. DISTRIBUTED INDEXES

their local indexes (or specific fragments of local indexes) by post-
ing meta-information into the Peer-to-Peer network. This meta-
information contains compact statistics and quality-of-service in-
formation, and effectively forms a global directory. However, this
directory is implemented in a completely decentralized and largely
self-organizing manner. More specifically, they are maintained as
a distributed hash table (DHT) using Chord. The MINERVA per-
peer engine uses the global directory to identify candidate peers
that are most likely to provide good query results. A query posed
by a user is forwarded to other peers for better result quality. The
local results obtained from there are merged by the query initiator.
The MINERVA Project has been presented in [26], while related
papers are [27, 24, 23, 25, 28, 47, 141, 120, 119].

In [170] the Threshold Algorithm [60, 63] was applied to the
query processing problem in a Peer-to-Peer environment in which
inverted lists are mapped to a set of peers, by employing an un-
derlying DHT substrate. In [192] the work was extended defining
5 different policies for distributed query evaluation: Simple Algo-
rithm, Distributed Threshold Algorithm, Bloom Circle Threshold
Algorithm, Bloom Petal Threshold Algorithm (BPTA) and Simple
Bloom Petal Algorithm (SBPA). From the experiments they con-
ducted, the BTPA approach appears to perform best for queries
with up to 4 terms while SBPA is better for longer queries.

In [174] an information retrieval system called pSearch has been
defined. It uses a technique called latent semantic indexing to re-
duce the dimensionality of the space and a singular value decom-
position to transform and truncate the matrix of term vectors com-
puter in the previous step. The obtained lower-dimensional vector
space is then distributed using CAN (see Chapter 3 [p.63]).

2.4.13 P-Grid

While unstructured Peer-to-Peer systems have generated substan-
tial interest because of their self-organization structured overlay
networks like DHTs typically requires a higher degree of coordi-
nation among the nodes while constructing and maintaining the

2.4. STRUCTURED PEER-TO-PEER SYSTEMS 51

overlay network. However, self-organizing process can also be used
in the context of structured overlay networks. With such an ap-
proach structural properties are not guaranteed through localized
operation, but emerge as a global property from a self-organization
process.

P-Grid19, first presented by Aberer in [2], adopt this approach.
P-Grid uses self-organizing processes for the initial network con-
structino to achieve load-balancing properties as well as for main-
tenance to retain structural properties of the overlay network intact
during changes in the physical network. In P-Grid the key space
is recursively bisected to achieve balanced workload of partitions.
Bisecting the key space induces a canonical tree structure which is
used as the basis for implementing a standard, distributed. There
fore P-Grid is a tree-based Peer-to-Peer network. prefix routing
scheme for efficient search.

The P-Grid authors claim that it differs from other DHT ap-
proaches in terms of practical applicability (especially in respect
to dynamic network environments), algorithmic foundations (ran-
domized algorithms with probabilistic guarantees), robustness, and
flexibility. In [55] the problem of executing range queries over a
structured overlay network on top of a tree abstraction is discussed.
The approach is evaluated using P-Grid. Other P-Grid related pa-
pers are [2, 8, 4, 5, 6].

2.4.14 Small-World and Scale-Free

Small-world network is a generalization of the small world phe-
nomenon to non-social networks. Formally, it is a class of where
most nodes are not neighbors of one another, but most nodes can
be reached from every other by a small number of hops or steps. In
[94] a family of Small-World Access Methods (SWAM) have been
proposed for efficient execution of various similarity-search queries,
namely exact match, Range and Nearest Neighbor, on vector space
with Lp metrics (see Subsection 1.3.1 [p.9]). Furthermore, the au-
thors also describe the SWAM-V structure that partitions the data

19P-Grid Project: http://www.p-grid.org/

http://www.p-grid.org/

52 CHAPTER 2. DISTRIBUTED INDEXES

space in a Voronoi-life manner of neighboring cells.

2.4.15 Other Works

In [121] KLEE a novel algorithmic framework for distributed top-k
queries has been presented. It addresses the efficient processing of
top-k queries in wide-area distributed data repositories where the
index lists for the attribute values (or text terms) of a query are
distributed across a number of data peers. In KLEE each data item
has associated with it a set of descriptors, text terms or attribute
values, and there is a precomputed score for each pair of data item
and descriptor. The inverted index list for one descriptor is the list
of data items in which the descriptor appears sorted in descending
order of scores. These index lists are the distribution granularity of
the distributed system. Each index list is assigned to one peer (or,
if we wish to replicate it, to multiple peers).

P2PR-tree (Peer-to-Peer R-tree), defined in [127], is a spatial in-
dex specifically designed for Peer-to-Peer systems. It is hierarchical
and performs efficient pruning of the search space by maintaining
minimal amount of information concerning peers that are far away
and storing more information concerning nearby peers.

2.5 Metric Peer-to-Peer Structures

Very recently, four scalable distributed have been proposed sim-
ilarity search structures for metric data. The first two structures
adopt the basic ball and Generalized Hyperplane partitioning princi-
ples [176] and they are called the VPT∗ and the GHT∗, respectively
(see Subsection 2.5.1 [p.53]).

The other two apply transformation strategies — the metric
similarity search problem is transformed into a series of range queries
executed on existing distributed keyword structures, namely the
CAN (described in Chapter 3 [p.63]) and the Chord (described in
Subsection 2.4.2 [p.36]). By analogy, they have been called the
MCAN, which is the object of this thesis, and the M-Chord (see
Subsection 2.5.2 [p.57]). Each of the structures is able to execute

2.5. METRIC PEER-TO-PEER STRUCTURES 53

similarity queries for any metric dataset, and they all exploit par-
allelism for query execution.

Result of numerous experiments conducted on implementations
of the VPT∗, GHT∗, MCAN and M-Chord systems over the same
infrastructure of peer computers, have been reported in [22]. In
this thesis they are reported reported on Chapter 6 [p.117].

2.5.1 GHT∗ and VPT∗

In this section, we describe two distributed metric index structures
— the GHT∗ [18, 20, 21, 19] and its extension called the VPT∗

[22]. Both of them exploit native metric partitioning principles
using them to build a distributed binary tree [97].

In both the GHT∗ and the VPT∗, the dataset is distributed
among peers participating in the network. Every peer holds sets
of objects in its storage areas called buckets. A bucket is a limited
space dedicated to storing objects, e.g. a memory segment or a
block on a disk. The number of buckets managed by a peer depends
on its own potential.

Since both structures are dynamic and new objects can be in-
serted at any time, a bucket on a peer may reach its capacity limit.
In this situation, a new bucket is created and some objects from
the full bucket are moved to it. This new bucket may be located
on a peer different from the original one. Thus the structures grow
as new data come in.

The core of the algorithm lays down a mechanism for locating
respective peers which hold requested objects. The component of
the structure responsible for this navigation is called the Address
Search Tree (AST), an instance of which is present at every peer.
Whenever a peer wants to access or modify the data in the GHT∗

structure, it must first consult its own AST to get locations, i.e.
peers, where the data resides. Then, it contacts the peers via net-
work communication to actually process the operation.

Since we are in a distributed environment, it is practically im-
possible to maintain a precise address for every object in every peer.
Thus the ASTs at the peers contain only limited navigation infor-

54 CHAPTER 2. DISTRIBUTED INDEXES

12

19

3

4

9

17

18

22

13
14

15

16

21
20

8

1

2

6
5 7

10
11 BID2 BID3

1210

198 18 ...

NNID1BID1

10 11

1 2 5

876

21

151413

16 19 20

22

181712

3 4 9
BID 1 BID 2 BID 3

Figure 2.8: Address Search Tree with the generalized hyperplane
partitioning

mation which may be imprecise. The locating step is repeated on
contacted peers whenever AST is imprecise until the desired peers
are reached. The algorithm guarantees that the destination peers
are always found. Both of these structures also provide a mecha-
nism called image adjustment for updating the imprecise parts of
the AST automatically. For more technical details see [21].

Address Search Tree

The AST is a binary search tree based on the Generalized Hyper-
plane Tree (GHT) [176] in GHT∗, and on the Vantage Point Tree
(VPT) [176] for the VPT∗ structure. Its inner nodes hold the rout-
ing information according to the partitioning principle and each
leaf node represents a pointer to either a local bucket (denoted as
BID) or a remote peer (denoted as NNID) where the data of the
respective partition is located.

An example of AST using the generalized hyperplane partition-
ing is depicted in Figure 2.8. In order to divide a set of objects
I = {x1, . . . , x22} into two separated partitions I1, I2 using the gen-
eralized hyperplane, we must first select a pair of objects from the
set. In Figure 2.8, we select objects x10, x12 and promote them to
pivots of the first level of the AST. Then, the original set I is split

2.5. METRIC PEER-TO-PEER STRUCTURES 55

13

21
20

4

17

18

12

r3

1 3

22

9

14

2

6
5 7

16

r1

r2

19

11

15

8

10 BID2 BID3 NNID1BID1

11

15 r2

r1

r312

10 11 14

191615

20 21

652

7 8 9

13 22

181712

1 3 4
BID 1 BID 2 BID 3

Figure 2.9: Address Search Tree with the vantage point partitioning

by measuring the distance between every object x ∈ I and both
the pivots. If d(x, x10) ≤ d(x, x12), i.e. the object x is closer to
the pivot x10, the object is assigned to the partition I1 and vice
versa. This principle is used recursively until all the partitions are
small enough and a binary tree representing the partitioning is built
accordingly. Figure 2.8 shows an example of such a tree. Observe
that the leaf nodes are denoted by BIDi and NNIDi symbols. This
means that the corresponding partition (which is small enough to
stop the recursion) is stored either in a local bucket or on a remote
peer respectively.

The vantage point partitioning, which is used by the VPT∗

structure, can be seen in Figure 2.9. In general, this principle also
divides a set I into two partitions I1 and I2. However, only one
pivot x11 is selected from the set and the objects are divided by
a radius r1. More specifically, if the distance between the pivot
x11 and an object x ∈ I is smaller or equal to the specified radius
r1, i.e. if d(x, x11) ≤ r1 then the object belongs to partition I1.
Otherwise, the object is assigned to I2. Similarly, the algorithm is
applied recursively to build a binary tree. The leaf nodes follow the
same schema for addressing local buckets and remote peers.

56 CHAPTER 2. DISTRIBUTED INDEXES

Range Search

The R(q, r) query search in both the GHT∗ and VPT∗ structures
proceeds as follows. The evaluation starts by traversing the local
AST of the peer which issued the query. For every inner node in the
tree, we evaluate the following conditions. Having the generalized
hyperplane partitioning with the inner node of format 〈p1, p2〉:

d(p1, q)− r ≤ d(p2, q) + r, (2.1)

d(p1, q) + r > d(p2, q)− r. (2.2)

For the vantage point partitioning with the inner node of format
〈p, rp〉:

d(p, q)− r ≤ rp, (2.3)

d(p, q) + r > rp. (2.4)

The right subtree of the inner node is traversed if Condition 2.1
for the GHT∗ or Condition 2.3 for the VPT∗ qualifies. The left
subtree is traversed whenever Condition 2.2 or Condition 2.4 holds
respectively. It is clear that both conditions may qualify at the
same time for a particular range search. Therefore, multiple paths
may be followed and, finally, multiple leaf nodes may be reached.

For all qualifying paths having an NNID pointer in their leaves,
the query request is forwarded to identified peers until a BID pointer
is found in every leaf. The range search condition is evaluated by
the peers in every bucket determined by the BID pointers. All
qualifying objects together form the query response set.

In order to avoid some distance computations, both the struc-
tures apply additional filtering using Equation 4.2 [p.80]. For ev-
ery stored object, the distances to all pivots on the AST path
from the root to the leaf with the respective bucket are held to-
gether with the data object. For example, object x1 in Figure 2.8
has four associated numbers — the distances d(x1, x10), d(x1, x12),
d(x1, x8), d(x1, x19) which were evaluated during the insertion of
x1 into bucket BID1. In the case of VPT∗ structure, only half of
the distances are stored, because only one pivot is present in every

2.5. METRIC PEER-TO-PEER STRUCTURES 57

(a)
2*c 3*c0 c

C

C2

C1

p

p

p

1

0 2

0

(iDistance)

q
r

(b)
*c *c0 c

0

p2

p1

2 3

C

C2

C1

p

0

Figure 2.10: The principles of iDistance

inner node. As is obvious, the deeper the bucket where the ob-
ject is stored, the more precomputed distances are stored for that
particular object and the better the effect of the filtering.

2.5.2 M-Chord

Similarly to the MCAN, the M-Chord [136] approach also trans-
forms the original metric space. The core idea is to map the data
space into a one-dimensional domain and navigate in this domain
using the Chord routing protocol [167].

Specifically, this approach exploits the idea of a vector index
method iDistance [88, 190], which partitions the data space into
clusters (Ci), identifies reference points (pi) within the clusters, and
defines one-dimensional mapping of the data objects according to
their distances from the cluster reference point. Having a separation
constant c, the iDistance key for an object x ∈ Ci is idist(x) =
d(pi, x) + i · c.

Figure 2.10a visualizes the mapping schema. Handling a R(q, r)
query, the space to be searched is specified by iDistance intervals
for such clusters that intersect the query sphere — see an example
in Figure 2.10b.

This method is generalized to metric spaces in the M-Chord.
No vector coordinate system can be utilized in order to partition

58 CHAPTER 2. DISTRIBUTED INDEXES

a general metric space, therefore, a set of M pivots p0, . . . , pM−1

is selected from a sample dataset and the space is partitioned ac-
cording to these pivots. The partitioning is done in a Voronoi-like
manner [84] (every object is assigned to its closest pivot).

Because the iDistance domain is to be used as the key space
for the Chord protocol, the domain is transformed by an order-
preserving hash function h into M-Chord domain of size 2m. The
distribution of h is uniform on a given sample dataset. Thus, for
an object x ∈ Ci, 0 ≤ i < M , the M-Chord key-assignment formula
becomes:

m-chord(x) = h(d(pi, x) + i · c). (2.5)

The M-Chord Structure

Having the data space mapped into the one-dimensional M-Chord
domain, every active node of the system takes over the responsibil-
ity for an interval of keys. The structure of the system is formed
by the Chord circle (see Subsection 2.4.2 [p.36]). This Peer-to-Peer
protocol provides an efficient localization of the node responsible
for a given key.

When inserting an object x ∈ D into the structure, the initiat-
ing node nins computes the m-chord(x) key using Formula 2.5 and
employs Chord to forward a store request to the node responsible
for key m-chord(x) (see Figure 2.11a).

The nodes store data in B+-tree storage according to their M-
Chord keys. When a node reaches its storage capacity limit (or
another defined condition) it requests a split. A new node is placed
on the M-Chord circle, so that the requester’s storage can be split
evenly.

Range Search Algorithm

The node nq that initiates the R(q, r) query uses the iDistance
pruning idea to choose the M-Chord intervals to be examined. The
Chord protocol is then employed to reach nodes responsible for
middle points of these intervals. The request is then spread to all
nodes covering the particular interval (see Figure 2.11b).

2.6. PEER-TO-PEER AND GRID COMPUTING 59

N

Nx

response
request

Nq

0

ins

insert(x):

forward(k,x)

receive(k,x):
store(k,x)

m−chord(x)

k:=m−chord(x)

(b)(a)

Figure 2.11: The insert (a) and range search (b)

From the metric point of view, the iDistance pruning technique
filters out all objects x ∈ Ci that fulfill |d(x, pi)− d(q, pi)| > r. But
in M-Chord, when inserting an object x, all distances d(x, pi) have
to be computed ∀i : 0 ≤ i < n. These values are stored together
with object x and the general metric filtering criterion improves the
pruning of the search space.

2.6 Peer-to-Peer and Grid Computing

Another approach to distributed computing which has been very
important in the past few years research is Grid computing.

The term Grid computing originated in the early 1990s as a
metaphor for making computer power as easy to access as an electric
power grid. Even if there are many definitions. In [70] Foster
reports previous definition and summarize the essence of them in a
three points of this checklist:

• Computing resources are not administered centrally.

• Open standards are used.

• Non-trivial quality of service is achieved.

60 CHAPTER 2. DISTRIBUTED INDEXES

Peer-to-Peer and Grid computing have a lot in common. As
Foster and Iamnitchi say:

Two supposedly new approaches to distributed com-
puting have emerged in the past few years, both claiming
to address the problem of organizing large-scale com-
putational societies: Peer-to-Peer and Grid computing.
They both emerged in the past few years, both claiming
to address the problem of organizing large-scale compu-
tational societies. Both approaches have seen rapid evo-
lution, widespread deployment, successful application,
considerable hype, and a certain amount of (sometimes
warranted) criticism. The two technologies appear to
have the same final objective.the pooling and coordinated
use of large sets of distributed resources.but are based in
different communities and, at least in their current de-
signs, focus on different requirements. [71]

In the same paper they try to compare and contrast Peer-to-
Peer and Gird computing. In brief, they argue that:

• both are concerned with the organization of resource sharing
within virtual communities;

• both take the same general approach to solving the creation of
overlay structures that coexist with, but need not correspond
in structure to, underlying organizational structures;

• each has made genuine technical advances, but each also has.in
current instantiations.crucial limitations: “Grid computing
addresses infrastructure but not yet failure, whereas Peer-to-
Peer addresses failure but not yet infrastructure”; and

• the complementary nature of the strengths and weaknesses
of the two approaches suggests that the interests of the two
communities are likely to grow closer over time.

We agree with Androutsellis-Theotokis and Spinellis that:

2.6. PEER-TO-PEER AND GRID COMPUTING 61

As Grid systems increase in scale, they begin to re-
quire solutions to issues of self-configuration, fault tol-
erance, and scalability, for which Peer-to-Peer research
has much to offer. Peer-to-Peer systems, on the other
hand, focus on dealing with instability, transient pop-
ulations, fault tolerance, and self-adaptation. To date,
however, Peer-to-Peer developers have worked mainly
on vertically integrated applications, rather than seeking
to define common protocols and standardized infrastruc-
tures for interoperability. [11]

At the end of these considerations they agree with Foster [71]
about the fact that “Grid computing addresses infrastructure but
not yet failure, whereas Peer-to-Peer addresses failure but not yet
infrastructure”. However, as Foster in [69], they believe that, as
Peer-to-Peer technologies move into more sophisticated and com-
plex applications, (e.g. structured content distribution, desktop
collaboration, and network computation), it is expected that there
will be a strong convergence between Peer-to-Peer and Grid com-
puting. The result will be a new class of technologies combining
elements of both Peer-to-Peer and Grid computing, which will ad-
dress scalability, self-adaptation, and failure recovery, while, at the
same time, providing a persistent and standardized infrastructure
for interoperability.

Chapter 3

Content-Addressable
Network (CAN)

Defined in [145], Content-Addressable Network (CAN) is a DHT
(see Section 2.4 [p.29]). The CAN routing algorithm provides the
DHT functionality while meeting the previously enumerated design
goals of scalability, efficiency, dynamicity and balanced load.

The basic operations performed on a CAN are the insertion,
lookup and deletion of (key, value) pairs. Each CAN node stores a
chunk (called a zone) of the entire hash table. In addition, a node
holds information about a small number of adjacent zones in the
table. Requests (insert, lookup, or delete) for a particular key are
routed by intermediate CAN nodes toward the CAN node whose
zone contains that key. The CAN design is completely distributed
(requiring no form of centralized control, coordination or configu-
ration), scalable (nodes maintain only a small amount of control
state that is independent of the number of nodes in the system),
and fault-tolerant (nodes can route around failures). Finally the
CAN design can be implemented entirely at the application level

The CAN design centers around a virtual M -dimensional Carte-
sian coordinate space on a M -torus. This coordinate space ha no
relation to any physical coordinate system. At any point in time,
the entire coordinate space is dynamically partitioned among all the
nodes in the system. A node learns and maintains the IP addresses

63

64 CHAPTER 3. CONTENT-ADDRESSABLE NETWORK (CAN)

Figure 3.1: 5 nodes CAN and its corresponding partition tree.

of those nodes that hold coordinate zones adjoining its own zone.
This set of immediate neighbors serve as a coordinate routing ta-
ble that enables routing between arbitrary points in the coordinate
space.

The Cartesian space serves as a level of indirection. The virtual
coordinate space is used to store (key,value) pairs by deterministi-
cally mapping the key into a point x̂ in the coordinate space using
a uniform hash function. The corresponding pair is then stored
at the node that owns the zone within which the point x̂ lies. To
retrieve an entry corresponding to a given key, any node can apply
the same deterministic hash function and the retrieve the corre-
sponding value from the point x̂. If the point x̂ is not owned by
the requesting node or its immediate neighbors, the request must
be routed through the CAN infrastructure until it reaches the node
in whose zone x̂ lies.

In this chapter a short introduction to the CAN is given. A
further description can be found in Ratnasamy’s PhD Thesis [144].

3.1 Node arrivals

Any node that joins the CAN must:

3.1. NODE ARRIVALS 65

• be allocated its own portion of the coordinate space;

• discover its neighbors in the space.

In the CAN, the entire space is divided among the nodes cur-
rently in the system. The first node to join owns the entire CAN
space (i.e. the complete virtual space). Each time a new node joins
the CAN, an existing zone is split into two halves, one of which is
assigned to the new node. The split is done by following a prede-
fined ordering of the dimensions in deciding along which dimension
a zone is to be split, so that zones can be re-merged when nodes
leave. For example, for a 2-dimensional space, a zone would first
be split along the first dimension, then along the second, then the
first again followed by the second and so forth.

Thus, at any given step, we can think each existing zone as a
leaf of a binary partition tree. The internal nodes in the tree rep-
resent zones that no longer exist, but were split at some previous
time. The children of a tree node are the two zones into which it
was split (see Figure 3.1 [144]). Labeling the edges with a prede-
fined rule (e.g. 0 if the child zone occupies the lower half, and 1
otherwise), a zones’s position (i.e. the zone’s coordinate span along
each dimension) in the coordinate space is completely defined by
the path from the root of the partition tree to the leaf node corre-
sponding to that zone. Every node in the CAN is addressed with a
virtual identifier (VID)— the binary string representing the path

from the root to the leaf node. The partition tree is not maintained
as a data structure, and none of the CAN operation require a node
to have knowledge of the entire partition tree. The tree is just a
useful conceptual aid to understanding the structure of nodes in a
CAN. Considering the tree, the allocation of a portion of the coor-
dinate space to a node can be seen as obtaining a unique VID and
the discovering of neighbors as discovering its neighbors’VIDs and
IP addresses.

We can summarize the process of joining the CAN in three steps:

1. the new node must find a node already in the CAN

66 CHAPTER 3. CONTENT-ADDRESSABLE NETWORK (CAN)

2. using the CAN routing mechanisms, it must find a node whose
zone will be split

3. the neighbors of the split zone must be notified so that routing
can include the new node.

In this chapter we will not take into consideration the bootstrap
mechanism because the functioning of a CAN does not depend on
the details of how this is done. For a description of how the boot-
strap was implemented on the first implementation of the CAN see
[144].

3.1.1 Finding a Zone

To find a node to ask for split, the joining node chooses a point
x̂ in the space and sends a join request destined for point x̂. This
message is sent into the CAN via any existing CAN nodes. Each
CAN node then uses the CAN routing mechanism (described later)
to forward the message, until it reaches the node in whose zone x̂
lies.

In the CAN definition two approaches have been taken in con-
siderations, once the owner node has been reached. The simpler
just split the owner node. The other one, namely 1-hop volume
check, makes use of the fact that the owner node knows not only
its own zone coordinates, but also those of its neighbors. There-
fore, instead of directly splitting its own zone, the existing occupant
node first compares the volume of its zone with those of its imme-
diate neighbors in the coordinate space. The zone with the largest
volume is then split. In [144] a comparison of those two approaches
has been given. Results shown that 1-hop volume check gives signif-
icantly better results. Because of the fact that 1-hop volume check
performance does depend on the average number of neighbors, in-
creasingly the dimensionality of the CAN space the advantages of
the 1-hop volume check become more and more significantly.

3.2. ROUTING 67

3.1.2 Joining the Routing

Once the joining node has obtained its zone, it must learn the IP
addresses of its coordinate neighbor set. In a M -dimensional co-
ordinate space, two nodes are neighbors if their coordinate spans
overlap along M−1 dimensions and abut along one. Because a new
node’s zone is derived by splitting the previous occupant’s zone,
the new nodes’ neighbor set is a subset of the previous occupant’s
neighbors, plus that occupant itself. Similarly, the previous occu-
pant updates its neighbor set to eliminate those nodes that are no
longer neighbors. Finally, both the new and olds nodes’neighbors
must be informed of this reallocation of space. Every node in the
system senses an immediate update message, followed by periodic
refreshes, with its currently assigned zone to all its neighbors.

The addition of a new node affects only a small number of ex-
isting nodes in a very small locality of the coordinate space. The
number of neighbors a node maintains depends only on the dimen-
sionality of the coordinate space and is independent of the total
number of nodes in the system. Thus, for a M -dimensional space,
node insertion affects only O(M) existing nodes which is important
for CANs with huge numbers of nodes. In Section 3.4 [p.70] we will
further discuss load balancing in CANs.

3.2 Routing

Using its neighbor coordinate set, a node routes a message toward
its destination by simple greedy forwarding to the neighbor with
coordinates closest to the destination coordinates (see Figure 3.2
[144]).

For a M -dimensional space partitioned into N equal zones, in-
dividual nodes maintain 2M neighbors (one to advance and one to
retreat along each dimension) and the average routing path length
is (M/4)(N1/M) (each dimension has N1/M nodes; on a torus, a
destination will, on average be (1/4)(N1/M) nodes away along each
of the M dimensions). For a M -dimensional space, they can grow
the number of nodes (and hence zones) without increasing per node

68 CHAPTER 3. CONTENT-ADDRESSABLE NETWORK (CAN)

Figure 3.2: Example of routing in a 2-d space.

state while the path length grows as O(M1/M).

Several proposed routing algorithms for location services route
in O(log(N)) hops with each node maintaining O(log(N)) neigh-
bors. In CAN this is possible if the number M ≥ (log2(N))/2.
Because of CAN is supposed to be applied to very large systems
with frequent topology changes, in the consideration above M is
kept fixed to keep the number of neighbors independent of the sys-
tem size.

Note that, if one or more of a node’s neighbors were to crash, a
node would automatically route along the next best available path.
If however, a node loses all its neighbors in a certain direction, and
the repair mechanisms described in Section 3.3 [p.69] have not yet
rebuilt the void in the coordinate space, then greedy forwarding
may temporarily fail. In this case, the forwarding node first checks

3.3. NODE DEPARTURES 69

with its neighbors to see whether any of them can make progress
toward the destination. This 1-hop route check is useful in circum-
venting certain voids and its more important at lower dimensions.
If even the 1-hop route check fails, greedy routing fails an the mes-
sage (see Section 3.3 [p.69]) is forwarded using the rules used to
route recovery messages until it reaches a node from which greedy
forwarding can resume.

3.3 Node departures

When nodes leave a CAN, the zone they occupied must be taken
over by the remaining nodes. For doing this a node can explic-
itly hand over its zone (i.e. its own VID and its list of neighbor
VIDs and IP addresses) and the associated (key, value) database
to a specific node called the takeover node. If the takeover’s zone
can be merged with the departing node’s zone to produce a valid
single zone, then this is done. If not, then the takeover node can
temporarily handle both zones.

The CAN is also designed to be robust to node or network fail-
ures, where one or more nodes simply become unreachable. A re-
covery algorithm has been defined that ensures that the takeover
node and the failed node’s neighbors independently work to recon-
struct the routing structure at the failed node’s zone. However in
this case the data stored by the departing node is lost and need
to be rebuilt. For example, the holders of the data can refresh
the state (to prevent stale entries as well as to refresh lost entries,
nodes that insert (key, value) into the CAN might periodically re-
fresh these entries. Alternately, each (key, value) pair might be
replicated at multiple points. In the CAN definition this issue is
not addressed since the appropriate solution is largely dependent
on application-level issues.

We do not describe the detailed recovery process by which rout-
ing state is rebuilt when a node fails. The identification of a unique
node, called the takeover node that occupies the departed node’s
zone and the process by which the departed node’s neighbors dis-

70 CHAPTER 3. CONTENT-ADDRESSABLE NETWORK (CAN)

cover the takeover node and vice versa are full described in [144].

3.4 Load Balancing

Since data is spread across the coordinate space using a uniform
hash function, the volume of a node’s zone is indicative of the size
of the database the node will have to store, and hence indicative of
the load placed on the node. A uniform partitioning of the space
is thus desirable to achieve load balancing.

Note that this is not sufficient for true load balancing because
some pair (key, value) will be more popular than others thus putting
higher load on the nodes hosting those pairs. This is basically the
same as the hot-spot problem on the Web and can be addressed
using caching and replication schemes as discussed in [145]. Other
approaches for load balancing in CAN can be found in [162, 172,
153], while a general discussion about load balancing in DHTs can
be found in [149].

3.5 M-CAN: CAN-based Multicast

The naive approach to implement flooding for a CAN overlay net-
work is for each node that receives a message to forward that mes-
sage to all of its neighbors. Nodes can filter out duplicate messages
by maintaining a cache of previously received message ids. The
problem with the naive strategy is that it can lead to a large num-
ber of duplicate messages.

To reduce the number of duplicates, Ratnasamy, Handley, Karp,
and Shenker presented in [146] (see also [144]) an efficient flooding
algorithm that exploits the structure of the CAN coordinate space
to limit the directions in which each node will forward messages.

Nodes use the following five rules to decide whether to forward a
message, and to decide to which neighbors to forward the message.

1. Origin Forwarding Rule: The multicast origin node forwards
the message to all neighbors.

3.5. M-CAN: CAN-BASED MULTICAST 71

Figure 3.3: Directed Flooding over the CAN.[146]

2. General Forwarding Rule: A node receives a message from
a neighboring node adjacent along dimension i. The node
forwards that message to all adjacent neighbors along dimen-
sions 1 through i − 1. The node also forwards the message
to those adjacent neighbors along dimension i in the opposite
direction from where it received the message.

3. Duplicate Filter Rule: A node caches the message-ids of all
received messages. When a node receives a duplicate, it does
not forward the message.

4. Half-Way Filter Rule: A node does not forward a message
along a particular dimension if that message has already trav-
eled at least half-way across the space from the origin coor-
dinate in that dimension.

5. Corner Filter Rule: Along the lowest dimension (dimension
1), a node n only forwards to a neighbor nA if a specific
corner of nA is in contact with n. This specific corener is

72 CHAPTER 3. CONTENT-ADDRESSABLE NETWORK (CAN)

Figure 3.4: Illustration of the race condition that affects the CAN
efficient flooding algorithm presented in [146].

the one nA that is adjacent to n along dimension 1 and has
the lowest coordinates along all other dimensions. Note that
this rule eliminates certain messages that would otherwise be
sent according to the two forwarding rules.

Jones, Theimer, Wang, and Wolman discovered and fixed two
flaws with the above algorithm [90].

The first flaw is an ambiguity in the half-way filter rule spec-
ified above. The authors state that the above algorithm ensures
there will be no duplicate messages if the CAN coordinate space
is evenly partitioned (i.e. all CAN nodes have equal sized zones).
The following change to the half-way filter rule is needed to ensure
that this property actually holds. When deciding whether or not
to forward to a neighbor n, if n contains the point that is halfway
across the space from the source coordinate in that dimension, then
we only forward to n that neighbor from the positive direction.

The second flaw they discovered is a race condition that can
lead to certain nodes never receiving the flooded message. This race
condition arises because when a node receives a duplicate message,
it does not forward that message. Therefore, the order in which
a node receives a message from its neighbors may determine the

3.5. M-CAN: CAN-BASED MULTICAST 73

directions in which that message is forwarded.
To demonstrate this problem, Figure 3.4 [90] illustrates a situa-

tion where one of the nodes does not receive the multicast message.
This figure shows a small portion of a 2-dimensional CAN, where
the dashed line in the figure is the location along the y axis that is
half-way from the origin. The sequence of message delivery times
listed in the time line portion of Figure 3.4 causes node E to never
receive the message. Note that a different ordering of message re-
ception either at node nC or at node nD would have led to proper
message delivery at node nE. For example, if we switch the order of
messages at times T=1 and T=2, then the message from nA to nC

is delivered before the message from nB to nC , which means that
node nC will forward the message to nE. The idea behind fixing [90]
the flooding algorithm is to make static forwarding decisions based
on the relative position of a node to the multicast origin, rather
than dynamic forwarding decisions based on the order of incom-
ing messages. The new algorithm presented in [90] breaks up the
forwarding process into two stages. In first stage, a node decides
which dimensions and directions to the forward message along. In
the second stage, a node applies a second set of rules to filter the
subset of neighbors that satisfy the first stage rules.

The stage one forwarding rules presented in [90] are:

1. If a node’s region overlaps the origin along all dimensions less
than or equal to i, then this node will forward the message in
both the positive and the negative directions along dimension
i.

2. If a node’s region overlaps the origin along all dimensions less
than i, then this node will forward the message only in one
direction along dimension i. The direction to forward the
message will be away from the origin coordinate, toward the
half-way point.

3. For the lowest dimension (dimension 1), always forward only
in one direction. As before, the forwarding direction will be
away from the origin coordinate, toward the half-way point.

74 CHAPTER 3. CONTENT-ADDRESSABLE NETWORK (CAN)

The stage two filtering rules presented in [90] are:

1. For all dimensions greater than 1, only forward to a neighbor-
ing node along dimension i if that neighbor’s region overlaps
the origin coordinates for all dimensions less than i.

2. The half-way filter rule from the original algorithm, with our
modification described above.

3. The corner filter rule from the original algorithm.

Although the rules for this algorithm look somewhat different
from the original algorithm, the way that messages flow through the
CAN coordinate space is quite similar to the original algorithm.
An important side effect of the modified flooding algorithm is a
significant reduction in the number of duplicate messages, due to
the first rule in the filtering stage of the new algorithm.

In [43] the tree-based application-level multicast for DHTs first
introduced in Pastry1 (namely SCRIBE[42]) and Tapestry2 (namely
Bayeux [195]), has been adapted to operate on CAN.

A delay analysis of the [146] and [43] approaches has been given
in [82]. A good survey of application-level multicast approaches in
which the M-CAN is compared with SCRIBE can be found in [95].

3.6 CAN Related Works

In [12] Range queries over CAN have been investigated. They pro-
posed three simple strategies for propagating Range query requests,
and strategies to minimize the communication overhead during the
attribute updates. Their strategies are limited to attributes that
have a single value which belongs to R.

Nearest Neighbor queries have been studied in [33]. They sup-
posed that the hash function is able to map near objects into near
keys. Moreover, they only consider the distance between the objects
as the distance between the keys.

1we described Pastry in Subsection 2.4.3 [p.39]
2we described Tapestry in Subsection 2.4.4 [p.41]

3.6. CAN RELATED WORKS 75

In [147] various types of attacks on the CAN and possible coun-
termeasures have been proposed. However, the problem of peer
inserting unwanted or unpopular data into the CAN is not consid-
ered in this paper.

Voice over IP (VoIP) over DHTs is considered in [16]. In partic-
ular, they presented a robust architecture for Session Initiation Pro-
tocol (SIP) infrastructures called CAN-based SIP (CASIP) which
makes use of the CAN

Chapter 4

MCAN

In this chapter, we present the Metric Content-Addressable Net-
work (MCAN) which is the main object of this thesis. MCAN,
originally presented in [65], is an extension of the CAN1 to support
storage and retrieval of generic metric space2 objects .

In order to manage metric data, the MCAN uses a pivot-based
technique, presented in Section 4.1 [p.78], that maps metric data
objects x ∈ D to an M -dimensional vector space RM . Then, the
CAN protocol is used to partition the space and for navigation.

Because of a particular property of the chosen mapping, namely
contractivness, during similarity queries execution it is always pos-
sible to evaluate a lower bound for the distance between a generic
object and all the objects stored in a generic node. Thus it is pos-
sible to exclude peers from the query execution.

In order to reduce the number of the distances evaluated by
each involved node, MCAN uses the pivot-based filtering described
Section 4.2 [p.80].

In Section 4.8 [p.86] Range query similarity search over the
MCAN, defined in [65], is presented. Moreover, three algorithms for
executing Nearest Neighbor queries over the MCAN are presented
in Section 4.9 [p.88] (they were defined in [66]).

1see Chapter 3 [p.63]
2see Section 1.3 [p.7]

77

78 CHAPTER 4. MCAN

4.1 Mapping

In MCAN a special mapping function is used to map objects from
a generic metric space D to an M -dimensional vector space RM in
which we use L∞ as distance (see Definition 1.3.1 [p.10]). We will
prove that this mapping is a contraction mapping. In the follow-
ing we give a definition of mapping function (Definition 1) followed
by the definition of contraction mapping (Definition 2) and by the
proof that our mapping function is a contraction mapping (Theo-
rem 1).

Definition 1. Let {p1, p2, . . . , pM} a set of preselected objects in D,
called pivots, and x a generic object in D. We define the mapping
function F as:

F (x) : D → RM = (d(x, p1), d(x, p2), . . . d(x, pM))

Using F (to map objects from D in RM) and L∞ as metric
distance for the in RM we can map any objects from the original
metric space M(D, d) in a new vector space, which is also metric,
MM(RM , L∞).

We now define an important subclass of mapping functions: con-
traction.

Definition 2. A contraction mapping, or contraction, is a function
f from a metric space M(D,d) to another metric space M̂(D̂,d̂),
with the property that there is some real number 0 ≤ λ ≤ 1 for
which:

∀x, y ∈ D, d̂(f(x), f(y)) ≤ λ d(x, y) .

If λ ∈ [0, 1) then the mapping is said to be a strict contraction
while if λ = 1 then the mapping is said to be nonexpansive or
simply contraction.

Sometimes strict contractions are called just contractions in
which case the λ = 1 case is always referred as nonexpansive.

Now we prove that the proposed mapping is a contraction map-
ping.

4.1. MAPPING 79

Theoreme 1. F is a contraction mapping from a generic metric
space M = (D, d) to the MM = (RM , L∞) metric space, (i.e. for
any pair of objects in D, the distance between the mapped objects
in the derived space MM obtained using F is never larger than the
distance in the original metric space M).

Proof. Let x, y ∈ D a pair of objects and x̂, ŷ ∈ RM their mapped
values, i.e. x̂ = F (x) and ŷ = F (y). From the L∞ and F definitions:

L∞(x̂, ŷ) = max
i
|d(x, pi)− d(y, pi)| .

Since the triangle inequality (Equation 1.5) for d in the original
metric space M holds

∀i, |d(x, pi)− d(y, pi)| ≤ d(x, y)

then
L∞(x̂, ŷ) = max

i
|d(x, pi)− d(y, pi)| ≤ d(x, y)

Finally we proved that our mapping function F is a contraction.
In other words the distance L∞ between any pair of mapped objects
in the derived MM vector space is a lower bound of the “original”
metric distance d between the two objects in M. This properties,
together with the object distributing algorithm inherits from the
CAN, will permit excluding some peers from the similarity query
execution without lost of results.

4.1.1 Pivot Selection

Using pivot for mapping, as we do, what we would the mapping
to be less contractive as possible. To select convenient pivots in
our experiments we used the incremental selection technique orig-
inally proposed in [35] together with other pivot selection tech-
niques. They showed that the incremental selection is the best
method in practice. Basically, the algorithm tries to maximize the
average L∞ distance between two objects

80 CHAPTER 4. MCAN

Also, they showed that good pivots have the characteristic to
be outliers, that is, good pivots are objects far away from each
other and from the rest of the objects of the database, but an
outlier does not always have the property to be a good pivot. It
is interesting to note that outliers sets have good performance in
uniformly distributed vector spaces, but have bad performance in
general metric spaces, even worse than random selection in some
cases.

4.2 Filtering

In our experiments we used pivoted filtering to reduce distance
evaluations during the execution of Range and Nearest Neighbor
similarity queries by an involved nodes. However, a generic node
participating in MCAN could use its own centralized data struc-
tures for efficiently searching between its metric objects (see Sec-
tion 1.4 [p.12] for a small survey of centralized access methods for
metric spaces).

Performing a range query R(q,r) (Subsection 1.2.1 [p.4]) we
search for objects x ∈ X (where X ⊆ D are the stored objects)
that are nearest than r to the q, i.e.:

d(x, q) ≤ r ,

we compute for the query object q ∈ D, it’s mapped object
where

q̂ = F (q) = (d(q, p1), . . . , d(q, pM)) .

Because the mapping is a contraction L∞(x̂, q̂) ≤ d(x, q) (see
Theorem 1). Thus we can avoid the evaluation of d(x, q̂) whenever

L∞(x̂, q̂) > r . (4.1)

In other words, the object x can be discarded if there exists a
pivot pi such that

∃ i, |d(q, pi)− d(x, pi)| > r. (4.2)

4.3. REGIONS 81

During the evaluation of a k Nearest Neighbors kNN(q) (Sec-
tion 1.2.2 [p.4]) if y1, . . . , yk ∈ D are the temporary results, we can
avoid the evaluation of d(q, x) if

L∞(x̂, q̂) > d(yk, q) . (4.3)

In other words, an object x can be discarded if there exists a
pivot pi such that

∃ i, |d(q, pi)− d(x, pi)| > d(yk, q) . (4.4)

While Equation 4.1 and Equation 4.3 are specific to MCAN
mapping, Equation 4.2 and Equation 4.4 describe essentially the
same conditions in the form used in the pre-computed distances
literature (see Subsection 1.4.3 [p.13]).

Here we will not consider specific data structures to efficiently
execute pivoted filtering. In our experiments we will consider only
distance evaluation cost thus reducing the importance of specific
data structures for optimizing memory or disk usage. However,
well-known data structures have been proposed in the literature to
efficiently exploit pre-computed distances, e.g. LAESA [122] and
Spaghettis [44] (see Subsection 1.4.3 [p.13]).

4.3 Regions

We denote a peer of MCAN by the bold symbol n. Each peer n
maintains its region information referred as n.R. Moreover, since
the region n.R is an hyper-rectangle it can be uniquely identified
by its vertex closest to the origin, denoted as

n.R.v̂ = (n.R.v1, n.R.v2, . . . , n.R.vM) ,

and by the lengths of the relative sides, i.e.

n.R.l1, n.R.l2, . . . , n.R.lM .

More precisely, the region n.R is defined as follows

n.R = {∀x̂ ∈ RM | ∀ i, n.vi ≤ xi < n.vi + n.li}

82 CHAPTER 4. MCAN

The peer n also maintains the set of the neighbor peers’ information
n.M ⊂ {n1, . . . , nh}.

We can now introduce the formal definition of an M -dimensional
MCAN structure, referred as MCANM , which is composed of a set
of N (N > 0) network peers {n1, . . . , nh} such as:

∀ i, j | i 6= j ni.R ∩ nj.R = ∅ , (4.5)

N⋃
i=1

ni.R = RM , (4.6)

ni ∈ nj.M ⇔ ∃k |
(ni.R.vk + ni.R.lk = nj.R.vk) ∨ (nj.R.vk + nj.R.lk = ni.R.vk),

∀w 6= k [ni.R.vw, ni.R.vw + ni.R.lw[∩
∩[nj.R.vw, nj.R.vw + nj.R.lw[6= ∅ . (4.7)

Equation 4.5 states that the zones covered by the network peers
do not overlap. Equation 4.6 states that the union of the zones
covers the whole MCANM space RM (there are no holes). Finally,
Equation 4.7 declares the condition for a network node ni to be a
neighbor of nj.

4.4 Construction

An important feature of the CAN structure is its capability to dy-
namically adapt to data-set size changes. As we will see in the
experimental evaluation, we are interested in preserving the scala-
bility of the MCAN, which means that we want to maintain a stable
the response time of query execution. Since the number of objects
a peer can maintain is limited, when a peer exceeds its limit it splits
by sending a subset of its objects to a free peer that takes respon-
sibility for a part of the original region. Note that, limiting the
number of objects each peer can maintain, we also limit (reduce)

4.5. INSERT 83

the number of distance computations a peer have to compute during
a query evaluation.

It is important to observe that in some cases we might want to
use all the peers available in the network. Previous work like have
studied this possibility in a generic CAN structure by allowing a
peer to split even if it does not exceed its storage capacity. Ob-
viously, such methodology can also be applied in our MCAN. On
the other hand, in a Peer-to-Peer environment, we would like to let
the peers the possibility to freely join and leave the network, with-
out affecting its consistency. As showed in Chapter 3 [p.63], this
is possible with a CAN, which even provides some fault-tolerance
capabilities.

Since pivots need be determined before the insertion starts, we
assume a characteristic subset of the indexed dataset (about 5000
objects) is known at the beginning. For selecting the pivots, we
use the Incremental Selection algorithm described in Subsection
4.1.1 [p.79]. This algorithm tries to maximize the average dis-
tance L∞ between two arbitrary objects in the derived space (i.e.
L∞(F (X), F (Y))).

4.5 Insert

An insert operation can be initiated in any peer of the MCAN. It
starts by mapping the inserted object X to the virtual coordinate
space using function F (), and proceeds by checking if x̂ = F (X)
lies in the zone maintained by the peer n, i.e. x̂ ∈ n.R. If this
is not the case, the peer forwards the insertion request. From this
point, the insertion proceeds with the greedy routing algorithm
used in standard CAN structures: the inserting peer forwards the
insertion operation to the neighbor peer which is closer to the point
x̂ by using the L∞ distance. The objective is to find the peer
n for which x̂ ∈ n.R, minimizing the number of messages. We
refer to this special peer as µ(q̂) (i.e. q̂ ∈ µ(q̂).R). If x̂ lies in
the region maintained by the receiving peer, the object X is stored
there, otherwise a neighbor peer is selected with the same technique

84 CHAPTER 4. MCAN

and the insert operation is forwarded again until the object X is
inserted.

The peer µ(x̂), which stores the object X must reply to the
peer that started the insert operation. If the peer µ(x̂) exceeds its
capacity it splits. Eventually, the object X is inserted in µ(x̂) or in
the new allocated peer.

4.6 Split

In MCAN, we apply a balanced split, i.e. the resulting regions con-
tain the same number of objects. During this process, the splitting
peer just requests a peer from a free peer list to join the network,
and one half of the metric objects is then reallocated there.

If we define n1 as the splitting peer, n1.R as the old region,
n1.R

′ as the new one, and n2 as the new peer, the split regions
must satisfy the following equations:{

n1.R
′ ∪ n2.R = n1.R

n1.R
′ ∩ n2.R = ∅

Moreover, to respect these constraints, we create the new two re-
gions by dividing the original one along one coordinate of the space.
Therefore, the new regions, n1.R

′ and n2.R, must satisfy the fol-
lowing equations:

n1.R
′.vs = n1.R.vs

n2.R.vs = n1.R
′.vs + n1.R

′.ls
n2.R.ls = n1.R.ls − n1.R

′.ls

Note that that we only have to choose s and n1.R
′.ls. In order

to decide s, for each dimension i we find n1.R
′.li that divide the

objects into two halves. Moreover, we choose to split along the
dimension that maximizes the length of the shortest side.

After the splitting process, the peer n1 sends a message to all
its neighbors n1.M informing them about the update of its region.
It also sends information about the new peer to the neighbors that
are also neighbors of n2. The new peer is informed by n1 about

4.7. EXECUTION END DETECTION 85

its neighbors n2.M (note that n2.M ⊆ n1.M). At the end, n1 can
discard information about the peers that are not more its neighbors.

4.7 Execution End Detection

One of the problem of Peer-to-Peer systems able to perform sim-
ilarity search such as Range and Nearest Neighbor queries is that
typically a set of nodes is involved in the execution to the query
and all of them return their results to the requester. Moreover, we
can not expected the answers to come in the order in which nodes
are involved. However, the requester must be able to exactly know
when there are no more nodes to wait for. Obviously, we don’t
want to force the requester to directly contact each involved node.
In fact, because of the partial information about the network the
requester has, it is not able to know in advance which nodes will
participate in the query process.

When the requester starts an operation, if none of its neighbor
must be involved, it forwards its request to a not involved node. The
routing mechanism of the CAN underlying structure, will forward
the request to an involved node. Thus there is always an involved
node which was contacted either directly from the requester or from
a forwarding peer (not from another involved node). We call this
special node the first-involved node. Without lost of generality, this
first-involved node could even be the requester itself. After a first-
involved node is reached, using the routing mechanism, all other
involved nodes are contacted by an involved node (see Range query
in Section 4.8 [p.86] and Nearest Neighbor in Section 4.9 [p.88]).

Our simple solution for similarity queries execution end detec-
tion is based on a list of involved nodes managed by the requester.
Any answering node must communicate the nodes that it has asked
to participate in the similarity query execution. This node are
added to the involved nodes list by the requester. An query execu-
tion is ended when the first-involved node and all the nodes which
are in the involved nodes list have answered.

When this condition is satisfied, it does not exists an involved

86 CHAPTER 4. MCAN

node which has not yet answered. In fact, this hypothetical node
would have been involved by another node which did not answered
yet and which is not yet in the involved node list, and so on. Re-
cursively following this chain of involved nodes, we should be able
to find the first-involved node. But this is not possible because the
first-involved node as already answered. To better understand, it
is possible to imagine a tree which has the first involved node as
root and involved nodes as childes of the node who involved them.
From the root it must be possible to reach any involved node and
vice versa.

4.8 Range Query

A range query operation R(q,r) can start from any MCAN node.
As shown in Figure 4.1, for a given query object and range radius,
there is a certain number of nodes whose regions intersect the query
region which is a hypercube with q̂ as center as 2r as side length.
We denote as 〈q̂, r〉 Obviously, only the intersecting nodes must
process the range query operation. The requesting node maps the
query object into the virtual coordinate space using the function
F (). Then it checks if it is involved in the range query operation (i.e.
when it intersects 〈q̂, r〉). If the node is not involved in the query,
it forwards the range query operation to the neighbor node that is
closest to region 〈q̂, r〉, using the L∞ distance. This operation is
performed in a similar way as described for the insert operation.

When a node that is involved in the range query is reached
by the query request, it forwards it to each neighbor that is also
involved and then it starts processing the range query over its local
data-set. From this point the multicast algorithm proposed in [146]
with improvement and corrections described in [90] (see Section 3.5
[p.70]) is used to forward the request to all involved peers. To
efficiently parallelize the operation, each peer forward the message
before starting executing the R(q,r) locally.

In this thesis, we used a superset of the pivots chosen to de-
fine the MCAN space to reduce the number of distance evaluations

4.8. RANGE QUERY 87

Figure 4.1: Example of Range query in a two dimensional space.
The darker square is the query region, while the brighter rectangles
correspond to the involved nodes.

performed inside a single node. Using the pivot-based filtering (see
Section 4.2 [p.80]), we are able to significantly reduce the number
of distance evaluations inside the nodes. In a more sophisticated
implementation of MCAN, each node could have its own local data
structure to efficiently search inside a single node.

In order to allow the requesting node to know when all the nodes

The requester, which is the peer receiving the answers coming
from the involved nodes, detects the execution end using the mech-
anism described in Section 4.7 [p.85].

88 CHAPTER 4. MCAN

4.9 Nearest Neighbor query

In MCAN, we have developed three different strategies to perform
kNN queries [66]: Parallel Execution (PE), Sequential Execution
(SE), and Mixed Mode Execution (MME). Each of these techniques
has its advantages and disadvantages which will be discussed later.

All these three strategies start by locating the peer that con-
tains the query object q. We refer to this special peer as µ(q̂). The
location of µ(q̂) is performed exactly the same way as for the inser-
tion operation described in Section 4.5 [p.83]. The kNN proceeds
in the peer µ(q̂) and finds the k objects nearest to q. Note that,
we assume that there are at least k objects in µ(q̂). Because of the
splitting rule this condition is guaranteed for any k less or equal to
half of the peer capacity. However, in case k is greater than the
number of objects contained in µ(q̂), the algorithms could be easily
modified by forwarding the kNN request to the most promising
peer until the temporary result list contains k objects. Therefore,
the first k objects, i.e. the objects with the shortest distances to
q, are the candidates for the kNN result. However, there may be
other objects in different peers’ regions that are closer to the query
than some of those k candidates. Nevertheless, since the MCAN
space is contractive, these objects are within the distance to the
k-th objects found to the query. In order to verify if there are
other peers involved in the query, µ(q̂) controls if the hypercube
〈q̂, d(xk, q)〉 is completely contained in µ(q̂).R (where xk is the k-th
element of the candidate result set of the kNN). If this is true,
the kNN search correctly terminates and the k objects retrieved
by µ(q̂) represent the result of the kNN query.

When 〈q̂, d(xk, q)〉 is not completely contained in the region
µ(q̂).R, we have to check if there are other peers that maintain
objects near to q, respecting the k objects found in the peer µ(q̂).
From this stage, our three proposed algorithms start working differ-
ently. In particular, the algorithms differ in the way they propagate
the kNN query execution among the involved peers. The generic
behavior of these three approaches can be characterized as follows:

PE All the peers overlapping the hypercube 〈q̂, d(xk, q)〉 are in-

4.9. NEAREST NEIGHBOR QUERY 89

volved in the kNN operation. The overlapping peers that
receive the query first forward the kNN query and only then
they start evaluating the query on their local data.

SE The µ(q̂) peer only involves the most near neighbor to q. This
peer first computes locally the kNN query updating its tem-
porary result list and only after this involves the next peer
most near to q, is needed.

MME The µ(q̂) peer involves its neighbors that overlap the hy-
percube 〈q̂, d(xk, q)〉. Every peer first computes locally the
kNN query updating its temporary results list and only after
this involves its neighbors that overlap the updated hypercube
〈q̂, d(xk, q)〉.

The query propagation of PE requires an application level multi-
cast. In fact, starting from µ(q̂), the query is forwarded to all peers
which overlap the hypercube 〈q̂, d(xk, q)〉. The multicast algorithm
proposed in [146] with improvement and corrections described in
[90] (see Section 3.5 [p.70]) are used in MCAN in order to reduce
the number of replicated messages. The same algorithm is also used
by MME. Actually, in MME the query propagates as in the PE ex-
cept for the fact that the hypercube can reduce its size during the
query propagation.

It is important to note that the three algorithms differ not only
in the temporal sequence in which the peers are involved but they
also differ in the number of accessed peers. In fact, the algorithms
MME and SE can take advantage of the partial kNN evaluation
for optimizing the query by possibly reducing the number of peers
which the kNN query must be forwarded to. This optimization
cannot be exploited in PE and it is optimum for the SE algorithm.
On the other hand, while the parallelization of the kNN operation
is maximum for the PE, for SE there is no parallelization at all.
The third approach (MME) represents a trade off between PE and
SE strategies.

The three algorithms also differ in terms of the total number of
distance computations. In fact, during the kNN query forwarding,

90 CHAPTER 4. MCAN

in all the three approaches, the peers send along with k and the
query object q a list of the distances of the current candidate result
set of nearest neighbors. More precisely, a peer n which evaluates
the kNN updates the ordered list Lk defined as:

Lk(i) = d(Xi, q),

where the object Xi belongs to the merged result set of the kNN
query evaluated both by n and by a certain number of peers (it
depends on the algorithm) which have been involved.

Concerning the PE approach, Lk is sent by the peer µ(q̂) to all
its neighbors involved in the kNN query (if any). This information
is then forwarded (unmodified) to the other peers involved in the
kNN query. Lk together with the pivot objects can be exploited
by a peer in order to reduce the number of distance computations
during the kNN evaluation exploiting the filtering sdescribed in
Section 4.2 [p.80]. It is clear that in PE approach Lk cannot be
updated because the peers first forward the query to their neigh-
bors and then they proceed with the query evaluation. On the
contrary, in the MME approach the peers can produce and forward
a more accurate version of Lk with the advantage of being able
to reduce both the number of peers involved and the number of
distance computations with respect to PE. In fact, the number of
peers involved in the query and the number of distance computa-
tions both depend on the distance d(xk, q) which typically decrease
as the kNN computation proceeds. Finally, the query evaluation
before the forwarding in MME reduces the degree of parallelism.

The SE algorithm takes the maximum advantage of information
stored in Lk. The peers are involved one after the other according
to their region distance from q, and each peer evaluates the query
before forwarding it to the next peer. For this reason, the peer that
receives the forward of the kNN must know the current list of the
peers that could be involved in the query. This list consists of the
set of the not yet involved peers whose distances (of their regions)
from q are less than or equal to d(xk, q) and that are neighbors of
previously involved peers. This is necessary since the neighbor of
a peer that is involved in the kNN needs not be a neighbor of the

4.9. NEAREST NEIGHBOR QUERY 91

receive q, Lk

dk:=Lk(k); # dk is d(xk, q)
N :={∀m ∈ n.M | 〈q̂, dk〉

⋂
m 6= ∅};

if Lk = ∅ then
the peer is µ(q̂):
(Lk,A) := searchkNN local(q, Lk);
for each m ∈ N

send q, Lk to m;
end for each

else
for each m ∈ N

send Lk to m;
end for each
(Lk,A) := searchkNN local(q, Lk);

end if
send A to the requesting peer

Figure 4.2: PE algorithm

next peer involved in the SE sequence. Note that at the end of the
kNN computations (performed by each peer) this list is pruned by
removing the peers whose distances from q become greater than
the actual value of d(xk, q). When the list is empty, the operation
terminates and the result is sent to the requesting peer.

In general, we can consider two aspects of the kNN operation
costs: its parallelism, which is necessary for the scalability, and
its total computational cost. The PE approach tries to maximize
parallelism while the SE tries to minimize the total computational
costs. MME is somewhere in the middle.

In Figures 4.2, 4.3, and 4.4, we sketch the algorithms of the
approaches PE, MME, and SE, respectively. As can be seen in the
sketches, MCAN does not make use of a coordinating peer. Any
peer sends its result set to the requesting peer (i.e. the peer which
started the kNN operation). The requesting peer merges the result
lists coming from the involved peers. Note that, in the algorithms
we assume the distances between the results and the query are sent

92 CHAPTER 4. MCAN

receive q, Lk

(Lk,A) := searchkNN local(q, Lk);
dk:=Lk(k); # dk is d(xk, q)
N :={∀m ∈ n.M | 〈q̂, dk〉

⋂
m 6= ∅};

for each m ∈ N
send q, Lk to m;

end if
send A to the requesting peer

Figure 4.3: MME algorithm

receive q, Lk, N
(Lk,A) := searchkNN local(q, Lk);
N := N + n.M ; # adds the neighbors to the list
p :=GetNearestPeer(N, q);
select peers that will not be involved
T :=GetPeersFartherAwayThan(N, q, dk);
N := N − T − {p};
send q, Lk, N to p;
send A to the requesting peer

Figure 4.4: SE algorithm

4.9. NEAREST NEIGHBOR QUERY 93

function (Lk,A) =searchkNN local(q, Lk)
note: n is the current peer and P1, . . . , Pw the pivots of

the MCAN
T k := 0 # is a temporary list of objects and distances
for i from 1 to k

for results belonging to other peers we just have
distances
T k(i) := (null, Lk(i));

end for
for each X ∈ n # where n is the current peer

all these distances were pre-evaluated
if | d(q, Pi)− d(X, Pi) |≤ d(Lk(k), q) then

d(X, q) is not pre-evaluated
if d(X, q) < d(Lk(k), q) then
T k := T k − {T k(k)} + {X, d(X, q)}; # pre-

serving order
end if

end if
end for each
A := ∅;
for i from 1 to k

Lk(i) := T k(i).distance; # for next peers we need
only distances
A := A + T k(i).object; # object can be null

end for
end function

Figure 4.5: Implementation of the function searchkNN local

94 CHAPTER 4. MCAN

together with the objects id, even if not reported in the algorithms.
In Figure 4.5, we report the searchkNN local used by the previous
algorithms.

In Section 4.7 [p.85], we described how the requesting peer real-
izes when the range query operation has terminated. The applica-
tion level multicast algorithm (see Section 3.5 [p.70]) is not reported
in the algorithm sketches.

An interesting direction of investigation is to generalize the kNN
algorithms by parameterizing their behavior. Let α, β ∈ [0, 1] be
the parameters for this new algorithm and β > α. A peer perform-
ing the kNN first involves its neighbors whose regions overlaps
〈q̂, αd(xk, q)〉. After the local execution of the kNN query the peer
involves both the not yet involved neighbor that is closest to the
query q̂ and those neighbors whose regions overlaps 〈q̂, βd(xk, q)〉.
Note that for SE α, β = 0, for MME α = 0, β = 1, for PE α = 1
and β is useless because all the neighbors are involved before the
local execution of the kNN .

Chapter 5

MCAN Evaluation

In this chapter we report the results of an extensive experimen-
tal evaluation of MCAN performance with particular emphasis on
scalability with respect to the dataset size. All the experiments
were conducted on a real Java implementation of the MCAN over a
high-speed LAN communicating via the TCP and UDP protocols.

In Section 5.1 we report the experimental results obtained vary-
ing the dimensionality of the mapped space. In Section 5.2 we re-
port the experimental results obtained for Range queries. These
results were originally reported in [65]. Finally, in Section 5.3, we
report the experimental results obtained by the the Nearest Neigh-
bor algorithms described in Section 4.9, which were originally re-
ported in [65].

5.1 Dimensionality of the Mapped Space

As defined in Section 4.1 [p.78], in MCAN we make use of a map-
ping function F to map objects from a generic metric space D to
an M -dimensional vector space RM . Choosing M is a trade-off
between three performance issues. Because M is the dimensional-
ity of the space partitioned using the CAN (see Chapter 3 [p.63]),
it directly affects both the average number of neighbors per node
and the average routing path length. Moreover, because similarity
queries in MCAN, as in any distributed similarity search structures,

95

96 CHAPTER 5. MCAN EVALUATION

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70

Dimensionality of the mapped space (N)

p
er

ce
n

ta
g

e
o

f i
n

vo
lv

ed
 n

o
d

es

2 4 8 16 32 64 128 256 512 1024

Figure 5.1: Average percentage of involved nodes for increasing M
performing range queries with r = 1000 and various number of
nodes

typically involve more than one node, M is also correlated with the
percentage of involved nodes.

All the experiments of this section were conducted on 1,000,000
object dataset of 45-dimensional vectors of extracted color image
features. The similarity of the vectors was measured by a quadratic-
form distance [158]. The distribution of the dataset is quite uniform
and such a high-dimensional data space is extremely sparse. The
same dataset will be also used, together with other datasets, for
Range queries (Section 5.2 [p.98]) and kNN (Section 5.3 [p.103])
experimental evaluation.

In Figure 5.1 we report the average percentage of involved nodes
for increasing M performing 100 random Range queries with r =
1000 (which reported an average of 189 results per Range queries)
for different number of nodes (varying from 2 to 1024). The results
show that for any given number of pivots there is an optimum M
in terms of percentage of involved nodes. In particular, for small
number of nodes, best results are achieved with small M .

This behavior is due to two distinct phenomenons. As the di-

5.1. DIMENSIONALITY OF THE MAPPED SPACE 97

1

10

100

1000

0 10 20 30 40 50 60 70

Dimensionality of the mapped space (N)

av
g

. n
. o

f
ne

ig
h

bo
rs

 p
er

 n
od

e

2 4 8 16 32 64 128 256 512 1024

Figure 5.2: Average number of neighbors per node for increasing
M and various number of nodes

mensionality of the mapped space grows, the percentage of the
mapped space occupied by the Range queries decreases. On the
other side, as the M grows, the average side lengths of the zones
assigned to the nodes, increases and the percentage of involved
nodes is less correlated to the percentage of the mapped space oc-
cupied by the Range queries. Moreover, it is significantly greater
than the occupied space percentage.

A well known effect of increasing the dimensionality of a CAN,
is the increasing in number of neighbors per node. In Figure 5.2
we report the average number of neighbors per node we obtained
for the VEC dataset considering different number of nodes and
for growing M . Obviously, if M = 1 the number of neighbors is
always 2 independently from the number of nodes which are forming
the network. However, increasing M the number of neighbors per
node become highly dependent from the number of nodes, and for
M = 64 almost all the nodes are neighbors of all the other ones.

As we can see in Figure 5.3, which reports the same results in
another form, if we want MCAN to be scalable in terms of number
of neighbors per node, good choice of M are between 1 and 4. On

98 CHAPTER 5. MCAN EVALUATION

1

10

100

1000

0 200 400 600 800 1000 1200

n. of nodes

av
g

. n
. o

f n
ei

g
h

b
o

rs
 p

er
 n

o
d

e

1 2 4 8 16 32 64

Figure 5.3: Average number of neighbors per node for different M

the other side we saw in Figure 5.1 that, for more than 100 nodes,
the optimum M in terms of percentage of involved nodes is above
this value.

Thus choosing M in MCAN is a trade-off between number of
neighbors per node, which is directly correlated to the average rout-
ing path length (see Section 3.2 [p.67]), and the average percentage
of involved nodes. In the rest of the thesis we will only use MCAN
up to M = 5. In most of the cases we will use M = 3.

5.2 Range query

In this section we report an evaluation of the Range query algorithm
described in Section 4.8 [p.86]. These results were reported in [65].

The metric data-sets used are: 100,000 of 45-dimensional vec-
tors of color features extracted from images (a subset of the VEC
dataset); 100,000 Czech sentences of length between 20 and 300
characters. Vectors are compared by the quadratic-form distance [158]
while for sentences we use the Edit distance (see Subsection 1.3.1
[p.9]).

5.2. RANGE QUERY 99

0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

n Objects

n
 N

o
d

es

Vector Dataset Text Dataset

Figure 5.4: Number of nodes for increasing data-set size.

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

n Objects

lo
ad

 f
ac

to
r

Vector Dataset Text Dataset

Figure 5.5: Average number of objects per node for the MCAN3

and for increasing data-set size.

100 CHAPTER 5. MCAN EVALUATION

We analyze the behavior of the structure in different dimen-
sional spaces: from 1-d (i.e. involving one pivot), to 5-d space
(i.e. involving five pivots). As already explained, we use the piv-
ots also to reduce the number of distance computations during the
query evaluation on individual nodes. However, independently of
the number of dimensions M used by MCANM , we always gener-
ate 10 pivots in the experiments and we use the first M pivots for
creating the MCANM zones. Moreover, all 10 pivots are used for
filtering during a range query execution internally in nodes.

To study the scalability of the system, we fix the storage space
available for each node and then, starting from a single server, we
add objects into the system. When a server reaches its storage
space limit, it splits. The limit was chosen in a way that after all
the 100,000 objects have been inserted, the MCANM is composed
of around 100 nodes. The node from which an insert operation
or a range query starts is randomly selected. Moreover, in order
to study the scalability of the system we perform a range query
operations every 5,000 insertions.

In Figure 5.4, we report the number of nodes in the system as
the data-set grows, for the MCAN3 case (the other cases are very
similar). Note from these experiments that, the number of nodes
exhibit a stepwise behavior. This is due to the fact that the objects
are randomly ordered, therefore the nodes are filled uniformly and
then they tend to split at the same time. This is particularly evident
for the vector data-set, where the objects have a fixed size, while
the size of objects of the text data-set (strings) is variable.

In Figure 5.5, we report the average load factor for both the
data-sets. We define the load factor as the total number of objects
stored into the MCAN structure divided by the capacity of storage
available on all nodes. As can be seen in the figure, the values are
always between 0.5 and 1. This is always guaranteed, because when
a node is split, half of the objects are migrated to the new node;
therefore the node occupation cannot be less than 50%.

For the performance evaluation of range queries, we selected
100 random objects from the data-set and for each of them we
performed 8 different range queries every 5,000 insert operations.

5.2. RANGE QUERY 101

We do not report the average result set size for the different query
radii, since they are linear to the data-set size. However, the heav-
iest range queries return around 3% of the objects for both vector
and text data-sets. Note that, these results are independent from
the type of access structure but depend on specific characteristics
of the given data-sets.

In Figure 5.6 and Figure 5.7 we report the average percentage of
nodes involved during a range query operation for different radii as
the data-set size grows. Observe that the bigger is the radius of the
range query, the more the nodes involved in the query evaluation
are. In a naive distributed system we could randomly distribute the
objects among the nodes but in this case we would always involve
all the nodes even for small radii.

For simple operations like the exact match, the standard CAN
has been proved to be scalable. MCAN extends CAN by allowing
similarity operations over generic metric space data-sets. In this
scenario, we must be able to perform more complex operations such
as similarity range queries. To preserve scalability also for such
operations, we need more nodes as the complexity of the query
grows. This aspect is evident in the plots of Figure 5.6 and Figure
5.7, where the percentage of nodes involved for a small radius is
smaller then the ones we obtains for greater radii. Note that, for
a given range query, the percentage of nodes involved is almost
constant. In fact, for a given range query the number of results
is linearly dependent on the number of objects in the data-set and
then the number of nodes involved is proportional to the number
of results.

To study the complexity of the range queries, we use the num-
ber of distance computations. However, for the case of the edit
distance (i.e. the Czech-sentences data-set) we must consider the
fact that the complexity of a single distance computation is not
constant but it is proportional to the string lengths. In this case
we decided to use the equivalent complexity of the edit distance de-
fined as L(a)L(b)/µ(L)2, where a, b are two strings evaluated with
the edit distance, L(.) is the length of the string, and µ(L) is the
average length of the strings of the data-set.

102 CHAPTER 5. MCAN EVALUATION

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 20000 40000 60000 80000 100000

n Objects

p
er

ce
n

ta
g

e
o

f
n

o
d

es
 in

vo
lv

ed
0.0 250.0 500.0 750.0 1000.0

1250.0 1500.0 1750.0 2000.0

Figure 5.6: Percentage of nodes involved in the Range query as
function of the data-set size for different radii (vector data-set).

0

0,1

0,2

0,3

0,4

0,5

0,6

0 20000 40000 60000 80000 100000

n Objects

p
er

ce
n

ta
g

e
o

f
n

o
d

es
 in

vo
lv

ed

0.0 5.0 10.0 15.0 20.0

25.0 30.0 35.0 40.0

Figure 5.7: Percentage of nodes involved in the Range query as
function of the data-set size for different radii (text data-set).

5.3. NEAREST NEIGHBOR QUERY 103

In the reported experiments, we used three pivots for building
MCAN structure (i.e. MCAN3) and 16 pivots for filtering.

In Figures 5.8 and 5.9, we report the average complexity of
the range query operations as function of the number of equivalent
distance computations of the most stressed node. This quantity
measures in a way the intraquery parallelism as the parallel response
time of a range query, if we neglect the message latency. In fact,
the requesting node will have to wait the answer of all the involved
nodes and then the response time of the query will be proportional
to the number of distance computations of the most stressed node.
Obviously this quantity is upper bounded by the capacity of the
nodes of the MCAN. However, our experiments show that for most
of the ranges, the intraquery parallelism remains quite lower than
this upper bound, which, for example, in the case of the vector
data-set is 1,542.

5.3 Nearest Neighbor query

In this section we report an evaluation of the kNN algorithms
described in Section 4.9 [p.88]. These results were reported in [66].

For these experiments, the systems consisted of up to about 300
active peers (depending on the dataset). The peers had storage
capacity of 5,000 objects. The implementations built up overlay
structures over a high-speed LAN communicating via the TCP and
UDP protocols.

It is important to observe that in order to evaluate the scala-
bility performance of MCAN, in this experimental evaluation we
maintain the list of available inactive peers and employ them dur-
ing the split of an overloading peer. We are aware of the fact that
maintaining the list of the inactive peers is quite unusual in a real
P2P scenario; however, this approach was adopted just to study
the scalability of MCAN with respect to a growing dataset, assum-
ing that the greater the dataset the more peers are employed. The
objective was to demonstrate that keeping the average number of
objects per peer limited as the dataset grows, the response time of

104 CHAPTER 5. MCAN EVALUATION

0

200

400

600

800

1000

1200

1400

1600

0 20000 40000 60000 80000 100000

n Objects

d
is

ta
n

ce
 c

o
m

p
u

ta
ti

o
n

s

0.0 250.0 500.0 750.0 1000.0

1250.0 1500.0 1750.0 2000.0

Figure 5.8: Average number of distances evaluated by the most
stressed node for each query and for different query range (vector
data-set).

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 20000 40000 60000 80000 100000

n Objects

eq
u

iv
al

en
t

d
is

ta
n

ce
 c

o
m

p
u

ta
ti

o
n

s

0.0 5.0 10.0 15.0 20.0

25.0 30.0 35.0 40.0

Figure 5.9: Average number of equivalent distances evaluated by
the most stressed node for each query and for different query range
(text data-set).

5.3. NEAREST NEIGHBOR QUERY 105

the system remains bounded, i.e. the structure scales well. These
experiments were performed by inserting objects in the network in
a random order, resulting in a growing number of peers due to the
splitting rule described in Section Section 4.6 [p.84].

We selected the following significantly different real-life datasets
to conduct the experiments on:

VEC 45-dimensional vectors of extracted color image features.
The similarity of the vectors was measured by a quadratic-
form distance [158]. The distribution of the dataset is quite
uniform and such a high-dimensional data space is extremely
sparse.

TTL titles and subtitles of Czech books and periodicals collected
from several academic libraries. These strings were of lengths
from 3 to 200 characters and are compared by the edit dis-
tance [102] on the level of individual characters. The distance
distribution of this dataset is skewed.

DNA protein symbol sequences of length sixteen. The sequences
were compared by a weighted edit distance according to the
Needleman-Wunsch algorithm [133]. This distance function
has quite a limited domain of possible values — the returned
values are integers between 0 and 100.

Please observe that none of these datasets can be efficiently
indexed and searched by a standard vector data structure.

All the presented performance characteristics of query process-
ing have been taken as an average over 100 queries by randomly
choosing query objects not belonging to the dataset.

It is important to remark that, in a real scenario as the one
we are evaluating, the calculation of the distance function d has
typically a high computational cost. Therefore, the main objective
of a metric-based data structures is to reduce the number of distance
computations at query time. The number of distance computations
is typically considered an indicator of the structure efficiency. In
practice, we assume that the costs of other operations are negligible
compared to the distance evaluation time.

106 CHAPTER 5. MCAN EVALUATION

Concerning the distributed environment, we use the following
two characteristics to measure the computational costs of a query:

• total distance computations — the sum of the number of dis-
tance computations on all employed peers,

• parallel distance computations — the maximal number of dis-
tance computations performed in a sequential manner during
the parallel query processing.

Another indicator that we monitored is the percentage of peers
(with respect to the total number) that were involved by the query
processing and the number of candidate results.

In order to better interpret the performance figures of the three
kNN algorithms presented above, we compare the results of the
experiments with an ideal kNN algorithm, designated RQ, which
is equivalent to a single range query. RQ works as follows: once we
have obtained the result set of the kNN (evaluated using one of the
three algorithms), we run a range query with radius d(xk, q). The
performance figures of RQ can be considered as the lower bounds
(optimal) for the other kNN algorithms.

5.3.1 Number of peers involved in query execu-
tion

Figure 5.10 shows the average percentage of involved peers during
the evaluation of kNN for increasing values of k and for the entire
dataset. The performance figures as function of k are only reported
for the VEC dataset (1 million objects and 260 peers), since the
results of the other two datasets are very similar.

From these experiments, we can see that SE is not only the
best algorithm in terms of number of involved peers but it is also
optimum. In fact, its results are the same as those we obtained
with RQ. PE involves much more peers and MME is not far from
PE. Note also that, the number of peers grows almost linearly with
k. Moreover, we can observe that for bigger k MME tends to be
slightly better than PE. In fact, the more are the peers involved,

5.3. NEAREST NEIGHBOR QUERY 107

the more is the relevance of intermediate results updated during
the forwarding of the operation.

Figures 5.11, 5.12, and 5.13 show the average percentage of in-
volved peers as the dataset grows. For all algorithms, the per-
centage of involved peers decreases with the number of objects of
the dataset. This can be explained by the fact that in general as
the dataset grows the distance of the k-th object to the query q de-
creases. Furthermore, as the number of peers increases, the average
volume of zones maintained by the peers decreases.

Regarding the differences between the three datasets’ results, we
can see that the DNA dataset is much more difficult to index than
the VEC one. The most important reason is that the DNA metric
function has a very limited number of discrete distance values. The
TTL dataset is in the middle but not far from the DNA dataset. In
fact, the TTL and DNA distance functions are not much different
even if the objects are, in their meaning, completely different.

5.3.2 Total number of distance computations

In Figure 5.14, we report the total number of distance computa-
tions during the kNN operation for the entire dataset and various
k. Even though not optimum, SE is very near to the results ob-
tained with RQ. In fact, it was also the algorithm that involved
less peers. The price of this good result is the serialization of the
operation which we will study more in details later on. Regarding
MME, we can see that performing kNN computations before for-
warding the query significantly reduces the total number of distance
computations.

Figures 5.15, 5.16, and 5.17 show the total number of distance
computations as the dataset size grows. Note that, in all the al-
gorithms the total number of distance computations grows when
we increase the dataset size. However, the most important prop-
erty that we should expect from a P2P data structure such as the
MCAN is its scalability of the search operations, which is achieved
through parallelism.

108 CHAPTER 5. MCAN EVALUATION

VEC

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90 100

k

in
vo

lv
ed

 p
ee

rs

SE MME

PE RQ

Figure 5.10: Percentage of involved peers for various k for VEC
dataset.

VEC

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 200000 400000 600000 800000 1000000

number of objects

in
vo

lv
ed

 p
ee

rs

SE MME PE

Figure 5.11: Percentage of involved peers for growing VEC dataset
(k = 10).

5.3. NEAREST NEIGHBOR QUERY 109

DNA

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 200000 400000 600000 800000 1000000

number of objects

in
vo

lv
ed

 p
ee

rs

SE MME PE

Figure 5.12: Percentage of involved peers for growing DNA dataset
(k = 10).

TTL

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 200000 400000 600000 800000 1000000

number of objects

in
vo

lv
ed

 p
ee

rs

SE MME PE

Figure 5.13: Percentage of involved peers for growing TTL dataset
(k = 10).

110 CHAPTER 5. MCAN EVALUATION

VEC

0

50.000

100.000

150.000

200.000

250.000

300.000

350.000

0 10 20 30 40 50 60 70 80 90 100

k

n
u

m
b

er
 o

f
d

is
ta

n
ce

s

SE MME

PE RQ

Figure 5.14: Total number of distance computations for various k
for VEC dataset.

VEC

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 200000 400000 600000 800000 1000000

number of objects

n
u

m
b

er
 o

f
d

is
ta

n
ce

s

SE MME

PE RQ

Figure 5.15: Total number of distance computations for growing
VEC dataset (K=10).

5.3. NEAREST NEIGHBOR QUERY 111

DNA

0

100000

200000

300000

400000

500000

600000

700000

800000

0 200000 400000 600000 800000 1000000

number of objects

n
u

m
b

er
 o

f
d

is
ta

n
ce

s

SE MME

PE RQ

Figure 5.16: Total number of distance computations for growing
DNA dataset (K=10).

TTL

0

100000

200000

300000

400000

500000

600000

0 200000 400000 600000 800000 1000000

number of objects

n
u

m
b

er
 o

f
d

is
ta

n
ce

s

SE MME

PE RQ

Figure 5.17: Total number of distance computations for growing
TTL dataset (K=10).

112 CHAPTER 5. MCAN EVALUATION

5.3.3 Parallel cost of kNN

In Figure 5.18, we report the parallel distance computations for
increasing values of k. As explained above, this performance figure
can be considered as the parallel cost of the operation. From this
experiment, it becomes clear what is the price the SE algorithm has
to pay to obtain better results in terms of percentage of involved
peers and total number of distance computations — the cost of the
operation grows quickly with k. Furthermore, from Figures 5.19,
5.20, and 5.21 we can see that the parallel cost of SE grows with
the dataset size, which means that the algorithm does not scale
well. On the contrary, PE scales well and it is very near to the
optimum RQ. Note that, the parallel cost of RQ does not grow
with the dataset size, because as the number of objects increases
the corresponding range radius d(xk, q) becomes smaller. Finally,
MME, which gave better results than PE in terms of the number
of involved peers and total number of distance computations, does
not scale as well as the PE, but it is not very far from it.

Considering the parallel cost as the response time of the net-
work it must be noticed that, because the results are sent by each
involved peer directly to the requester, there are some preliminar-
ily results before the kNN operation is completed. Regarding SE
and MME, the order in which the peers are visited guarantees that
good results will be available to the requester before the end of the
operation. However, in the PE algorithm the results are supposing
to arrive sooner and almost at the same time because of the paral-
lelism (except for the µ(q̂) peer), although the use of preliminarily
results by the requester can make MME and SE more appealing in
some scenarios.

5.3.4 Candidate results

In all the algorithms, as the kNN evaluation proceeds, the peers
send the partial results of their local kNN evaluation to the request-
ing peer µ(q̂) (which is the peer which started the kNN operation).
We call these partial results candidate results.

Since the user needs an ordered list of k results, µ(q̂) performs

5.3. NEAREST NEIGHBOR QUERY 113

VEC

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

0 10 20 30 40 50 60 70 80 90 100

k

n
u

m
b

er
 o

f
d

is
ta

n
ce

s

SE MME

PE RQ

Figure 5.18: Parallel distance computations for various k for VEC
dataset.

VEC

0

5000

10000

15000

20000

25000

30000

35000

40000

0 200000 400000 600000 800000 1000000

number of objects

n
u

m
b

er
 o

f
d

is
ta

n
ce

s

SE MME

PE RQ

Figure 5.19: Parallel distance computations for growing VEC
dataset (K=10).

114 CHAPTER 5. MCAN EVALUATION

DNA

0

50000

100000

150000

200000

250000

300000

0 200000 400000 600000 800000 1000000

number of objects

n
u

m
b

er
 o

f
d

is
ta

n
ce

s

SE MME

PE RQ

Figure 5.20: Parallel distance computations for growing DNA
dataset (K=10).

TTL

0

50000

100000

150000

200000

250000

300000

0 200000 400000 600000 800000 1000000

number of objects

n
u

m
b

er
 o

f
d

is
ta

n
ce

s

SE MME

PE RQ

Figure 5.21: Parallel distance computations for growing TTL
dataset (K=10).

5.3. NEAREST NEIGHBOR QUERY 115

also the task of merging, sorting, and pruning, if necessary, the
results beyond the k-th received from the peers involved in the
kNN . In Figure 5.22, we report the number of candidate results
received for the three algorithms as the dataset grows. The SE
algorithm is near the optimum. In fact, it is very near to RQ which,
by definition, exactly retrieves k results (it can retrieve more results
just in case there are more objects at the same distance of the k-th
result). The PE algorithm is the worst and it does not scale well
(except for the DNA and TTL datasets). On the contrary, MME is
between the other two algorithms and its behavior seems growing
sub-linearly.

Notice that, generally, the metric distance evaluation in the met-
ric space is very expensive and the cost of the operations performed
by the requester is then negligible. In fact, it does not have to evalu-
ate any distance (we assumed that the distance between the objects
and the query are sent together with the results). With these ex-
periments we just wanted to show that there could be problems of
scalability in terms of candidate results for the PE algorithm.

116 CHAPTER 5. MCAN EVALUATION

VEC

0

5

10

15

20

25

30

35

40

0 200000 400000 600000 800000 1000000

number of objects

n
u

m
b

er
 o

f
o

b
je

ct
s

SE MME

PE RQ

DNA

0

100

200

300

400

500

600

700

800

0 200000 400000 600000 800000 1000000

number of objects

n
u

m
b

er
 o

f
o

b
je

ct
s

SE MME

PE RQ

TTL

0

50

100

150

200

250

300

350

400

450

500

0 200000 400000 600000 800000 1000000

number of objects

n
u

m
b

er
 o

f
o

b
je

ct
s

SE MME

PE RQ

Figure 5.22: Average n. of candidate results (K=10).

Chapter 6

MCAN Comparison with
other structures

In this Chapter, we report on implementations of the VPT∗, GHT∗,
MCAN and M-Chord systems over the same infrastructure of peer
computers. We have conducted numerous experiments on three
different datasets and present our most telling findings. We focus
on scalability with respect to the size of the query, the size of the
dataset, and the number of queries executed simultaneously. The
results reported in this paper have been presented at the INFOS-
CALE ’06 conference [22] and have been also selected for publica-
tion on Future Generation Computer Systems.

We provide a comparison of these four approaches through the
results of our extensive experiments. For each data structure, the
tests have been conducted on the same datasets and in the same test
environment. Moreover, all the structures have been implemented
over the very same infrastructure sharing a lower-level code. Con-
sequently, we consider the results of these experiments sufficiently
comparable.

When designing the experiments, we focused on particular as-
pects of the scalability of the systems. Namely, we studied scalabil-
ity with respect to the query selectivity, with respect to the size of
the indexed dataset, and in consideration of the number of queries
executed concurrently.

117

118 CHAPTER 6. MCAN COMPARISON WITH OTHER STRUCTURES

6.1 Experiments Settings

All the compared systems are dynamic. Each structure maintains a
set of available inactive nodes employing them when splitting over-
loaded nodes. For the experiments, the systems consisted of up to
300 active nodes. Each of the GHT* and VPT* peers maintained
five buckets with capacity of 1,000 objects and the MCAN and
M-Chord peers had a storage capacity of 5,000 objects. The im-
plementations built the overlay structures over a high-speed LAN
communicating via the TCP and UDP protocols.

We selected the following significantly different real-life datasets
to conduct the experiments on (they are the same used in Section
5.3 [p.103]):

VEC 45-dimensional vectors of extracted color image features.
The similarity of the vectors was measured by a quadratic-
form distance [158]. The distribution of the dataset is quite
uniform and such a high-dimensional data space is extremely
sparse.

TTL titles and subtitles of Czech books and periodicals collected
from several academic libraries. These strings were of lengths
from 3 to 200 characters and are compared by the edit dis-
tance [102] on the level of individual characters. The distance
distribution of this dataset is skewed.

DNA protein symbol sequences of length sixteen. The sequences
were compared by a weighted edit distance according to the
Needleman-Wunsch algorithm [133]. This distance function
has quite a limited domain of possible values — the returned
values are integers between 0 and 100.

Observe that none of these datasets can be efficiently indexed
and searched by a standard vector data structure.

If not stated otherwise, the stored data volume is 500,000 ob-
jects. When considering the scalability with respect to the growing
dataset size, larger datasets consisting of 1,000,000 objects are used
(900,000 for TTL). As for other settings specific to particular data

6.2. MEASUREMENTS 119

structures, the MCAN uses 4 pivots to build the routing vector
space and 40 pivots for filtering. The M-Chord uses 40 pivots as
well. The GHT* and VPT* structures use variable numbers of fil-
tering pivots according to the depth of the AST tree (see Subsection
2.5.1 [p.53]).

All of these performance characteristics of query processing have
been obtained as an average over 100 queries with randomly chosen
query objects.

6.2 Measurements

In real applications as well as in the described datasets, evaluat-
ing the distance function d typically makes high computational de-
mands. Therefore, the objective of metric-based data structures
is to decrease the number of distance computations at query time.
This value is typically considered an indicator of structure efficiency.
The CPU costs of other operations (and often I/O costs as well)
are practically negligible compared to the distance evaluation time.

Concerning the distributed environment, we use the following
two characteristics to measure the computational costs of query
processing:

• total distance computations — the sum of the number of the
distance function evaluations on all involved peers,

• parallel distance computations — the maximal number of dis-
tance evaluations performed in a sequential manner during
query processing.

Note that the total number corresponds to costs on a centralized
version of the specific structure. The communication costs of a
query evaluation are measured by the following indicators:

• total number of messages — the number of all messages (re-
quests and responses) sent during a particular query process-
ing,

120 CHAPTER 6. MCAN COMPARISON WITH OTHER STRUCTURES

• maximal hop count — the maximal number of messages sent
in a serial way in order to complete the query.

Since the technical resources used for testing were not dedi-
cated but opened for public use, the actual query response times
were fluctuating and we cannot report them precisely. However,
we have usually observed that one range query evaluation took less
than one second for small radii and approximately two seconds for
the big ones regardless of the dataset size. The parallel distance
computations together with the maximal hop count can be used as
a fair response time estimation. Another indicator that we moni-
tored is the percentage of nodes that were involved in processing a
particular query.

6.3 Scalability with Respect to the Size

of the Query

In the first set of experiments, we have focused on the systems’
scalability with respect to the size of the processed query. Namely,
we let the structures handle a set of R(q, r) queries with growing
radii r. The size of the stored data was 500,000 objects. The aver-
age load ratio of nodes for all the structures was 60–70% resulting
in approximately 150 active nodes in each of the systems.

We present results of these experiments for all the three datasets.
All graphs in this section represent the dependency of various mea-
surements (vertical axis) on the range query radius r (horizontal
axis). The datasets are indicated by titles. For the VEC dataset,
we varied the radii r from 200 to 2,000 and for the TTL and DNA
datasets from 2 to 20.

In the first group of graphs, shown in Figure 6.1, we report on
the relation between the query radius size and the number of ob-
jects retrieved. As this depicts, the greater the radius the higher
the number of objects satisfying the query. Since we have used the
same datasets, query objects and radii, all the structures return
the same number of objects. We can see that the number of re-
sults grows exponentially with respect to the query radius for all

6.3. SCALABILITY WITH RESPECT TO THE SIZE OF THE QUERY121

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0 500 1000 1500 2000
range query radius

VEC

all structures
re

tr
ie

ve
d

ob
je

ct
s

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

 0 5 10 15 20
range query radius

TTL

all structures

re
tr

ie
ve

d
ob

je
ct

s

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 0 5 10 15 20
range query radius

DNA

all structures

re
tr

ie
ve

d
ob

je
ct

s

Figure 6.1: Number of retrieved objects

122 CHAPTER 6. MCAN COMPARISON WITH OTHER STRUCTURES

 0
 20
 40
 60
 80

 100
 120
 140

 0 500 1000 1500 2000

vi
si

te
d

no
de

s
(%

)

range query radius

VEC

GHT*
VPT* M−Chord

MCAN

 0
 20
 40
 60
 80

 100
 120
 140

 0 5 10 15 20

vi
si

te
d

no
de

s
(%

)

range query radius

TTL

GHT*
VPT* M−Chord

MCAN

 0
 20
 40
 60
 80

 100
 120
 140

 0 5 10 15 20

vi
si

te
d

no
de

s
(%

)

range query radius

DNA

GHT*
VPT* M−Chord

MCAN

Figure 6.2: Percentage of visited nodes

6.3. SCALABILITY WITH RESPECT TO THE SIZE OF THE QUERY123

the datasets. Note that, for example, the greatest radius 2,000 in
the VEC dataset selects almost 10,000 objects (2% of the whole
database). Obviously, such large radii are not usually practical for
applications (e.g. two titles with an edit distance 20 differ consider-
ably), but we provide the results in order to study the behavior of
the structures in these cases as well. Smaller radii return reasonable
numbers of objects, for instance, radius 6 results in approximately
30 objects in the DNA dataset.

The number of visited nodes is reported in Figure 6.2. More
specifically, the graphs show the ratio of the number of nodes that
are involved in a particular range query evaluation to the total num-
ber of active peers forming the structure. As mentioned earlier, the
number of active peers in the network was around 150, thus, value
20% in the graph means that approximately 30 peers were used
to complete the query. We can see that the number of employed
peers grows practically linearly with the size of the radius. The
only exception is the GHT* algorithm, which visits almost all ac-
tive nodes very soon as the radius grows. This is caused by the fact
that the generalized hyperplane partitioning does not guarantee a
balanced split, unlike the other three methods. Moreover, because
we count all the nodes that evaluate distances as visited, the VPT*
and the GHT* algorithms are somewhat handicapped. Recall that
they need to compute distances to pivots during the navigation
which means that the nodes that only forward the query are also
considered visited.

Note that the dataset influences the number of visited nodes.
For instance, the DNA metric function has a very limited set of
discrete distance values, thus, both the native and transformation
methods are not as efficient as for the VEC dataset and more peers
have to be accessed. From this point of view, the M-Chord structure
performs best for the VEC dataset and also for smaller radii in the
DNA dataset, but it is outperformed by the MCAN algorithm for
the TTL dataset.

The next group of experiments, depicted in Figures 6.3 and 6.4,
shows the computational costs with respect to the query radius. We
provide a pair of graphs for each dataset. The graphs reported on

124 CHAPTER 6. MCAN COMPARISON WITH OTHER STRUCTURES

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000
 200000

 0 500 1000 1500 2000
range query radius

GHT*
VPT*
MCAN
M−Chord

to
ta

l d
is

ta
nc

e
co

m
p. VEC

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000

 0 5 10 15 20
range query radius

TTL

GHT*
VPT*
MCAN
M−Chord

to
ta

l d
is

ta
nc

e
co

m
p.

(a)

 0
 50000

 100000
 150000
 200000
 250000
 300000
 350000
 400000

 0 5 10 15 20
range query radius

DNA

GHT*
VPT*
MCAN
M−Chord

to
ta

l d
is

ta
nc

e
co

m
p.

Figure 6.3: The total number of distance computations

6.3. SCALABILITY WITH RESPECT TO THE SIZE OF THE QUERY125

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 0 500 1000 1500 2000
range query radius

VEC

GHT*
VPT*
MCAN
M−Chord

pa
ra

lle
l d

is
ta

nc
e

co
m

p.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20
range query radius

TTL

GHT*
VPT*
MCAN
M−Chord

pa
ra

lle
l d

is
ta

nc
e

co
m

p.

(b)

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 0 5 10 15 20
range query radius

DNA

GHT*
VPT*
MCAN
M−Chord

pa
ra

lle
l d

is
ta

nc
e

co
m

p.

Figure 6.4: The parallel number of distance computations

126 CHAPTER 6. MCAN COMPARISON WITH OTHER STRUCTURES

Figure 6.3 show the total number of distance computations needed
to evaluate a range query. This measure can be interpreted as the
query costs in centralized index structures. The graphs reported
on Figure 6.4 show illustrate the parallel number of distance com-
putations, i.e. the costs of a query in the distributed environment.

Since the distance computations are the most time consuming
operations during the evaluation, all the structures employ the pivot
filtering criteria to avoid as much distance computations as possible
(see Section 4.2 [p.80]). As explained, the number of pivots used
for filtering strongly affects its effectiveness, i.e. the more pivots
we have the more effective the filtering is and the fewer distances
need to be computed. The MCAN and the M-Chord structures use
a fixed set of 40 pivots for filtering, as opposed to the GHT* and
VPT* which use the pivots in the AST. Thus objects in buckets
in lower levels of the AST have more pivots for filtering and vice
versa. Also, the GHT* partitioning implies two pivots per inner
tree node, but VPT* contains only one pivot, resulting in half the
number of pivots used in the GHT*. In particular, the GHT* has
used 48 pivots in its longest branch and only 10 in the shortest one,
while the VPT* has used maximally 18 and minimally 5 pivots.

Looking at the total numbers of distance computations in Figure
6.3, we can see that the filtering was rather ineffective in the DNA
dataset, where the structures have computed the distances for up
to twice as many objects than that of the TTL and VEC datasets.
The queries with larger radii in the DNA dataset have to access
about 60% of the whole database, which would be very slow in a
centralized index.

Figure 6.4 illustrates the parallel computational costs of the
query processing. We can see that the number of necessary dis-
tance computations is significantly reduced, which emerges from
the fact that the computational load is divided among the par-
ticipating peers running in parallel. We can see that the GHT*
structure has the best parallel distance computation and seems to
be unaffected by the dataset used. However, its lowest parallel cost
is counterbalanced by the high percentage of visited nodes (shown
in Figure 6.2), which is in fact correlated to the parallel distance

6.3. SCALABILITY WITH RESPECT TO THE SIZE OF THE QUERY127

computations cost for all the structures.

Note also that the increase of parallel cost is bounded by the
value of 5,000 distance computations — this can be most clearly
seen in the TTL dataset. This is a straightforward implication
of the fact that every node has only a limited storage capacity,
i.e. if a peer holds up to 5,000 objects it cannot evaluate more
distance computations between the query and its objects. This
seems to be in contradiction with the M-Chord graph for the DNA
dataset, for which the following problem has arisen. Due to the
small number of possible distance values of the DNA dataset, the
M-Chord transformation resulted in the formation of “clusters” of
objects mapped onto the same M-Chord key. Those objects had
to be kept on one peer only and, thus, the capacity limit of 5,000
objects was exceeded.

The last group of measurements in this section reports on the
communication costs measured as the total number of messages
sent (Figure 6.5) and as the maximal hop count (Figure 6.6), i.e.
the maximal number of messages sent in a serial manner. Since the
GHT* and the VPT* count all nodes involved in navigation as vis-
ited (as explained earlier), the percentage of visited nodes (Figure
6.2) and the total number of messages (Figure 6.5) are strictly cor-
related for these structures. The MCAN structure needs the lowest
number of messages for small ranges, but as the radius grows, the
number of messages increases quickly. This comes from the fact
that the MCAN range search algorithm uses multicast to spread
the query and, thus, one peer may be contacted with a particular
query request several times. However, every peer evaluates each
request only once. For the M-Chord structure, we can see that the
total cost is considerably high even for small radii, but it grows
very slowly as the radius increases. This is caused by the fact that
the M-Chord needs to access at least one peer for every M-Chord
cluster even for small range queries, see Subsection 2.5.2 [p.57].

The parallel costs, i.e. the maximal hop count, are practically
constant for different sizes of the radii across all the structures
except for M-Chord in which it grows. This increase is caused
by the serial nature of the current algorithm for contacting the

128 CHAPTER 6. MCAN COMPARISON WITH OTHER STRUCTURES

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 500 1000 1500 2000

to
ta

l m
es

sa
ge

s

range query radius

VEC

GHT*
VPT* M−Chord

MCAN

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 5 10 15 20
range query radius

TTL

to
ta

l m
es

sa
ge

s

GHT*
VPT* M−Chord

MCAN

 0
 100
 200
 300
 400
 500
 600
 700

 0 5 10 15 20

to
ta

l m
es

sa
ge

s

range query radius

DNA

(a)

GHT*
VPT* M−Chord

MCAN

Figure 6.5: The total number of messages

6.3. SCALABILITY WITH RESPECT TO THE SIZE OF THE QUERY129

 0

 5

 10

 15

 20

 0 500 1000 1500 2000

m
ax

im
al

 h
op

 c
ou

nt

range query radius

VEC

GHT*
VPT*
MCAN
M−Chord

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 5 10 15 20

m
ax

im
al

 h
op

 c
ou

nt

range query radius

TTL

GHT*
VPT*
MCAN
M−Chord

(b)

 0

 5

 10

 15

 20

 25

 0 5 10 15 20
range query radius

DNA

GHT*
VPT*
MCAN
M−Chord

m
ax

im
al

 h
op

 c
ou

nt

Figure 6.6: The maximal hop count

130 CHAPTER 6. MCAN COMPARISON WITH OTHER STRUCTURES

adjacent peers in particular clusters.
In summary, we can say that all the structures scale well with

respect to the size of the radius. In fact, the parallel distance com-
putation costs grow sub-linearly and they are bounded by the ca-
pacity limits of the peers. The parallel communication costs remain
practically constant for the GHT*, VPT*, and MCAN structures
and grows linearly for the M-Chord.

6.4 Scalability with Respect to the Size

of Datasets

Let us concern the systems’ scalability with respect to the growing
volume of data stored in the structures. We have monitored the
performance of R(q, r) queries processing on systems storing from
50,000 to 1,000,000 objects. We conducted these experiments for
the following radii: 500, 1,000 and 1,500 for the VEC dataset and
radii 5, 10 and 15 for the TTL and DNA datasets.

We include graphs for only one dataset for each type of mea-
surement if the other graphs exhibit the same trend. The title of
each graph in this section specifies the dataset used and the search
radius r.

The number of retrieved objects (see graph for radius 10 and
the TTL dataset in Figure 6.7a) grows precisely linearly because
the data were inserted to the structures in random order.

Figure 6.7b depicts the percentage of nodes affected by the range
query processing. For all the structures but the GHT*, this value
decreases because the data space becomes denser and, thus, the
nodes cover smaller regions of the space. Therefore, the space cov-
ered by the involved nodes comes closer to the exact space portion
covered by the query itself. As mentioned in Section 6.3 [p.120], the
GHT* partitioning is not balanced, therefore, the query processing
is spread over larger number of participating nodes.

Figure 6.8 presents the computational costs in terms of both
total and parallel numbers of distance computations. As expected,
the total costs (a) increase linearly with the data volume stored.

6.4. SCALABILITY WITH RESPECT TO THE SIZE OF DATASETS 131

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 100 200 300 400 500 600 700 800 900

re
tr

ie
ve

d
ob

je
ct

s

dataset size (*1000)

TTL for r = 10

all structures

(a)

 0
 20
 40
 60
 80

 100
 120

 0 200 400 600 800 1000

vi
si

te
d

no
de

s
(%

)

dataset size (*1000)

VEC for r = 1000

GHT*
VPT* M−Chord

MCAN

(b)

Figure 6.7: Retrieved objects (a) and visited nodes (b) for growing
dataset

132 CHAPTER 6. MCAN COMPARISON WITH OTHER STRUCTURES

This well-known trend, which corresponds to the costs of centralized
solutions, is the main motivation for designing distributed struc-
tures. The graph exhibits practically the same trend for the M-
Chord and MCAN structures since they both use a filtering mech-
anism based on a fixed sets of pivots. The total costs for the GHT*
and the VPT* are slightly higher due to smaller sets of filtering
pivots.

The parallel number of distance computations (Figure 6.8b)
grows very slowly. For instance, the parallel costs for the GHT*
increase by 50% while the dataset grows 10 times and the M-Chord
exhibits a 10% increment for a doubled dataset size from 500,000
to 1,000,000. The increase is caused by the fact that the nodes
involved in the search contain more of the relevant objects while
making the data space denser. This corresponds to the observable
correlation of this graph and Figure 6.7b — the less nodes the struc-
ture involves, the higher the parallel costs it exhibits. The transfor-
mation techniques, the MCAN and the M-Chord, concentrate the
relevant data on fewer nodes and consequently have higher parallel
costs. The noticeable graph fluctuations are caused by quite regular
splits of overloaded nodes.

Figure 6.9 presents the same results for DNA dataset. The
pivots-based filtering performs less effectively for higher radii (the
total costs are quite high) and it is more sensitive to the number
of pivots. The distance function is discrete with a small variety
of possible values. As mentioned in Section 6.3 [p.120], for this
dataset, the M-Chord mapping collisions may result in overloaded
nodes that cannot be split. Then, the parallel costs in Figure 6.9b
may be over the split limit of 5,000 objects.

Figure 6.10 shows the communication costs in terms of the total
number of messages (a) and the maximal hop count (b). The total
message costs for the GHT* grow faster because it contacts higher
percentages of nodes. The M-Chord graphs indicate that the total
message costs grow slowly while the major increase of the messages
sending is in a sequential manner which negatively influences the
hop count.

6.4. SCALABILITY WITH RESPECT TO THE SIZE OF DATASETS 133

(b)(a)

GHT*
VPT*
MCAN
M−Chord

 0 200 400 600 800 1000 0 200 400 600 800 1000
 0

 5000
 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

dataset size (*1000)

VEC for r = 1000

to
ta

l d
is

ta
nc

e
co

m
p.

 0

 500

 1000

 1500

 2000

 2500
VEC for r = 1000

GHT*
VPT*
MCAN
M−Chord

dataset size (*1000)

pa
ra

lle
l d

is
ta

nc
e

co
m

p.

(b)(a)

GHT*
VPT*
MCAN
M−Chord

 0 200 400 600 800 1000 0 200 400 600 800 1000
 0

 5000
 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

dataset size (*1000)

VEC for r = 1000

to
ta

l d
is

ta
nc

e
co

m
p.

 0

 500

 1000

 1500

 2000

 2500
VEC for r = 1000

GHT*
VPT*
MCAN
M−Chord

dataset size (*1000)

pa
ra

lle
l d

is
ta

nc
e

co
m

p.

Figure 6.8: The total (a) and parallel (b) computational costs for
VEC

134 CHAPTER 6. MCAN COMPARISON WITH OTHER STRUCTURES

(a) (b)

 0
 50000

 100000
 150000
 200000
 250000
 300000
 350000
 400000
 450000

 0 200 400 600 800 1000

to
ta

l d
is

ta
nc

e
co

m
p.

dataset size (*1000)

DNA for r = 15

GHT*
VPT*
MCAN
M−Chord

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0 200 400 600 800 1000
dataset size (*1000)

DNA for r = 15

GHT*
VPT*
MCAN
M−Chord

pa
ra

lle
l d

is
ta

nc
e

co
m

p.

(a) (b)

 0
 50000

 100000
 150000
 200000
 250000
 300000
 350000
 400000
 450000

 0 200 400 600 800 1000

to
ta

l d
is

ta
nc

e
co

m
p.

dataset size (*1000)

DNA for r = 15

GHT*
VPT*
MCAN
M−Chord

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0 200 400 600 800 1000
dataset size (*1000)

DNA for r = 15

GHT*
VPT*
MCAN
M−Chord

pa
ra

lle
l d

is
ta

nc
e

co
m

p.

Figure 6.9: The total (a) and parallel (b) computational costs for
DNA

6.4. SCALABILITY WITH RESPECT TO THE SIZE OF DATASETS 135

(a) (b)

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800 900

to
ta

l m
es

sa
ge

s

GHT*
VPT*
MCAN
M−Chord

dataset size (*1000)

TTL for r = 10

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 100 200 300 400 500 600 700 800 900

GHT*
VPT*
MCAN
M−Chord

TTL for r = 10

dataset size (*1000)

m
ax

im
al

 h
op

 c
ou

nt

(a) (b)

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800 900

to
ta

l m
es

sa
ge

s

GHT*
VPT*
MCAN
M−Chord

dataset size (*1000)

TTL for r = 10

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 100 200 300 400 500 600 700 800 900

GHT*
VPT*
MCAN
M−Chord

TTL for r = 10

dataset size (*1000)

m
ax

im
al

 h
op

 c
ou

nt

Figure 6.10: The total messages (a) and the maximal hop count
(b)

136 CHAPTER 6. MCAN COMPARISON WITH OTHER STRUCTURES

6.5 Number of Simultaneous Queries

In this section, we focus on the scalability of the systems with
respect to the number of queries executed simultaneously. In other
words, we consider the interquery parallelism [196] of the queries
processing.

In our experiments, we have simultaneously executed groups of
10 to 100 queries — each from a different node. We have measured
the overall parallel costs of the set of queries as the maximal number
of distance computations performed on a single node of the system.
Since the communication time costs are lower than the computa-
tional costs, this value can be considered as a characterization of
the overall response time. We have run these experiments for all
datasets using the same query radii as in Section 6.4.

In order to establish a baseline, we have calculated the sum of
the parallel costs of the individual queries. The ratio of this value
to the overall parallel costs characterizes the improvement achieved
by the interquery parallelism and we refer to this value as the in-
terquery improvement ratio. This value can be also interpreted as
the number of queries that can be handled by the systems simulta-
neously without slowing them down.

Looking at Figure 6.11a, 6.12a and Figure 6.13a, we can see
the overall parallel costs for all the datasets and selected radii.
The trend of the progress is identical for all the structures and,
surprisingly, the actual values are very similar.

Therefore, the difference of the respective interquery improve-
ment ratios, shown in the (b) graphs, is introduced mainly by dif-
ference of the single query parallel costs. The M-Chord and the
MCAN handle multiple queries slightly better than the VPT* and
significantly better than GHT*.

The actual improvement ratio values for specific datasets are
strongly influenced by the total number of distance computations
spread over the nodes (see Figure 6.3) and, therefore, the improve-
ment is lower for DNA than for VEC.

6.5. NUMBER OF SIMULTANEOUS QUERIES 137

(a) (b)

GHT*
VPT*
MCAN
M−Chord

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

 0 20 40 60 80 100
number of simultaneous queries

VEC for r = 1000

ov
er

al
l p

ar
al

le
l d

. c
.

 0
 1
 2
 3
 4
 5
 6
 7

 0 20 40 60 80 100
number of simultaneous queries

VEC for r = 1000

GHT*
VPT*
MCAN
M−Chord

in
te

rq
. i

m
pr

ov
em

en
t r

at
io

(a) (b)

GHT*
VPT*
MCAN
M−Chord

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

 0 20 40 60 80 100
number of simultaneous queries

VEC for r = 1000

ov
er

al
l p

ar
al

le
l d

. c
.

 0
 1
 2
 3
 4
 5
 6
 7

 0 20 40 60 80 100
number of simultaneous queries

VEC for r = 1000

GHT*
VPT*
MCAN
M−Chord

in
te

rq
. i

m
pr

ov
em

en
t r

at
io

Figure 6.11: The overall parallel costs (a) and interquery improve-
ment ratio (b)

138 CHAPTER 6. MCAN COMPARISON WITH OTHER STRUCTURES

(a) (b)

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000
 200000

 0 20 40 60 80 100

ov
er

al
l p

ar
al

le
l d

. c
.

number of simultaneous queries

TTL for r = 10

GHT*
VPT*
MCAN
M−Chord

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100
number of simultaneous queries

TTL for r = 10

GHT*
VPT*
MCAN
M−Chord

in
te

rq
. i

m
pr

ov
em

en
t r

at
io

(a) (b)

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000
 200000

 0 20 40 60 80 100

ov
er

al
l p

ar
al

le
l d

. c
.

number of simultaneous queries

TTL for r = 10

GHT*
VPT*
MCAN
M−Chord

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100
number of simultaneous queries

TTL for r = 10

GHT*
VPT*
MCAN
M−Chord

in
te

rq
. i

m
pr

ov
em

en
t r

at
io

Figure 6.12: The overall parallel costs (a) and interquery improve-
ment ratio (b)

6.5. NUMBER OF SIMULTANEOUS QUERIES 139

(a) (b)

 0

 50000

 100000

 150000

 200000

 250000

 0 20 40 60 80 100
number of simultaneous queries

DNA for r = 15

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100
number of simultaneous queries

DNA for r = 15

GHT*
VPT*
MCAN
M−Chord

in
te

rq
. i

m
pr

ov
em

en
t r

at
io

ov
er

al
l p

ar
al

le
l d

. c
.

GHT*
VPT*
MCAN
M−Chord

(a) (b)

 0

 50000

 100000

 150000

 200000

 250000

 0 20 40 60 80 100
number of simultaneous queries

DNA for r = 15

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100
number of simultaneous queries

DNA for r = 15

GHT*
VPT*
MCAN
M−Chord

in
te

rq
. i

m
pr

ov
em

en
t r

at
io

ov
er

al
l p

ar
al

le
l d

. c
.

GHT*
VPT*
MCAN
M−Chord

Figure 6.13: The overall parallel costs (a) and interquery improve-
ment ratio (b)

140 CHAPTER 6. MCAN COMPARISON WITH OTHER STRUCTURES

6.6 Comparison Summary

In this paper, we have studied the performance of four different dis-
tributed index structures for metric spaces, namely the GHT*, the
VPT*, the MCAN and the M-Chord. We have focused on their scal-
ability of executing similarity queries from three different points of
view: (1) the changing query radii, (2) the growing volume of data
searched, and (3) the accumulating number of concurrent queries.
We have conducted a wide range of experiments and reported the
most interesting findings in the relevant sections of this paper.

All of the considered approaches have demonstrated a strictly
sub-linear scalability in all important aspects of similarity search
for complex metric functions. The most essential lessons we have
learned from the experiments can be summarized in the following
table.

single query multiple queries

GHT* excellent poor
VPT* good satisfactory
MCAN satisfactory good
M-Chord satisfactory very good

In the table, the single query column expresses the power of a cor-
responding structure to speed up execution of an isolated query.
This is especially useful when the probability of concurrent query
requests is very low (preferably zero), so only one query is executed
at a time and the maximum number of computational resources
can be exploited. On the other hand, the multiple queries column
expresses the ability of our structures to serve several queries si-
multaneously without degrading the performance by waiting.

We can see that there is no clear winner considering both the
single and the multiple query performance evaluation. In general,
none of the structures has a poor performance of single query execu-
tion, but the GHT* is certainly the most suitable for this purpose.
However, it is also the least suitable structure for concurrent query
execution — queries in GHT* are almost always processed one af-
ter the other. The M-Chord structure has the opposite behavior.

6.6. COMPARISON SUMMARY 141

It can serve several queries of different users in parallel with the
least performance degradation, but it takes more time to evaluate
a single query.

Finally, we would like to emphasize the fact that the trans-
formation-based techniques, i.e. the M-Chord and MCAN, assume
having a characteristic subset of the indexed data in advance to
choose proper pivots. In our experiments, the assumption was that
the distance distribution in the datasets does not change, at least
not significantly. If the distribution does change, for example, due
to the lack of a characteristic subset during startup, the perfor-
mance may change. From this point of view, the native organiza-
tions are more robust. We plan to systematically investigate this
issue hereafter.

In the future, we plan to exploit the pros and cons of the individ-
ual approaches revealed by our experiments to design applications
with specific querying characteristics. We would also like to use
them to develop new search structures combining the best of its
predecessors. Future work will also concentrate on performance
tuning, which will involve designing structures with respect to the
user defined bounds on the query response time.

Chapter 7

Conclusions

In this thesis we investigated the possibility of combining the simi-
larity search indexing techniques with the power of distributed com-
puting infrastructures. More precisely we considered the DHT class
of Peer-to-Peer systems for their good performance in performing
exact match search trough a distributed index.

We proposed MCAN which is a distributed similarity search
structure for metric spaces built over the CAN (a well-known DHT).
MCAN is based on the concept of choosing pivots to map objects
of a generic metric space in a multidimensional vector space whose
objects are then distributed using CAN. Since the mapping is con-
tractive, 100% recall for similarity queries processed is guaranteed
just contacting a subset of the nodes.

For achieve scalability of the Range and Nearest Neighbor queries
with respect to the dataset size, we parallelized their execution.
The experiment conducted for growing dataset and proportionally
increasing number of nodes, revealed the scalability of the proposed
Range query algorithm (see Section 5.2 [p.98] and [65]).

We found that parallelizing the Nearest Neighbor queries is a
trade-off between the total and the parallel cost, i.e. between the
used resources and the response time. Thus, in Section 4.9 [p.88],
we proposed three different algorithms for the nearest neighbors
queries execution (see also [66]): a serial one (minimizing the total
cost), a parallel one (minimizing the parallel cost) and a mixed

143

144 CHAPTER 7. CONCLUSIONS

mode (trying to balance parallel and total costs). The results of
the experimentations reported in Section 5.3 [p.103] show that the
mixed mode is the best choice in general.

The comparison of MCAN Range query with similar existing
structure reported in Chapter 6 [p.117] and published in [22] re-
vealed the good performance of the proposed solution.

7.1 Research Directions

An interesting direction of investigation is to generalize the kNN
algorithms proposed in Section 5.3 [p.103] by parameterizing the
execution parallelism. In the conclusions of [66] we sketched a pro-
posal but we did not implement it yet.

A further interesting direction of investigation is to define an
Incremental Nearest Neighbor algorithm which could be less effi-
cient than our kNN algorithm in retrieving the top k results, but
more suitable for the execution of complex queries. In fact, state
of the art complex queries algorithms (see Subsection 1.2.4 [p.5]),
make use of an Incremental Nearest Neighbor algorithm for each
feature. Moreover, specific strategies for performing multi features
complex similarity queries over multiple MCANs could be studied.

Other possibilities could be investigated. For example, in MCAN
each node could have its own centralized similarity index structure
instead of the pivoted filtering mechanism described in Section 4.2
[p.80] and used for experiments. We believe that more advanced in-
dex structures already presented in the literature or specifically de-
fined for the MCAN nodes could increase the overall performances.

Bibliography

[1] Gnutella. URL http://www.gnutella.com. [Online; ac-
cessed 6-November-2006].

[2] Karl Aberer. P-Grid: A Self-Organizing Access Structure
for P2P Information Systems. In CooplS ’01: Proceedings of
the 9th International Conference on Cooperative Information
Systems, pages 179–194, London, UK, 2001. Springer-Verlag.
ISBN 3-540-42524-1.

[3] Karl Aberer. Efficient Search in Unbalanced, Randomized
Peer-To-Peer Search Trees. Technical report, 2002.

[4] Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta,
Zoran Despotovic, Manfred Hauswirth, Magdalena Punceva,
and Roman Schmidt. P-Grid: a self-organizing structured
P2P system. SIGMOD Record, 32(3):29–33, 2003. ISSN 0163-
5808.

[5] Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta,
Zoran Despotovic, Manfred Hauswirth, Magdalena Punceva,
Roman Schmidt, and Jie Wu. Advanced Peer-to-Peer Net-
working: The P-Grid System and its Applications . PIK
journal, 26(3), 2003.

[6] Karl Aberer, Anwitaman Datta, and Manfred Hauswirth. P-
Grid: Dynamics of Self-Organizing Processes in Structured
Peer-to-Peer Systems. In Peer-to-Peer Systems and Appli-
cations, volume 3485 of Lecture Notes in Computer Science,

145

http://www.gnutella.com

146 BIBLIOGRAPHY

chapter 10, pages 137–153. Springer-Verlag Berlin Heidelberg,
2005.

[7] Karl Aberer, Fabius Klemm, Toan Luu, Ivana Podnar, and
Martin Rajman. Building a peer-to-peer full-text Web search
engine with highly discriminative keys. Technical report,
2005.

[8] Karl Aberer, Magdalena Punceva, Manfred Hauswirth, and
Roman Schmidt. Improving Data Access in P2P Systems.
IEEE Internet Computing, 6(1):58–67, 2002. ISSN 1089-7801.

[9] Giuseppe Amato, Paolo Bolettieri, Franca Debole, Fabrizio
Falchi, F. Rabitti, and P.Savino. Using MILOS to build
an on-line photo album: the PhotoBook. In SEBD 2006:
Proceedings of the Fourtenn Italian Symposium on Advanced
Database Systems, pages 233–240, 2006.

[10] Giuseppe Amato, Paolo Bolettieri, Franca Debole, Fabrizio
Falchi, Fausto Rabitti, and Pasquale Savino. Using MILOS
to Build a Multimedia Digital Library Application: The Pho-
toBook Experience. In Research and Advanced Technology
for Digital Libraries, 10th European Conference, ECDL 2006,
Alicante, Spain, September 17-22, 2006, Proceedings, volume
4172 of Lecture Notes in Computer Science, pages 379–390.
Springer-Verlag Berlin Heidelberg, 2006.

[11] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A
Survey of Peer-to-Peer Content Distribution Ttechnologies.
ACM Comput. Surv., 36(4):335–371, 2004. ISSN 0360-0300.

[12] Artur Andrzejak and Zhichen Xu. Scalable, Efficient Range
Queries for Grid Information Services. In P2P ’02: Proceed-
ings of the Second International Conference on Peer-to-Peer
Computing, pages 33–40, Washington, DC, USA, September
2002. IEEE Computer Society. ISBN 0-7695-1810-9.

BIBLIOGRAPHY 147

[13] CURRENT Lab at UC Santa Barbara. Chimera. URL
http://current.cs.ucsb.edu/projects/chimera/. [On-
line; accessed 12-November-2006].

[14] Ricardo A. Baeza-Yates, Walter Cunto, Udi Manber, and Sun
Wu. Proximity Matching Using Fixed-Queries Trees. In CPM
’94: Proceedings of the 5th Annual Symposium on Combina-
torial Pattern Matching, pages 198–212, London, UK, 1994.
Springer-Verlag. ISBN 3-540-58094-8.

[15] Hari Balakrishnan, M. Frans Kaashoek, David Karger,
Robert Morris, and Ion Stoica. Looking up data in P2P sys-
tems. Communications of the ACM, 46(2):43–48, February
2003. ISSN 0001-0782.

[16] Ramrajprabu Balasubramanian, Injong Rhee, and Jaewoo
Kang. A scalable architecture for SIP infrastructure using
content addressable networks. In ICC 2005: International
Conference on Communications, volume 2, pages 1314–1318.
IEEE Computer Society, 2005.

[17] David Barkai. Peer-to-Peer Computing: Technologies for
Sharing and Collaborating on the Net. Intel Press, 2001. ISBN
0970284675.

[18] Michal Batko. Distributed and Scalable Similarity Searching
in Metric Spaces. In Current Trends in Database Technol-
ogy - EDBT 2004 Workshops, EDBT 2004 Workshops PhD,
DataX, PIM, P2P&DB, and ClustWeb, Heraklion, Crete,
Greece, March 14-18, 2004, Revised Selected Papers, volume
3268 of Lecture Notes in Computer Science, pages 44–53,
2004. ISBN 3-540-23305-9.

[19] Michal Batko, Claudio Gennaro, and Pavel Zezula. A Scal-
able Nearest Neighbor Search in P2P Systems. In DBISP2P
’04; Databases, Information Systems, and Peer-to-Peer Com-
puting - Second International Workshop, DBISP2P 2004,
Toronto, Canada, August 29-30, 2004, Revised Selected Pa-
pers, pages 79–92. Springer-Verlag, 2004.

http://current.cs.ucsb.edu/projects/chimera/

148 BIBLIOGRAPHY

[20] Michal Batko, Claudio Gennaro, and Pavel Zezula. SEBD
2004: Proceedings of the Twelfth Italian Symposium on Ad-
vanced Database Systems, SEBD 2004, S. Margherita di Pula,
Cagliari, Italy, June 21-23, 2004. In SEBD, pages 410–417,
2004. ISBN 88-901409-1-7.

[21] Michal Batko, Claudio Gennaro, and Pavel Zezula. Similarity
Grid for Searching in Metric Spaces. In Peer-to-Peer, Grid,
and Service-Orientation in Digital Library Architectures. 6th
Thematic Workshop of the EU Network of Excellence DE-
LOS, Cagliari, Italy, June 24-25, 2004, Revised Selected Pa-
pers, volume 3664 of Lecture Notes in Computer Science,
pages 25–44. Springer-Verlag Berlin Heidelberg, 2004.

[22] Michal Batko, David Novak, Fabrizio Falchi, and Pavel
Zezula. On scalability of the similarity search in the world
of peers. In InfoScale ’06: Proceedings of the 1st interna-
tional conference on Scalable information systems, page 20,
New York, NY, USA, 2006. ACM Press. ISBN 1-59593-428-6.

[23] Matthias Bender, Sebastian Michel, Peter Triantafillou, Ger-
hard Weikum, and Christian Zimmer. Improving collection
selection with overlap awareness in P2P search engines. In SI-
GIR ’05: Proceedings of the 28th annual international ACM
SIGIR conference on Research and development in informa-
tion retrieval, pages 67–74, New York, NY, USA, 2005. ACM
Press. ISBN 1-59593-034-5.

[24] Matthias Bender, Sebastian Michel, Peter Triantafillou, Ger-
hard Weikum, and Christian Zimmer. MINERVA: Collabo-
rative P2P Search. In VLDB ’05: Proceedings of the 31st in-
ternational conference on Very large data bases, pages 1263–
1266. VLDB Endowment, 2005. ISBN 1-59593-154-6.

[25] Matthias Bender, Sebastian Michel, Gerhard Weikum, and
Christian Zimmer. Challenges of Distributed Search Across
Digital Libraries. In Gerhard Weikum, Yannis Ioannidis,

BIBLIOGRAPHY 149

and Hans-Jrg Schek, editors, Proceedings of the 8th Inter-
national Workshop of the DELOS Network of Excellence on
Digital Libraries on Future Digital Library Management Sys-
tems (System Architecture & Information Access), pages 55–
59, Dagstuhl, Germany, 2005. Information Society Techonolo-
gies.

[26] Matthias Bender, Sebastian Michel, Gerhard Weikum, and
Christian Zimmer. The MINERVA Project: Database Se-
lection in the Context of P2P Search. In Gottfried Vossen,
Frank Leymann, Peter C. Lockemann, and Wolffried Stucky,
editors, Datenbanksysteme in Business, Technologie und Web
(BTW): 11. Fachtagung des GI-Fachbereichs ”Datenbanken
und Informationssysteme” (DBIS), volume 65 of Lecture
Notes in Informatics, pages 125–144, Karlsruhe, Germany,
March 2005. Gesellschaft fr Informatik. ISBN 3-88579-394-6
ISSN 1617-5468. Acceptance ratio 1:3.

[27] Matthias Bender, Sebastian Michel, Christian Zimmer, and
Gerhard Weikum. Bookmark-driven Query Routing in Peer-
to-Peer Web Search. In Jamie Callan, Norbert Fuhr, and
Wolfgang Nejdl, editors, Proceedings of the SIGIR Workshop
on Peer-to-Peer Information Retrieval: 27th Annual Interna-
tional ACM SIGIR Conference; SIGIR 2004 P2PIR Work-
shop, pages 1–12, Sheffield, UK, 2004. Universitt Duisburg-
Essen.

[28] Matthias Bender, Sebastian Michel, Christian Zimmer, and
Gerhard Weikum. Towards Collaborative Search in Digital Li-
braries Using Peer-to-Peer Technology. In Can Trker, Maris-
tella Agosti, and Hans-Jrg Schek, editors, Peer-to-peer, grid,
and service-orientation in digital library architectures: 6th
Thematic Workshop of the EU Network of Excellence DE-
LOS, volume 3664 of Lecture Notes in Computer Science,
pages 80–95, Cagliari, Italy, August 2005. Springer. ISBN
3-540-28711-6. Selected, Revised Papers.

[29] Christian Böhm, Stefan Berchtold, and Daniel A. Keim.

150 BIBLIOGRAPHY

Searching in high-dimensional spaces: Index structures for
improving the performance of multimedia databases. ACM
Comput. Surv., 33(3):322–373, 2001. ISSN 0360-0300.

[30] Tolga Bozkaya and Meral Ozsoyoglu. Indexing large metric
spaces for similarity search queries. ACM Trans. Database
Syst., 24(3):361–404, 1999. ISSN 0362-5915.

[31] Sergey Brin. Near Neighbor Search in Large Metric Spaces. In
VLDB ’95: Proceedings of the 21th International Conference
on Very Large Data Bases, pages 574–584, San Francisco,
CA, USA, 1995. Morgan Kaufmann Publishers Inc. ISBN
1-55860-379-4.

[32] A. J. Broder. Strategies for efficient incremental nearest
neighbor search. Pattern Recogn., 23(1-2):171–178, 1990.
ISSN 0031-3203.

[33] Erik Buchmann and Klemens Böhm. Efficient Evaluation of
Nearest-Neighbor Queries in Content-Addressable Networks.
In From Integrated Publication and Information Systems to
Virtual Information and Knowledge Environments: Essays
Dedicated to Erich J. Neuhold on the Occasion of His 65th
Birthday, volume 3379 of Lecture Notes in Computer Science,
pages 31–40. Springer-Verlag Berlin Heidelberg, 2005.

[34] W. A. Burkhard and R. M. Keller. Some approaches to best-
match file searching. Commun. ACM, 16(4):230–236, 1973.
ISSN 0001-0782.

[35] Benjamin Bustos, Gonzalo Navarro, and Edgar Chávez. Pivot
selection techniques for proximity searching in metric spaces.
Pattern Recogn. Lett., 24(14):2357–2366, 2003. ISSN 0167-
8655.

[36] Luis Felipe Cabrera, Michael B. Jones, and Marvin Theimer.
Herald: Achieving a Global Event Notification Service. In
HOTOS ’01: Proceedings of the Eighth Workshop on Hot

BIBLIOGRAPHY 151

Topics in Operating Systems, page 87, Washington, DC, USA,
2001. IEEE Computer Society.

[37] M. Castro, P. Druschel, Y. Hu, and A. Rowstron. Topolo-
gyaware routing in structured peer-to-peer overlay networks.
Technical Report MSR-TR-2002-82, Microsoft Research, One
Microsoft Way, Redmond, WA 98052, 2002.

[38] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony
Rowstron, and Dan S. Wallach. Security for structured peer-
to-peer overlay networks. In OSDI’02: 5th Symposium on Op-
erating Systems Design and Implementaion, December 2002.

[39] Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony
Rowstron. Exploiting Network Proximity in Distributed Hash
Tables. In Ozalp Babaoglu, Ken Birman, and Keith Marzullo,
editors, International Workshop on Future Directions in Dis-
tributed Computing (FuDiCo), pages 52–55, June 2002.

[40] Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony
I. T. Rowstron. Topology-Aware Routing in Structured Peer-
to-Peer Overlay Networks. In Future Directions in Distributed
Computing, volume 2584/2001 of Lecture Notes in Computer
Science, pages 103–107. Springer-Verlag, 2003. ISBN 3-540-
00912-4.

[41] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and
Antony Rowstron. One ring to rule them all: service dis-
covery and binding in structured peer-to-peer overlay net-
works. In EW10: Proceedings of the 10th workshop on ACM
SIGOPS European workshop: beyond the PC, pages 140–145,
New York, NY, USA, 2002. ACM Press.

[42] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and
Antony I.T. Rowstron. Scribe: a large-scale and decentralized
application-level multicast infrastructure. IEEE Journal on
Selected Areas in Communications, 20(8):1489–1499, October
2002. ISSN 0733-8716.

152 BIBLIOGRAPHY

[43] Miguel Castro, Michael B. Jones, Anne-Marie Kermarrec,
Antony Rowstron, Marvin Theimer, Helen Wang, and Alec
Wolman. An evaluation of scalable application-level multi-
cast built using peer-to-peer overlays. In INFOCOM 2003:
Proceedings of the Twenty-Second Annual Joint Conference
of the IEEE Computer and Communications Societies, vol-
ume 2, pages 1510–1520. IEEE, 2003.

[44] Edgar Chávez, J. L. Marroqúın, and Ricardo Baeza-Yates.
Spaghettis: An Array Based Algorithm for Similarity Queries
in Metric Spaces. In SPIRE ’99: Proceedings of the String
Processing and Information Retrieval Symposium & Interna-
tional Workshop on Groupware, page 38, Washington, DC,
USA, 1999. IEEE Computer Society. ISBN 0-7695-0268-7.

[45] Edgar Chávez, José L. Marroqúın, and Gonzalo Navarro.
Fixed Queries Array: A Fast and Economical Data Struc-
ture for Proximity Searching. Multimedia Tools Appl., 14(2):
113–135, 2001. ISSN 1380-7501.

[46] Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, and
José Luis Marroqúın. Searching in metric spaces. ACM Com-
puting Surveys (CSUR), 33(3):273–321, 2001. ISSN 0360-
0300.

[47] Sergey Chernov, Pavel Serdyukov, Matthias Bender, Se-
bastian Michel, Gerhard Weikum, and Christian Zimmer.
Database Selection and Result Merging in P2P Web Search.
In Third International Workshop on Databases, Informa-
tion Systems and Peer-to-Peer Computing (DBISP2P 2005),
pages 1–14, Trondheim, Norway, 2005. Springer. Acceptance
rate 1:3.

[48] Paolo Ciaccia, Danilo Montesi, Wilma Penzo, and Alberto
Trombetta. Imprecision and User Preferences in Multime-
dia Queries: A Generic Algebraic Approach. In Klaus-Dieter
Schewe and Bernhard Thalheim, editors, FoIKS, volume 1762

BIBLIOGRAPHY 153

of Lecture Notes in Computer Science, pages 50–71. Springer,
2000. ISBN 3-540-67100-5.

[49] Paolo Ciaccia and Marco Patella. The M2-tree: Processing
Complex Multi-Feature Queries with Just One Index. In DE-
LOS Workshop: Information Seeking, Searching and Query-
ing in Digital Libraries, 2000.

[50] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree:
An Efficient Access Method for Similarity Search in Metric
Spaces. In VLDB ’97: Proceedings of the 23rd International
Conference on Very Large Data Bases, pages 426–435, San
Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.
ISBN 1-55860-470-7.

[51] Paolo Ciaccia, Marco Patella, and Pavel Zezula. Process-
ing Complex Similarity Queries with Distance-Based Access
Methods. In Hans-Jörg Schek, Fèlix Saltor, Isidro Ramos,
and Gustavo Alonso, editors, EDBT, volume 1377 of Lecture
Notes in Computer Science, pages 9–23. Springer, 1998. ISBN
3-540-64264-1.

[52] Ian Clarke, Oskar Sandberg, Brandon Wiley, and
Theodore W. Hong. Freenet: A Distributed Anonymous
Information Storage and Retrieval System. In Designing
Privacy Enhancing Technologies: International Workshop on
Design Issues in Anonymity and Unobservability, Berkeley,
CA, USA, July 2000, Proceedings, volume 2009 of Lecture
Notes in Computer Science, pages 46–66. Springer-Verlag,
2001.

[53] Kenneth L. Clarkson. Nearest neighbor queries in metric
spaces. In STOC ’97: Proceedings of the twenty-ninth annual
ACM symposium on Theory of computing, pages 609–617,
New York, NY, USA, 1997. ACM Press. ISBN 0-89791-888-
6.

154 BIBLIOGRAPHY

[54] Jon Crowcroft and Ian Pratt. Peer to peer: peering into the
future. Springer-Verlag New York, Inc., New York, NY, USA,
2002. ISBN 3-540-00165-4.

[55] Anwitaman Datta, Manfred Hauswirth, Renault John, Ro-
man Schmidt, and Karl Aberer. Range Queries in Trie-
Structured Overlays. In Proccedings of the Fifth IEEE Inter-
national Conference on Peer-to-Peer Computing, pages 57–
66, 2005.

[56] Robert Devine. Design and Implementation of DDH: A Dis-
tributed Dynamic Hashing Algorithm. In FODO ’93: Pro-
ceedings of the 4th International Conference on Foundations
of Data Organization and Algorithms, pages 101–114, Lon-
don, UK, 1993. Springer-Verlag. ISBN 3-540-57301-1.

[57] Vlastislav Dohnal, Claudio Gennaro, Pasquale Savino, and
Pavel Zezula. D-Index: Distance Searching Index for Metric
Data Sets. Multimedia Tools Appl., 21(1):9–33, 2003. ISSN
1380-7501.

[58] Peter Druschel and Antony Rowstron. PAST: A Large-Scale,
Persistent Peer-to-Peer Storage Utility. In HOTOS ’01: Pro-
ceedings of the Eighth Workshop on Hot Topics in Operating
Systems, page 75, Washington, DC, USA, 2001. IEEE Com-
puter Society.

[59] Jrg Eberspcher and Rdiger Schollmeier. First and Second
Generation of Peer-to-Peer-Systems. In Peer-to-Peer Systems
and Applications, volume 3485 of Lecture Notes in Computer
Science, chapter 5, pages 35–56. Springer-Verlag Berlin Hei-
delberg, 2005.

[60] Ronald Fagin. Combining Fuzzy Information from Multi-
ple Systems. In Proceedings of the Fifteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database
Systems, June 3-5, 1996, Montreal, Canada, pages 216–226.
ACM Press, 1996. ISBN 0-89791-781-2.

BIBLIOGRAPHY 155

[61] Ronald Fagin. Fuzzy Queries in Multimedia Database Sys-
tems. In Proceedings of the Seventeenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database
Systems, June 1-3, 1998, Seattle, Washington, pages 1–10.
ACM Press, 1998. ISBN 0-89791-996-3.

[62] Ronald Fagin. Combining fuzzy information from multiple
systems. Journal of Computer and System Sciences, 58(1):
83–99, 1999. ISSN 0022-0000.

[63] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal Ag-
gregation Algorithms for Middleware. In PODS. ACM, 2001.
ISBN 1-58113-361-8.

[64] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal Ag-
gregation Algorithms for Middleware. CoRR, cs.DB/0204046,
2002.

[65] Fabrizio Falchi, Claudio Gennaro, and Pavel Zezula. A
Content-Addressable Network for Similarity Search in Metric
Spaces. In Gianluca Moro, Sonia Bergamaschi, and Aris M.
Ouksel, editors, DBISP2P ’05: Proceedings of the the 2nd
International Workshop on Databases, Information Systems
and Peer-to-Peer Computing, Trondheim, Norway, volume
4125 of Lecture Notes in Computer Science, pages 98–110.
Springer, 2005.

[66] Fabrizio Falchi, Claudio Gennaro, and Pavel Zezula. Near-
est Neighbor Search in Metric Saces through Content-
Addressable Networks. Information Processing & Manage-
ment, 43(3):665–683, May 2007.

[67] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack,
D. Petkovic, and W. Equitz. Efficient and effective querying
by image content. J. Intell. Inf. Syst., 3(3-4):231–262, 1994.
ISSN 0925-9902.

156 BIBLIOGRAPHY

[68] Hassan M. Fattah. P2p: How Peer-to-Peer Technology Is
Revolutionizing the Way We Do Business. Dearborn Finan-
cial Publishing, Inc., 2002. ISBN 0793148782.

[69] Ian Foster. Internet Computing and the Emerging Grid. Na-
ture, 408(6815), 2000.

[70] Ian Foster. What is the Grid? - a three point checklist.
GRIDtoday, 1(6), July 2002.

[71] Ian T. Foster and Adriana Iamnitchi. On Death, Taxes,
and the Convergence of Peer-to-Peer and Grid Computing.
In IPTPS 2003: Peer-to-Peer Systems II, Second Interna-
tional Workshop, Berkeley, CA, USA, February 21-22,2003,
Revised Papers, volume 2735 of Lecture Notes in Computer
Science, pages 118–128, 2003.

[72] Prasanna Ganesan, Beverly Yang, and Hector Garcia-Molina.
One torus to rule them all: multi-dimensional queries in P2P
systems. In WebDB ’04: Proceedings of the 7th International
Workshop on the Web and Databases, pages 19–24, New York,
NY, USA, 2004. ACM Press.

[73] Claudio Gennaro, Pasquale Savino, and Pavel Zezula. Simi-
larity search in metric databases through hashing. In MUL-
TIMEDIA ’01: Proceedings of the 2001 ACM workshops on
Multimedia, pages 1–5, New York, NY, USA, 2001. ACM
Press. ISBN 1-58113-395-2.

[74] Brighten Godfrey, Karthik Lakshminarayanan, Sonesh
Surana, Richard M. Karp, and Ion Stoica. Load Balancing
in Dynamic Structured P2P Systems. In INFOCOM 2004.
Twenty-third AnnualJoint Conference of the IEEE Computer
and Communications Societies, volume 3, pages 2007–2016,
2004. IEEE.

[75] Robert L. Goldstone and Son Ji Yun. Similarity. In
K. Holyoak and R. Morrison, editors, Cambridge Handbook

BIBLIOGRAPHY 157

of Thinking and Reasoning, pages 13–36. Cambridge Univer-
sity Press, Cambridge, 2005. URL http://cognitrn.psych.

indiana.edu/rgoldsto/papers.html.

[76] Li Gong. JXTA: A Network Programming Environment.
IEEE Internet Computing, 5(3):88–95, 2001. ISSN 1089-7801.

[77] Sudipto Guha, H. V. Jagadish, Nick Koudas, Divesh Srivas-
tava, and Ting Yu. Approximate XML joins. In SIGMOD ’02:
Proceedings of the 2002 ACM SIGMOD international confer-
ence on Management of data, pages 287–298, New York, NY,
USA, 2002. ACM Press. ISBN 1-58113-497-5.

[78] Ulrich Güntzer, Wolf-Tilo Balke, and Werner Kießling.
Optimizing Multi-Feature Queries for Image Databases. In
VLDB ’00: Proceedings of the 26th International Conference
on Very Large Data Bases, pages 419–428, San Francisco,
CA, USA, 2000. Morgan Kaufmann Publishers Inc. ISBN
1-55860-715-3.

[79] Andreas Haeberlen, Jeff Hoye, Alan Mislove, and Peter Dr-
uschel. Consistent Key Mapping in Structured Overlays.
Technical Report TR05-456, Rice University, Department of
Computer Science, August 2005.

[80] James Hafner, Harpreet S. Sawhney, Will Equitz, Myron
Flickner, and Wayne Niblack. Efficient Color Histogram In-
dexing for Quadratic Form Distance Functions. IEEE Trans.
Pattern Anal. Mach. Intell., 17(7):729–736, 1995. ISSN 0162-
8828.

[81] Matthew Harren, Joseph M. Hellerstein, Ryan Huebsch,
Boon Thau Loo, Scott Shenker, and Ion Stoica. Complex
Queries in DHT-based Peer-to-Peer Networks. In Peter Dr-
uschel, M. Frans Kaashoek, and Antony I. T. Rowstron, ed-
itors, Peer-to-Peer Systems. First International Workshop,
IPTPS 2002, Cambridge, MA, USA, March 7-8, 2002, Re-
vised Papers, volume 2429 of Lecture Notes in Computer Sci-

http://cognitrn.psych.indiana.edu/rgoldsto/papers.html
http://cognitrn.psych.indiana.edu/rgoldsto/papers.html

158 BIBLIOGRAPHY

ence, pages 242–259. Springer-Verlag Berlin Heidelberg, 2002.
ISBN 3-540-44179-4.

[82] Sugata Hazarika and Don Towsley. Delay analysis of appli-
cation level multicast on content addressable networks. In
GLOBECOM ’04: Proceeding of the Global Telecommunica-
tions Conference, 2004, volume 2, pages 1271–1277 Vol.2.
IEEE, 2004.

[83] Gı́sli R. Hjaltason and Hanan Samet. Distance Browsing in
Spatial Databases. ACM Transactions on Database Systems
(TODS), 24(2):265–318, 1999.

[84] Gisli R. Hjaltason and Hanan Samet. Index-driven similar-
ity search in metric spaces (Survey Article). ACM Trans.
Database Syst., 28(4):517–580, 2003. ISSN 0362-5915.

[85] Josef F. Huber. Peer-to-peer networking in mobile communi-
cations based on SIP. Plenum Press, New York, NY, USA,
2004. ISBN 0-306-48190-1.

[86] D. P. Huttenlocher, G. A. Klanderman, and W. A. Ruck-
lidge. Comparing Images Using the Hausdorff Distance. IEEE
Trans. Pattern Anal. Mach. Intell., 15(9):850–863, 1993.
ISSN 0162-8828.

[87] ISO/IEC. Information technology - Multimedia content de-
scription interfaces., 2002. 15938.

[88] H. V. Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and
Rui Zhang. iDistance: An adaptive B+-tree based indexing
method for nearest neighbor search. ACM Trans. Database
Syst., 30(2):364–397, 2005. ISSN 0362-5915.

[89] William James. The Principles of Psychology. Dover,
1890/1950.

[90] Michael B. Jones, Marvin Theimer, Helen J. Wang, and Alec
Wolman. Unexpected Complexity: Experiences Tuning and

BIBLIOGRAPHY 159

Extending CAN. Technical Report MSR-TR-2002-118, Mi-
crosoft Research, One Microsoft Way, Redmond, WA 98052,
2002.

[91] M. Frans Kaashoek and David R. Karger. Koorde: A
Simple Degree-Optimal Distributed Hash Table. In IPTPS
2003: Peer-to-Peer Systems II, Second International Work-
shop, Berkeley, CA, USA, February 21-22,2003, Revised Pa-
pers, pages 98–107, 2003.

[92] Iraj Kalantari and Gerard McDonald. A Data Structure and
an Algorithm for the Nearest Point Problem. IEEE Trans.
Software Eng., 9(5):631–634, 1983.

[93] Jonas S. Karlsson, Witold Litwin, and Tore Risch. LH*LH: A
scalable High Performance Data Structure for Switched Mul-
ticomputers. In Peter M. G. Apers, Mokrane Bouzeghoub,
and Georges Gardarin, editors, EDBT, volume 1057 of Lec-
ture Notes in Computer Science, pages 573–591. Springer,
1996. ISBN 3-540-61057-X.

[94] Farnoush Banaei Kashani and Cyrus Shahabi. SWAM: a fam-
ily of access methods for similarity-search in peer-to-peer data
networks. In David Grossman, Luis Gravano, ChengXiang
Zhai, Otthein Herzog, and David A. Evans, editors, CIKM,
pages 304–313. ACM, 2004. ISBN 1-58113-874-1.

[95] Kostas Katrinis and Martin May. Application-Layer Multi-
cast. In Peer-to-Peer Systems and Applications, volume 3485
of Lecture Notes in Computer Science, chapter 11, pages 157–
170. Springer-Verlag Berlin Heidelberg, 2005.

[96] John L. Kelley. General Topology. Van Nostrand Reinhold,
New York Heidelberg Berlin, 1955.

[97] Brigitte Kröll and Peter Widmayer. Distributing a search
tree among a growing number of processors. In SIGMOD ’94:

160 BIBLIOGRAPHY

Proceedings of the 1994 ACM SIGMOD international confer-
ence on Management of data, pages 265–276, New York, NY,
USA, 1994. ACM Press. ISBN 0-89791-639-5.

[98] John Kubiatowicz, David Bindel, Yan Chen, Steven Czer-
winski, Patrick Eaton, Dennis Geels, Ramakrishna Gum-
madi, Sean Rhea, Hakim Weatherspoon, Chris Wells, and
Ben Zhao. OceanStore: an architecture for global-scale per-
sistent storage. In ASPLOS-IX: Proceedings of the ninth in-
ternational conference on Architectural support for program-
ming languages and operating systems, pages 190–201, New
York, NY, USA, 2000. ACM Press. ISBN 1-58113-317-0.

[99] Per-Ake Larson. Dynamic hash tables. Commun. ACM, 31
(4):446–457, 1988. ISSN 0001-0782.

[100] Bo Leuf. Peer to Peer: Collaboration and Sharing over the
Internet. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002. ISBN 0201767325.

[101] Vladimir I. Levenshtein. Binary codes capable of correcting
spurious insertions and deletions of ones. Problems of Infor-
mation Transmission, 1:8–17, 1965.

[102] Vladimir I. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. Technical Report 8, 1966.

[103] Jinyang Li, Jeremy Stribling, Thomer M. Gil, Robert Morris,
and M. Frans Kaashoek. Comparing the Performance of Dis-
tributed Hash Tables Under Churn. In Peer-to-Peer Systems
III, Third International Workshop, IPTPS 2004, La Jolla,
CA, USA, February 26-27, 2004, Revised Selected Papers,
volume 3279 of Lecture Notes in Computer Science, pages
87–99. Springer-Verlag Berlin Heidelberg, 2004.

[104] Qiao Lian, Zheng Zhang, Shaomei Wu, and Ben Y. Zhao. Z-
Ring: Fast Prefix Routing via a Low Maintenance Member-
ship Protocol. In ICNP ’05: Proceedings of the 13TH IEEE

BIBLIOGRAPHY 161

International Conference on Network Protocols (ICNP’05),
pages 132–146, Washington, DC, USA, 2005. IEEE Computer
Society. ISBN 0-7695-2437-0.

[105] W. Litwin, M.-A. Neimat, G. Lev, S. Ndiaye, and T. Seck.
LH*s: a high-availability and high-security scalable dis-
tributed data structure. In RIDE ’97: Proceedings of the 7th
International Workshop on Research Issues in Data Engineer-
ing (RIDE ’97) High Performance Database Management for
Large-Scale Applications, page 141, Washington, DC, USA,
1997. IEEE Computer Society. ISBN 0-8186-7849-6.

[106] Witold Litwin. Linear Hashing: A New Tool for File and Ta-
ble Addressing. In VLDB’80: Sixth International Conference
on Very Large Data Bases, October 1-3, 1980, Montreal, Que-
bec, Canada, Proceedings, pages 212–223. IEEE Computer
Society, 1980.

[107] Witold Litwin. Linear Hashing: a new tool for file and table
addressing. pages 570–581, 1988.

[108] Witold Litwin. Scalable Distributed Data Structures, 2006.
URL http://ceria.dauphine.fr/SDDS-bibliograhie.

html. [Online; accessed 4-December-2006].

[109] Witold Litwin and Marie-Anne Neimat. High-Availability
LH* Schemes with Mirroring. In CoopIS’96: First IFCIS In-
ternational Conference on Cooperative Information Systems,
pages 196–205, Los Alamitos, CA, USA, 1996. IEEE Com-
puter Society.

[110] Witold Litwin and Marie-Anne Neimat. k-RP*S: A Scal-
able Distributed Data Structure for High-Performance Multi-
Attribute Access. In PDIS 1996: Proceedings of the Fourth
International Conference on Parallel and Distributed Infor-
mation Systems, pages 120–131, 1996.

[111] Witold Litwin, Marie-Anne Neimat, and Donovan A. Schnei-
der. LH* - Linear Hashing for Distributed Files. In Peter

http://ceria.dauphine.fr/SDDS-bibliograhie.html
http://ceria.dauphine.fr/SDDS-bibliograhie.html

162 BIBLIOGRAPHY

Buneman and Sushil Jajodia, editors, SIGMOD Conference,
pages 327–336. ACM Press, 1993.

[112] Witold Litwin, Marie-Anne Neimat, and Donovan A. Schnei-
der. RP*: A Family of Order Preserving Scalable Distributed
Data Structures. In VLDB’94, Proceedings of 20th Interna-
tional Conference on Very Large Data Bases, September 12-
15, 1994, Santiago de Chile, Chile, pages 342–353. Morgan
Kaufmann, 1994. ISBN 1-55860-153-8.

[113] Witold Litwin, Marie-Anne Neimat, and Donovan A. Schnei-
der. LH* - A Scalable, Distributed Data Structure. ACM
Transactions on Database Systems (TODS), 21(4):480–525,
1996.

[114] Ratul Mahajan, Miguel Castro, and Antony Rowstron. Con-
trolling the Cost of Reliability in Peer-to-peer Overlays. In
IPTPS’03: Proceedings of 2nd International Workshop on
Peer-to-Peer Systems, February 2003.

[115] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: a
scalable and dynamic emulation of the butterfly. In PODC
’02: Proceedings of the twenty-first annual symposium on
Principles of distributed computing, pages 183–192, New
York, NY, USA, 2002. ACM Press. ISBN 1-58113-485-1.

[116] G. Manku, M. Bawa, and P. Raghavan. Symphony: Dis-
tributed Hashing in a Small World. In USITS 2003: Proceed-
ings of the 4th USENIX Symposium on Internet Technologies
and Systems, 2003.

[117] Amelie Marian. Detecting Changes in XML Documents. In
ICDE ’02: Proceedings of the 18th International Conference
on Data Engineering, page 41, Washington, DC, USA, 2002.
IEEE Computer Society.

[118] Petar Maymounkov and David Mazières. Kademlia: A Peer-
to-Peer Information System Based on the XOR Metric. In

BIBLIOGRAPHY 163

Peer-to-Peer Systems, First International Workshop, IPTPS
2002, Cambridge, MA, USA, March 7-8, 2002, Revised Pa-
pers, volume 2429 of Lecture Notes in Computer Science,
pages 53–65. Springer-Verlag Berlin Heidelberg, 2002.

[119] Sebastian Michel, Matthias Bender, Peter Triantafillou,
and Gerhard Weikum. IQN Routing: Integrating Qual-
ity and Novelty in P2P Querying and Ranking. In Yannis
Yoannidis, Marc H. Scholl, Joachim W. Schmidt, Florian
Matthes, Michael Hatzopoulos, Klemens Bhm, Alfons Kem-
per, Torsten Grust, and Christian Bhm, editors, Advances in
Database Technology - EDBT 2006, Proceedings of the 10th
International Conference on Extending Database Technology
(EDBT06), volume 3896 of LNCS, pages 149–166, Munich,
Germany, March 2006. Springer. ISBN 3-540-32960-9.

[120] Sebastian Michel, Matthias Bender, Peter Triantafillou, Ger-
hard Weikum, and Christian Zimmer. P2P Web Search with
MINERVA: How do you want to search tomorrow? (Demo).
Technical Report DELIS-TR-0293, University of Paderborn,
Heinz Nixdorf Institute, Grenoble, France, 2005.

[121] Sebastian Michel, Peter Triantafillou, and Gerhard Weikum.
KLEE: A Framework for Distributed Top-k Query Algo-
rithms. In VLDB ’05: Proceedings of the 31st international
conference on Very large data bases, pages 637–648. ACM,
2005.

[122] Maŕıa Luisa Micó, José Oncina, and Enrique Vidal. A new
version of the nearest-neighbour approximating and eliminat-
ing search algorithm (AESA) with linear preprocessing time
and memory requirements. Pattern Recognitions Letters, 15
(1):9–17, 1994. ISSN 0167-8655.

[123] Michael Miller. Discovering P2P. SYBEX Inc., Alameda,
CA, USA, 2001. ISBN 0782140181.

[124] Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran
Nagaraja, Jim Pruyne, Bruno Richard, Sami Rollins, and

164 BIBLIOGRAPHY

Zhichen Xu. Peer-to-Peer Computing. Technical Report
HPL-2002-57 (R.1), HP Laboratories Palo Alto, 2003.

[125] Alan Mislove, Andreas Haeberlen, Ansley Postm, and Pe-
ter Druschel. ePOST. In Peer-to-Peer Systems and Appli-
cations, volume 3485 of Lecture Notes in Computer Science,
chapter 12, pages 171–192. Springer-Verlag Berlin Heidelberg,
2005.

[126] H. Garcia Molina and B. Kogan. Node autonomy in dis-
tributed systems. In DPDS ’88: Proceedings of the first inter-
national symposium on Databases in parallel and distributed
systems, pages 158–166, Los Alamitos, CA, USA, 1988. IEEE
Computer Society Press. ISBN 0-8186-0893-5.

[127] Anirban Mondal, Yi Lifu, and Masaru Kitsuregawa. P2PR-
Tree: An R-Tree-Based Spatial Index for Peer-to-Peer Envi-
ronments. In Current Trends in Database Technology. EDBT
2004 Workshops: EDBT 2004 Workshops PhD, DataX, PIM,
P2P&DB, and ClustWeb, Heraklion, Crete, Greece, March
14-18, 2004. Revised Selected Papers, volume 3268 of Lecture
Notes in Computer Science, pages 516–525. Springer-Verlag
Berlin Heidelberg, 2004.

[128] Dana T. Moore and John Hebeler. Peer-to-Peer: Tap into
the Power of the Internet. McGraw-Hill Professional, 2001.
ISBN 0072192844.

[129] Enrico Nardelli, Fabio Barillari, and Massimo Pepe. Dis-
tributed searching of multi-dimensional data: a performance
evaluation study. J. Parallel Distrib. Comput., 49(1):111–134,
1998. ISSN 0743-7315.

[130] Gonzalo Navarro. Searching in Metric Spaces by Spatial
Approximation. In SPIRE ’99: Proceedings of the String
Processing and Information Retrieval Symposium & Interna-
tional Workshop on Groupware, page 141, Washington, DC,
USA, 1999. IEEE Computer Society. ISBN 0-7695-0268-7.

BIBLIOGRAPHY 165

[131] Gonzalo Navarro. A guided tour to approximate string match-
ing. ACM Comput. Surv., 33(1):31–88, 2001. ISSN 0360-0300.

[132] Gonzalo Navarro. Searching in metric spaces by spatial ap-
proximation. The VLDB Journal, 11(1):28–46, 2002. ISSN
1066-8888.

[133] S. B. Needleman and C. D. Wunsch. A general method appli-
cable to the search for similarities in the amino acid sequences
of two proteins. Journal of Molecular Biology, 48:443–453,
1970.

[134] Surya Nepal and M. V. Ramakrishna. Query Processing Is-
sues in Image(Multimedia) Databases. In ICDE ’99: Proceed-
ings of the 15th International Conference on Data Engineer-
ing, page 22, Washington, DC, USA, 1999. IEEE Computer
Society. ISBN 0-7695-0071-4.

[135] Heiko Niedermayer, Simon Rieche, Klaus Wehrle, and Georg
Carle. On the Distribution of Nodes in Distributed Hash Ta-
bles. In Proceedings of Workshop Peer-to-Peer-Systems and
-Applications, KiVS 2005, Kaiserslautern, Germany, 2005.

[136] David Novak and Pavel Zezula. M-Chord: a scalable dis-
tributed similarity search structure. In InfoScale ’06: Pro-
ceedings of the 1st international conference on Scalable infor-
mation systems, page 19, New York, NY, USA, 2006. ACM
Press. ISBN 1-59593-428-6.

[137] National Institute of Standards and Technology. FIPS PUB
180-1: Secure Hash Standard. National Institute for Stan-
dards and Technology, Gaithersburg, MD, USA, April 1995.
Supersedes FIPS PUB 180 1993 May 11.

[138] Andy Oram, editor. Peer-to-Peer: Harnessing the Power
of Disruptive Technologies. O’Reilly & Associates, Inc., Se-
bastopol, CA, USA, 2001. ISBN 059600110X.

166 BIBLIOGRAPHY

[139] Tim O’Reilly. Remaking the Peer-to-Peer Meme. In Andy
Oram, editor, Peer-to-Peer: Harnessing the Power of Disrup-
tive Technologies, pages 29–40. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, 2001.

[140] Maria Papadopouli and Henning Schulzrinne. Peer-to-Peer
Computing for Mobile Networks: Information Discovery and
Dissemination. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2005. ISBN 0387244271.

[141] Odysseas Papapetrou, Sebastian Michel, Matthias Bender,
and Gerhard Weikum. On the Usage of Global Document
Occurrences in Peer-to-Peer Information Systems. In Robert
Meersman, Zahir Tari, Mohand-Said Hacid, John Mylopou-
los, Barbara Pernici, zalp Babaoglu, Hans-Arno Jacobsen,
Joseph P. Loyall, Michael Kifer, and Stefano Spaccapietra,
editors, On the Move to Meaningful Internet Systems 2005:
CoopIS, DOA, and ODBASE: OTM Confederated Interna-
tional Conferences, CoopIS, DOA, and ODBASE 2005, vol-
ume 3760 of Lecture Notes in Computer Science, pages 310–
328, Agia Napa, Cyprus, 2005. Springer. ISBN 3-540-29736-7.
Acceptance Rate:.

[142] Michal Parnas and Dana Ron. Testing metric properties. In-
formation and Computation, 187(2):155–195, 2003.

[143] R. Rammal, G. Toulouse, and M. A. Virasoro. Ultrametricity
for physicists. Reviews of Modern Physics, 58(3):765–788, Jul
1986.

[144] Sylvia Ratnasamy. A Scalable Content-Addressable Network.
PhD thesis, University of California, Berkeley, 2002.

[145] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard
Karp, and Scott Shenker. A scalable content-addressable net-
work. In SIGCOMM ’01: Proceedings of the 2001 conference
on Applications, technologies, architectures, and protocols for
computer communications, pages 161–172, New York, NY,
USA, 2001. ACM Press. ISBN 1-58113-411-8.

BIBLIOGRAPHY 167

[146] Sylvia Ratnasamy, Mark Handley, Richard M. Karp, and
Scott Shenker. Application-Level Multicast Using Content-
Addressable Networks. In Jon Crowcroft and Markus Hof-
mann, editors, Networked Group Communication. Third In-
ternational COST264 Workshop, NGC 2001, London, UK,
November 7-9, 2001, volume 2233 of Lecture Notes in Com-
puter Science, pages 14–29, London, UK, 2001. Springer-
Verlag. ISBN 3-540-42824-0.

[147] Thomas Reidemeister, Paul A.S. Ward, Klemens Bohm, and
Erik Buchmann. Malicious behaviour in content-addressable
peer-to-peer networks. In Communication Networks and Ser-
vices Research Conference, 2005. Proceedings of the 3rd An-
nual, pages 319–326. IEEE, 2005.

[148] Sean Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz,
Sylvia Ratnasamy, Scott Shenker, Ion Stoica, and Harlan Yu.
OpenDHT: a public DHT service and its uses. In SIGCOMM
’05: Proceedings of the 2005 conference on Applications, tech-
nologies, architectures, and protocols for computer communi-
cations, pages 73–84, New York, NY, USA, 2005. ACM Press.
ISBN 1-59593-009-4.

[149] Simon Rieche, Heiko Niedermayer, Stefan Gtz, and Klaus
Wehrle. Reliability and Load Balancing in Distributed Hash
Tables. In Peer-to-Peer Systems and Applications, volume
3485 of Lecture Notes in Computer Science, chapter 9, pages
119–135. Springer-Verlag Berlin Heidelberg, 2005.

[150] Simon Rieche, Leo Petrak, and Klaus Wehrle. A Thermal-
Dissipation-Based Approach for Balancing Data Load in Dis-
tributed Hash Tables. In LCN ’04: Proceedings of the 29th
Annual IEEE International Conference on Local Computer
Networks (LCN’04), pages 15–23, Washington, DC, USA,
2004. IEEE Computer Society. ISBN 0-7695-2260-2.

[151] Antony Rowstron and Peter Druschel. Storage management
and caching in PAST, a large-scale, persistent peer-to-peer

168 BIBLIOGRAPHY

storage utility. In SOSP ’01: Proceedings of the eighteenth
ACM symposium on Operating systems principles, pages 188–
201, New York, NY, USA, 2001. ACM Press. ISBN 1-58113-
389-8.

[152] Antony I. T. Rowstron and Peter Druschel. Pastry: Scal-
able, Decentralized Object Location, and Routing for Large-
Scale Peer-to-Peer Systems. In Middleware ’01: Proceedings
of the IFIP/ACM International Conference on Distributed
Systems Platforms Heidelberg, pages 329–350, London, UK,
2001. Springer-Verlag. ISBN 3-540-42800-3.

[153] O.D. Sahin, D. Agrawal, and A.E. Abbadi. Techniques for
Efficient Routing and Load Balancing in Content-Addressable
Networks. In Peer-to-Peer Computing, 2005. P2P 2005. Fifth
IEEE International Conference on, pages 67–74, 2005.

[154] Phillipe Salembier and Thomas Sikora. Introduction to
MPEG-7: Multimedia Content Description Interface. John
Wiley & Sons, Inc., New York, NY, USA, 2002. ISBN
0471486787.

[155] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end ar-
guments in system design. ACM Trans. Comput. Syst., 2(4):
277–288, 1984. ISSN 0734-2071.

[156] Hanan Samet. The design and analysis of spatial data struc-
tures. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1990. ISBN 0-201-50255-0.

[157] Hanan Samet. Foundations of Multidimensional and Metric
Data Structures. Computer Graphics and Geometric Model-
ing. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2006. ISBN 0123694469.

[158] Thomas Seidl and Hans-Peter Kriegel. Efficient User-
Adaptable Similarity Search in Large Multimedia Databases.

BIBLIOGRAPHY 169

In VLDB ’97: Proceedings of the 23rd International Confer-
ence on Very Large Data Bases, pages 506–515, San Fran-
cisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.
ISBN 1-55860-470-7.

[159] C. Severance, S. Pramanik, and P. Wolberg. Distributed
linear hashing and parallel projection in main memory
databases. In Proceedings of the sixteenth international con-
ference on Very large databases, pages 674–682, San Fran-
cisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc.
ISBN 0-55860-149-X.

[160] Dennis Shasha and Tsong-Li Wang. New techniques for best-
match retrieval. ACM Trans. Inf. Syst., 8(2):140–158, 1990.
ISSN 1046-8188.

[161] Clay Shirky. Listening to Napster. In Andy Oram, editor,
Peer-to-Peer: Harnessing the Power of Disruptive Technolo-
gies. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2001.
ISBN 059600110X.

[162] Tyron Stading, Petros Maniatis, and Mary Baker. Peer-to-
Peer Caching Schemes to Address Flash Crowds. In IPTPS
’01: Revised Papers from the First International Workshop
on Peer-to-Peer Systems, pages 203–213, London, UK, 2002.
Springer-Verlag. ISBN 3-540-44179-4.

[163] Ralf Steinmetz and Klaus Wehrle. Peer-to-Peer-Networking
& -Computing. Aktuelles Schlagwort. Informatik Spektrum,
27(1):51–54, 2004.

[164] Ralf Steinmetz and Klaus Wehrle, editors. Peer-to-Peer Sys-
tems and Applications, volume 3485 of Lecture Notes in Com-
puter Science. Springer-Verlag, Berlin Heidelberg, Germany,
nov 2005. ISBN 354029192X.

[165] Ralf Steinmetz and Klaus Wehrle. What Is This Peer-to-Peer
About? In Peer-to-Peer Systems and Applications, volume

170 BIBLIOGRAPHY

3485 of Lecture Notes in Computer Science, chapter 2, pages
9–16. Springer-Verlag Berlin Heidelberg, 2005.

[166] Ion Stoica, Daniel Adkins, Sylvia Ratnasamy, Scott Shenker,
Sonesh Surana, and Shelley Zhuang. Internet Indirection In-
frastructure. In IPTPS ’01: Revised Papers from the First
International Workshop on Peer-to-Peer Systems, pages 191–
202, London, UK, 2002. Springer-Verlag. ISBN 3-540-44179-
4.

[167] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek,
and Hari Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In SIGCOMM ’01:
Proceedings of the 2001 conference on Applications, technolo-
gies, architectures, and protocols for computer communica-
tions, pages 149–160, New York, NY, USA, 2001. ACM Press.
ISBN 1-58113-411-8.

[168] Ion Stoica, Robert Morris, David Liben-Nowell, David R.
Karger, M. Frans Kaashoek, Frank Dabek, and Hari Balakr-
ishnan. Chord: a scalable peer-to-peer lookup protocol for
internet applications. IEEE/ACM Transactions on Network-
ing (TON), 11(1):17–32, 2003.

[169] Ramesh Subramanian and Brian D. Goodman. Peer to
Peer Computing: The Evolution of a Disruptive Technol-
ogy. Idea Group Publishing, Hershey, PA, USA, 2005. ISBN
1591404290.

[170] Torsten Suel, Chandan Mathur, Jo wen Wu, Jiangong Zhang,
Alex Delis, Mehdi Kharrazi, Xiaohui Long, and Kulesh Shan-
mugasundaram. ODISSEA: A Peer-to-Peer Architecture for
Scalable Web Search and Information Retrieval. In WWW
(Posters), 2003.

[171] Sonesh Surana, Brighten Godfrey, Karthik Lakshmi-
narayanan, Richard Karp, and Ion Stoica. Load balancing
in dynamic structured peer-to-peer systems. In Performance

BIBLIOGRAPHY 171

Evaluation, volume 63, pages 217–240. P2P Computing Sys-
tems, March 2006.

[172] D. Takemoto, S. Tagashira, and S. Fujita. Distributed algo-
rithms for balanced zone partitioning in content-addressable
networks. In Parallel and Distributed Systems, 2004. ICPADS
2004. Proceedings. Tenth International Conference on, pages
377–384, 2004.

[173] Chunqiang Tang and Sandhya Dwarkadas. Hybrid Global-
Local Indexing for Efficient Peer-to-Peer Information Re-
trieval. In NSDI 2004: 1st Symposium on Networked Systems
Design and Implementation, March 29-31, 2004, San Fran-
cisco, California, USA, Proceedings, pages 211–224, 2004.

[174] Chunqiang Tang, Zhichen Xu, and Sandhya Dwarkadas. Peer-
to-peer information retrieval using self-organizing semantic
overlay networks. In SIGCOMM ’03: Proceedings of the 2003
conference on Applications, technologies, architectures, and
protocols for computer communications, pages 175–186, New
York, NY, USA, 2003. ACM Press. ISBN 1-58113-735-4.

[175] Pastry Project Team. FreePastry, 2006. URL http://

freepastry.rice.edu/FreePastry. [Online; accessed 12-
November-2006].

[176] Jeffrey K. Uhlmann. Satisfying General Proximity/Similarity
Queries with Metric Trees. Information Processing Letters, 40
(4):175–179, 1991.

[177] Enrique Vidal. An algorithm for finding nearest neighbours in
(approximately) constant average time. Pattern Recognition
Letters, 4(3):145–157, 1986. ISSN 0167-8655.

[178] Enrique Vidal. New formulation and improvements of the
nearest-neighbour approximating and eliminating search al-
gorithm (AESA). Pattern Recogn. Lett., 15(1):1–7, 1994.
ISSN 0167-8655.

http://freepastry.rice.edu/FreePastry
http://freepastry.rice.edu/FreePastry

172 BIBLIOGRAPHY

[179] Radek Vingralek, Yuri Breitbart, and Gerhard Weikum. Dis-
tributed file organization with scalable cost/performance. In
SIGMOD ’94: Proceedings of the 1994 ACM SIGMOD inter-
national conference on Management of data, pages 253–264,
New York, NY, USA, 1994. ACM Press. ISBN 0-89791-639-5.

[180] Radek Vingralek, Yuri Breitbart, and Gerhard Weikum.
Snowball: Scalable Storage on Networks of Workstations with
Balanced Load. Distrib. Parallel Databases, 6(2):117–156,
1998. ISSN 0926-8782.

[181] Klaus Wehrle, Stefan Gtz, and Simon Rieche. Distributed
Hash Tables. In Peer-to-Peer Systems and Applications, vol-
ume 3485 of Lecture Notes in Computer Science, chapter 7,
pages 79–93. Springer-Verlag Berlin Heidelberg, 2005.

[182] Klaus Wehrle, Stefan Gtz, and Simon Rieche. Selected DHT
Algorithms. In Peer-to-Peer Systems and Applications, vol-
ume 3485 of Lecture Notes in Computer Science, chapter 8,
pages 95–117. Springer-Verlag Berlin Heidelberg, 2005.

[183] Klaus Wehrle and Ralf Steinmetz. Introduction. In Peer-to-
Peer Systems and Applications, volume 3485 of Lecture Notes
in Computer Science, chapter 1, pages 1–5. Springer-Verlag
Berlin Heidelberg, 2005.

[184] Wikipedia. Kademlia — Wikipedia, The Free Encyclope-
dia, 2007. URL http://en.wikipedia.org/w/index.php?

title=Kademlia. [Online; accessed 9-January-2007].

[185] Wikipedia. Napster Network — Wikipedia, The Free Ency-
clopedia, 2007. URL http://en.wikipedia.org/w/index.

php?title=Napster&oldid=97795564. [Online; accessed 8-
January-2007].

[186] Wikipedia. Peer-to-peer — Wikipedia, The Free Encyclope-
dia, 2007. URL http://en.wikipedia.org/w/index.php?

title=Peer-to-peer&oldid=99127751. [Online; accessed 8-
January-2007].

http://en.wikipedia.org/w/index.php?title=Kademlia
http://en.wikipedia.org/w/index.php?title=Kademlia
http://en.wikipedia.org/w/index.php?title=Napster&oldid=97795564
http://en.wikipedia.org/w/index.php?title=Napster&oldid=97795564
http://en.wikipedia.org/w/index.php?title=Peer-to-peer&oldid=99127751
http://en.wikipedia.org/w/index.php?title=Peer-to-peer&oldid=99127751

BIBLIOGRAPHY 173

[187] Wikipedia. Wikipedia — Wikipedia, The Free Encyclope-
dia, 2007. URL http://en.wikipedia.org/w/index.php?

title=Wikipedia&oldid=99305653. [Online; accessed 8-
January-2007].

[188] Peter N. Yianilos. Data structures and algorithms for near-
est neighbor search in general metric spaces. In SODA ’93:
Proceedings of the fourth annual ACM-SIAM Symposium on
Discrete algorithms, pages 311–321, Philadelphia, PA, USA,
1993. Society for Industrial and Applied Mathematics. ISBN
0-89871-313-7.

[189] Peter N. Yianilos. Excluded middle vantage point forests for
nearest neighbor search. Technical report, NEC Research In-
stitute, Princeton, NJ, July 1999. Presented at the Sixth DI-
MACS Implementation Challenge: Near Neighbor Searches
workshop, January 15, 1999.

[190] Cui Yu, Beng Chin Ooi, Kian-Lee Tan, and H. V. Jagadish.
Indexing the Distance: An Efficient Method to KNN Pro-
cessing. In VLDB ’01: Proceedings of the 27th International
Conference on Very Large Data Bases, pages 421–430. Mor-
gan Kaufmann Publishers Inc., 2001.

[191] Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and
Michal Batko. Similarity Search. The Metric Space Approach,
volume 32 of Advances in Database Systems. Springer Science
+ Business Media, Inc., 233 Spring Street, New York, NY
10013, USA, 2006. ISBN 0387291466.

[192] Jiangong Zhang and T. Suel. Efficient Query Evaluation on
Large Textual Collections in a Peer-to-Peer Environment. In
Peer-to-Peer Computing, 2005. P2P 2005. Fifth IEEE Inter-
national Conference on, pages 225–233, 2005.

[193] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph.
Tapestry: An Infrastructure for Fault-tolerant Wide-area Lo-
cation and Routing. Technical Report UCB//CSD-01-1141,

http://en.wikipedia.org/w/index.php?title=Wikipedia&oldid=99305653
http://en.wikipedia.org/w/index.php?title=Wikipedia&oldid=99305653

174 BIBLIOGRAPHY

University of California Berkeley, Electrical Engineering and
Computer Science Department, Berkeley, CA, USA, April
2001.

[194] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph.
Tapestry: a fault-tolerant wide-area application infrastruc-
ture. SIGCOMM Comput. Commun. Rev., 32(1):81–81, 2002.
ISSN 0146-4833.

[195] Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph,
Randy H. Katz, and John D. Kubiatowicz. Bayeux: an ar-
chitecture for scalable and fault-tolerant wide-area data dis-
semination. In NOSSDAV ’01: Proceedings of the 11th inter-
national workshop on Network and operating systems support
for digital audio and video, pages 11–20, New York, NY, USA,
2001. ACM Press. ISBN 1-58113-370-7.

[196] M. Tamer zsu and Patrick Valduriez. Distributed and parallel
database systems. ACM Computing Surveys (CSUR), 28(1):
125–128, 1996. ISSN 0360-0300.

Index

A0, 6
µTorrent, 44
kNN, see Nearest Neighbor query
1-hop route check, 69
1-hop volume check, 66
1-lookahead approach, 47

ad hoc communities, 19
Address Search Tree, 53
adjacent, see zone, adjacent
AESA, 13
aMule, 43
application-level multicast, 42, 49,

74
AST, see Adress Search Tree53
Azureus, 44

ball partitioning, 12, 52
Bayeux, 42, 74
Bisector Tree, 12
BitSpirit, 44
BitTorrent, 44
BKT, see Burkhard-Keller Tree
Bloom Circle Threshold Algorithm,

50
Bloom Petal Threshold Algorithm,

50
bootstrap, 66
BST, see Bisector Tree
Burkhard-Keller Tree, 12

caching, 70

CAN, 50, 52, 63–75
CASIP, 75
Chimera, 42
Chord, 36–39, 44, 50, 52
complex queries, 49
complex similarity queries, 5
Content-Addressable Network, see

CAN
contraction, see mapping, contrac-

tion, 78

D-Index, 13
decentralized

resource usage, 21
self-organization, 22

DHT, see Distributed Hash Table,
25, 30, 143

dimensionality curse, 2
direct storage, 33
distance, 7

L1, 9
asymmetric, 8
browsing, 6
chessboard, see distance, L∞
City-Block, see distance, L1

Euclidean, 9, 10
Hausdorff, 11
Levenshtein, see distance, edit
Manhattan, see distance, L1

maximum, see distance, L∞
metric, see metric distance

175

176 INDEX

quadratic form, 10
distance, edit, 10
distance, tree edit, 11
distributed

system, 20
systems, 21

Distributed Hash Table, 15, 50, 63
distributed indexing, 25
Distributed Linear Hashing, 18
Distributed Random Tree, 18
Distributed Threshold Algorithm,

50
DRT, see Distributed Random Tree
dynamic hashing, 18

edit distance, see distance, edit, 98
eDonkey2000, 43
email, 41
eMule, 43
ePost, 41
exact match, 4, 51
Excluded middle Vantage Point For-

est, 12

Fixed Queries Array, 12
Fixed Queries Tree, 12
FQA, see Fixed Queries Array
FQT, see Fixed Queries Tree
Freenet, 24
FreePastry, 41
function

pseudo-metric, 8
quasi-metric, 8
super-metric, 8
ultra-metric, 8

generalized hyperplane partitioning,
12, 52

Generalized Hyperplane Tree, 12,
54

Geometric Near-neighbor Access Tree,
13

GHT, see Generalized Hyperplane
Tree

GHT∗, 53–57
GNAT, see Geometric Near-neighbor

Access Tree
Gnutella, 20, 24, 28
Google

Image Labeler, xv
Image Search, xv

Grid computing, 19, 59, 60

hot-spot, 17, 70

Image Adjustment Messages, 17
Incremental Nearest Neighbor, 6
incremental selection technique, 79
incremental similarity search, 6
infromation retrieval, 50
INN, see Incremental Nearest Neigh-

bor
inverted lists, 50

JXTA, 24

k-RP*S, 18
Kad, 43
KadC, 43
Kademlia, 43–44, 46
Kazaa, 20
Khashmir, 44
KLEE, 52
KTorrent, 44

LAESA, see Linear AESA, 81
latent semantic indexing, 50
leaf set, 40
Levenshtein distance, see distance,

edit

INDEX 177

LH*, see Distributed Linear Hash-
ing

LH*s, 18
Linear AESA, 13
linear hashing, 18
load balancing, 31, 49, 70
lookup problem, 25

M-CAN, 70–74
M-Chord, 52, 57–59
M-tree, 6, 13
Mainline, 44
mapping

contraction, 78
function, 78
nonexpansive, 78
strict contraction, 78

mapping function, 78
MCAN, 77–94
membership protocol, 43
metric, 7

distance, 7
distance measures, 9
function, 7
space, 7–9

Metric Content-Addressable Network,
see MCAN

MINERVA, 49
Minkowski distance, 9
MLDonkey, 43
Multi Vantage Point Tree, 13
multicast, 49
MVPT, see Multi Vantage Point

Tree

Napster, 19, 21, 24, 27
Nearest Neighbor query, 4, 6, 51,

81, 88
NeP4B, xviii

Netscape, 18
network proximity metric, 40
nonexpansive, see mapping, nonex-

pansive

OceanStore, 42
OpenDHT Project, 33
overlay network, see distributed sys-

tem, 25
overlay system, see distributed sys-

tem, 25
Overnet, 43

P-Grid, 19, 51
P2P, see Peer-to-Peer
P2PR-tree, 52
partition tree, 65
Pastry, 39–42, 74
peer, 24
Peer-to-Peer, 19–61

first generation, 26
flooding, 25
hybrid, 25
pure, 24
second generation, 26
server-based, 22, 25
structured, 25, 26, 29
system, 20
unstructured, 26–29, 50

pivot, 12, 54, 55, 58, 77, 78
filtering, see pivoted filtering
selection, 79

pivoted filtering, 80
point query, see exact match
prefix routing scheme, 51
proactive recovery mechanisms, 34
pSearch, 50

quadratic form distance, see dis-
tance, quadratic form

178 INDEX

random graphs, 51
range partitioning, 39
range query, 4, 39, 51
replication, 70
RevConnect, 43
routing, 32

algorithm, 32
metric, 32
table, 43

RP*, 18
RQ, see range query

SAPIR, xvii
SAT, see Spatial Approx. Tree
Scalable and Distributed Data Struc-

ture, 15–19
SCRAP, 39
SCRIBE, 74
Scribe, 41
SDDS, see Scalable and Distributed

Data Structure
search

problem, 3
self-organization, 22, 50
self-organizing

system, 20
servent, 24
home, 19
SHA-1, 31
similarity, 1, 2

algebra with weights, 6
approximate search, 12
query, 3–7
search, xiv, 1–3

Similarity Hashing, 13
Simple Algorithm, 50
Simple Bloom Petal Algorithm, 50
SIP, 75
small-world

access methods, 51
network, 51
phenomenon, 51

space-filling curves, 39
Spaghettis, 13, 81
Spatial Approximation Tree, 13
spatial index, 52
strict contraction, see mapping, Strict

contraction
superpeers, 24
surrogate routing, 42
SWAM-V, 51
Symphony, 38, 46–47

takeover node, 69
Tapestry, 41–42, 74
threshold algorithm, 50
Time to Live, 28
Topology-Aware Routing, 49
tree edit distance, see distance, tree

edit
tree-based application level multi-

cast, 74
TTL, see Time to Live

Vantage Point Tree, see VPT
Viceroy, 38, 47–49
VID, see virtual identifier, see vr-

tual identified65
virtual identifier, 65
VoIP, 75
Voronoi, 52
VPT, 12, 54
VPT∗, 53–57

XML, 11
XOR metric, 44

Yahoo
Image Search, xv

INDEX 179

Z-Ring, 42–43
zone, 63

adjacent, 63

	Abstract
	Acknowledgments
	Table of Contents
	Introduction
	Similarity Search
	Statement of the Problem
	Purpose of the Study
	Significance of the Study
	Limitations of the Study
	Summary

	The Similarity Search Problem
	Similarity Search
	Similarity Queries
	Range Query
	Nearest Neighbor Query
	Combinations of Queries
	Complex Similarity Queries

	Metric Spaces
	Metric Distance Measures

	Access Methods for Metric Spaces
	Ball Partitioning
	Generalized Hyperplane Partitioning
	Exploiting Pre-Computed Distances
	Hybrid Indexing Approaches

	Distributed Indexes
	Scalable and Distr. Data Structures
	Peer-to-Peer Systems
	Characterization
	The lookup problem

	Unstructured Peer-to-Peer Systems
	Structured Peer-to-Peer Systems
	Introduction to DHTs
	Chord
	Pastry
	Tapestry
	Chimera
	Z-Ring
	Content Addressable Network CAN
	Kademlia
	Symphony
	Viceroy
	DHTs Comparison
	DHTs Related Works
	P-Grid
	Small-World and Scale-Free
	Other Works

	Metric Peer-to-Peer Structures
	GHT* and VPT*
	M-Chord

	Peer-to-Peer and Grid Computing

	Content-Addressable Network (CAN)
	Node arrivals
	Finding a Zone
	Joining the Routing

	Routing
	Node departures
	Load Balancing
	M-CAN: CAN-based Multicast
	CAN Related Works

	MCAN
	Mapping
	Pivot Selection

	Filtering
	Regions
	Construction
	Insert
	Split
	Execution End Detection
	Range Query
	Nearest Neighbor query

	MCAN Evaluation
	Dimensionality of the Mapped Space
	Range query
	Nearest Neighbor query
	Number of peers involved in query execution
	Total number of distance computations
	Parallel cost of kNN
	Candidate results

	MCAN Comparison with other structures
	Experiments Settings
	Measurements
	Scalability with Respect to the Size of the Query
	Scalability with Respect to the Size of Datasets
	Number of Simultaneous Queries
	Comparison Summary

	Conclusions
	Research Directions

	Bibliography
	Index

