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“The mere formulation of a problem is far more essential than its solution,
which may be merely a matter of mathematical or experimental skill. To

raise new questions, new possibilities, to regard old problems from a new
angle requires creative imagination and marks real advances in science.”

Albert Einstein
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Summary

THE millions of images shared every day on social media is just a tip of the iceberg of the current
phenomenon of visual data explosion, which places a great demand on scalable Content-Based
Image Retrieval (CBIR) systems. CBIR allows organizing and searching image collections on

the basis of image visual contents, that is without using text or other metadata. The problem of content-
based search is addressed in this thesis by investigating and proposing efficient and effective methods
that support three fundamental stages of a CBIR system, namely the numerical representation of the
image visual content (feature extraction), the processing/indexing of the image features, and the query-
by-example search.

Concerning the image representation we investigate and experimentally compare Convolutional Neu-
ral Network (CNN) features, methods for aggregating local features, and their combination. We show
that very high effectiveness is achieved combining CNN features and aggregation methods; moreover,
in order to improve the efficiency we investigate the use of the aggregation methods on the top of binary
local features. In particular, we propose the BMM-FV which allows encoding a set of binary vectors
into a single descriptor. An extensive experimental evaluation on benchmark datasets shows that our
BMM-FV outperforms other methods for aggregating binary local features and achieves high retrieval
performance when combined with the CNN features.

Secondly, we propose an efficient and effective technique, called Deep Permutation, to index deep
features (such as CNN features) using a permutation-based approach. Moreover, we propose the Block-
wise Surrogate Text Representation to represent and index compound metric objects, including the
VLAD image descriptors, using off-the-shelf text search engine.

Finally, we address the image search task in the general context of similarity search in metric space,
which is a framework suitable for a large number of applications and data types. Most metric indexing
and searching mechanisms rely on the triangle inequality, which allows deriving bounds on the distance
between data objects. The distance bounds are used to efficiently exclude partition of the data that do
not contain solutions to a given query. We reread foundations of metric search from a geometrical point
of view starting from the observation that the triangle inequality is equivalent to a discrete geometric
condition defined in term of finite isometric embeddings into Euclidean spaces. We show that there exists
a large class of metric spaces, the supermetric ones, meeting the four-point property that is a property
stronger than the triangle inequality. Moreover, we show that many supermetric spaces commonly used
in applications have a further property called n-point property. The main outcome of our study is showing
how these geometric properties can be used to improve the similarity search in supermetric spaces by 1)
deriving distance bounds that are tighter than that relied on the triangle inequality and, thus, allowing
better space pruning; 2) defining novel partitioning and indexing mechanisms; 3) proposing a promising
approach to embed a supermetric space into a finite-dimensional Euclidean space, which turns out to
have implications not only in the similarity search context but also in other applicative tasks such, as the
dimensionality reduction. We prove the validity of our approaches both theoretically and experimentally.

III
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Sommario

LA dilagante diffusione di fotocamere digitali, come quelle integrate in cellulari e tablet, e la disponi-
bilità di numerosi sistemi di archiviazione tramite Internet favoriscono oggigiorno una massiccia
produzione di contenuti multimediali, ponendo al contempo il problema della gestione di grandi

archivi visuali. Inoltre, il trend seguito dagli utenti dei social media, abituati a scattare e condividere
le proprie foto senza descriverne propriamente il contenuto, rispecchia la diffusa mancanza di metadati
associati alle immagini. Tali fattori hanno reso opportuno lo studio e lo sviluppo di sistemi di Content
Based Image Retrieval (CBIR), ossia sistemi capaci di archiviare e reperire le immagini utilizzandone il
loro “contenuto visivo”. In questa tesi, il problema della ricerca per similarità visuale viene affrontato
analizzando e proponendo algoritmi efficaci ed efficienti a supporto di tre fasi fondamentali di un qual-
siasi sistema CBIR, ossia: 1) la scelta di un’opportuna rappresentazione matematica del contenuto delle
immagini (estrazione di feature); 2) l’elaborazione e l’indicizzazione di tali rappresentazioni; 3) la fase
di ricerca data un’immagine come query.

Come primo contributo, la tesi presenta un’estensiva analisi di varie tecniche per la rappresentazione
delle immagini, quali le Convolutional Neural Network (CNN) feature e le tecniche di aggregazione di
feature locali di immagini (come BoW, VLAD e FV). I risultati sperimentali, mostrano che è possibile
ottenere un’elevata efficacia combinando le CNN feature con le tecniche di aggregazione. Al fine di
raggiungere migliori performance in termini di efficienza, è stato investigato anche l’uso di tecniche di
aggregazione di feature binarie, che rispetto alle feature non-binarie hanno una minore occupazione di
memoria e sono fino a due ordini di grandezza più veloci da calcolare. In particolare, è stata proposta la
tecnica BMM-FV che consente si aggregare un insieme di vettori binari in un unico descrittore. Un’ap-
profondita analisi sperimentale effettuata su dataset di benchmark ha mostrato come le performance dei
BMM-FV siano migliori rispetto a quelle di altre aggregazioni di feature locali binarie precedentemente
proposte in letteratura; inoltre, la combinazione di CNN feature con il BMM-FV ha ottenuto un’elevata
efficacia, comparabile a quella raggiunta combinato le CNN feature con le più costose aggregazioni di
feature non-binarie.

La seconda parte della tesi è dedicata a tecniche di elaborazione ed indicizzazione dei descrittori
estratti dalle immagini. In questo contesto, è stato proposto un metodo per l’indicizzazione di descrittori
“a blocchi” (come ad esempio il VLAD) che, utilizzando tecniche legate al Permutation-Based Indexing,
permette di trasformare il descrittore iniziale in una “codifica testuale” detta Blockwise Surrogate Text
Representation (BSTR). Il vantaggio della codifica BSTR è quello di rendere scalabile la ricerca per
similarità visuale attraverso metodologie di indicizzazione e di ricerca tipicamente utilizzati per il testo
(come l’uso delle liste invertite), dando quindi la possibilità di utilizzare librerie e software largamente
diffusi (come Apache Lucene). Inoltre, è stata proposta una tecnica, detta Deep Peurmuations, per la
rappresentazione e l’indicizzazione delle emergenti deep feature. La tecnica proposta permette di as-
sociare a ciascuna deep feature una permutazione da indicizzazione successivamente tramite tecniche
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basate sulle permutazioni. L’approccio proposto ha mostrato vantaggi sia in termini di efficienza che di
efficacia.

Infine, la tesi affronta il problema della ricerca per similarità visuale nel contesto generale della ri-
cerca per similarità in spazi metrici. La maggior parte dei meccanismi di indicizzazione e ricerca metrica
definiti in letteratura utilizzano la disuguaglianza triangolare per derivare limiti (bound) sulla distanza
tra la query e gli oggetti del dataset al fine di ridurre il numero di distanze calcolate nella fase di ricer-
ca. Infatti, i bound sulla distanza possono essere usati per includere o escludere alcune partizioni del
dataset che, rispettivamente, contengono o non contengono soluzioni per una determinata query (space
pruning). Lo studio presentato in questa tesi mostra come alcuni fondamenti della teoria sulla ricerca
in spazi metrici possano essere riletti in termini geometrici, utilizzando immersioni isometriche finite in
spazi Euclidei. In particolare è stata analizzata la classe degli spazi supermetrici che hanno una proprietà
geometrica più forte della disuguaglianza triangolare, detta proprietà dei quatto punti. È stato inoltre
dimostrato che molti degli spazi supermetrici comunemente usati in letteratura o nelle applicazioni, sod-
disfano anche la proprietà degli n punti, definita in termini di immersioni isometriche in spazi Euclidei
n-dimensionali. Il risultato principale dello studio presentato è stato dimostrare come queste proprietà
possano essere utilizzate per migliorare la ricerca per similarità negli spazi supermetrici. Tale migliora-
mento è stato ottenuto 1) derivando bound sulle distanze che sono più restrittivi di quelli ottenuti usando
la disuguaglianza triangolare, e che quindi permettendo un migliore pruning dello spazio di ricerca; 2)
definendo nuovi meccanismi di partizionamento e di indicizzazione; 3) proponendo un innovativo ap-
proccio per l’immersione di uno spazio supermetrico in uno spazio Euclideo finito-dimensionale, il quale
ha mostrato di avere importanti risvolti non solo nel contesto della ricerca per similarità, ma anche in
altri contesti applicativi quali la riduzione di dimensionalità dei dati. Le tecniche proposte sono state
analizzate e validate sia teoricamente che sperimentalmente.
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CHAPTER1
Introduction

People seeing this page for the first time are likely to have a look at the picture at the end of the page
before starting to read this paragraph. The reason is that our brain reacts differently to visual stimuli than
written words. Moreover, it processes visual contents much faster than texts. That is why images have
always been one the most effective ways of communicating ideas and sharing knowledge. Cave painting,
figurative art, photos, and digital images all share a common power: they are able to grab our attention
easily, fast delivery a message, make it possible to transcend language barriers and communicate with
people of different country and culture. Nowadays, millions of images are shared daily on social media.
For example, just Instagram, which currently has 715 million active users and a total of 34.7 billion
shared images, registers an average of 52 million photo uploads every day [11].

Ubiquitous digital cameras, easy Internet access, and new storage technologies have led to an ex-
plosion of digital visual data. However, most of these data are poorly annotated or not annotated at all,
which places a great demand on scalable Content-Based Image Retrieval (CBIR) systems. CBIR aims to

Figure 1.1: Human mind processes images much faster than texts
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Chapter 1. Introduction

Figure 1.2: Overview of a generic visual information retrieval system.

organize and search digital collections of images on the basis of their visual contents, i.e without using
text or other metadata, but analysing the images. So, they offer a promising way for searching visual
archives like “using a picture as query”, which perhaps is the easiest way for a user to obtain information
about a visible object/instance of interest. This search paradigm meets the needs of several applications.
For example, the Museum Mobile Guide (MMG) of the Pinacoteca di Brera [7] is a free mobile app
used for searches based on pictures taken by handheld devices: a user can point his/her mobile phone
camera at a painting, or any artwork of the gallery; if the MMG finds it in its database it will provide the
user with the description of the photographed object, also given the possibility to listen to an audio-guide
message.

The content-based search is a challenging task: as the old saying goes, a picture is worth a thousand
words, but how automatically identifies some of these “words” from a simple array of pixel intensities?
How to manage and compare images in order to find data with similar contents? Zhou et al. [277]
in their recent survey on CBIR state that “technically speaking, there are three key issues in content-
based image retrieval: image representation, image organization, and image similarity measurement”.
In this thesis, we focus on all these three key aspects, exemplified in Figure 1.2. Firstly, images need
to be represented by descriptors that capture some distinctive image characteristics (features). Those
descriptors usually lie in metric space, where it is possible to use a distance function for the image
comparison, or more generally, in a space where a function asserting the (dis-)similarity of two image
descriptors is defined. The image features are then managed and stored in a database so that, given an
image as a query, the system searches for the database objects whose features are the most similar to the
query ones. This is only the skeleton of a visual information retrieval system, which typically involves
other important aspects such as visualizations, clusterings, and relevance feedbacks, to name but a few.
Moreover, a further key aspect to develop retrieval systems able to operate on a large scale is using ad
hoc indexing and searching algorithms, like those investigated in the last two decades in the field of
similarity search [271].

Image retrieval on a large scale has to address at the same time two old and ever-present issues:
efficiency and effectiveness, which can be described as follows.

Efficiency: Search results should be obtained quickly (ideally in real time), with low computational and
storage costs.

Effectiveness: Search results should be pertinent to the submitted queries in order to satisfy the users’
expectations.

Moreover, the used algorithm should be scalable in order to handle increasing volume of data. The
performance of a CBIR system is determined by the adopted image features, indexing and searching

2
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methods, while the trade-off between efficiency and effectiveness highly depends on the applicative
scenario and the available resources. For example, a system running on a mobile device requires efficient
solutions (real-time response and low memory occupation), eventually at the expense of a degradation in
the quality of the results. In other cases, the effectiveness of the overall retrieval system may be the main
concern.

Thesis Objectives and Contributions The research presented in this thesis has been carried out during
the three-year period of the PhD Program (2014-2017). Our focus has been on investigating new ways
for an efficient and effective content-based image retrieval. In particular, we have stated the following
objectives.

(a) Investigate and propose efficient and effective image descriptors

(b) Improve descriptor processing for efficient indexing

(c) Propose efficient approaches to perform image search or, more generally, similarity search

In compliance with the objectives specified above, our main contributions are:

• Filling a knowledge gap in evaluating the effectiveness of aggregations of binary local features
[obj. (a)]: During the last decades, various local features have been proposed and used to support
CBIR and object recognition tasks. Local features, like SIFT [173], allow effectively matching
local structures between images, but thousands of local features are usually extracted from each
image. Therefore the cost of extracting and pairwise comparing local descriptors becomes a bot-
tleneck when mobile devices and/or large database are used. On one hand, the cost for extracting,
representing, and comparing local visual descriptors has been dramatically reduced by recently
proposed binary local features, e.g. ORB [221]. On the other hand, state-of-the-art aggregation
techniques (e.g. BoW [233], VLAD [143], and Fisher Vector (FV) [208]) provide effective sum-
maries of all the extracted features of an image into a single descriptor, allowing to speed up and
scale up the image search. Only a few works have recently mixed together these two research
directions, defining aggregation methods for binary local features. Even so, to the best of our
knowledge, those approaches have never been systematically evaluated and compared before our
study: in Chapter 3 we provide a comparative analysis of aggregations of binary local features on
benchmarks for image retrieval.

• Deriving a new encoding schema to aggregate binary features, named BMM-FV [obj. (a)]: The
FV [208] is an encoding scheme that has attracted much attention thank to its effectiveness in
both image classification and image search. The FV uses a “probabilistic visual vocabulary” to
transform an incoming set of descriptors into a fixed-sized vector representation. The Gaussian
Mixture Model is originally used to model the descriptors. In Chapter 3 and Appendix A, we
mathematically derive a formulation of the FV, named BMM-FV, that uses a Bernoulli Mixture
model in order to encode binary vectors. We experimentally show that the proposed BMM-FV
outperforms other state-of-the-art methods for aggregating binary local features.

• Investigating the combination of aggregations of local features and Convolutional Neural Net-
work (CNN) features [obj. (a)]: Recently, features extracted using deep learning approaches [161]
have brought about breakthroughs in processing multimedia contents. In particular, the CNN fea-
tures [217] have achieved very high effectiveness in various vision and retrieval tasks. When
compared with local features, like SIFTs, the CNN features show complementary behaviour un-
der some image transformations. This motivated researchers to explore the combination of deep
learning features with other local feature-based descriptors. In Chapter 3 we perform an extensive
experimental evaluation of the combinations of encodings of local features and CNN features for
visual recognition and retrieval tasks.

• Proposing novel approaches to process some common image descriptors for efficient and effec-
tive indexing [obj. (b)]: In the realm of similarity search, many metric indexing techniques are
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Chapter 1. Introduction

available, notable including permutation-based indexing. All these techniques share a fundamen-
tal aspect: they are flexible data structure able to deal with a wide spectrum of applications and
data objects. The extensibility is a key element of metric indexes, however, when the domain of
application is fixed (e.g. indexing specific image features) it is possible to pre-process the data
objects before indexing them in order to obtain better performance or use an off-the-shelf search
engine. In Chapter 4, we propose a blockwise permutation representation that allows to effectively
index the Vector of Locally Aggregation Descriptors (VLAD) [143] (or other blockwise) descrip-
tors by using conventional text search engine. In the same chapter, we also present a very efficient
and effective approach for representing emerging deep CNN features as permutations, called Deep
Permutations, to be then indexed with permutation-based methods.

• Investigating supermetric search and proposing a novel pruning rule, called Hilbert Exclusion
[obj. (c)]: Metric search is concerned with the efficient evaluation of queries in metric space,
where the distance computation is the only operation available to compare two objects. In general,
a set of data is processed and partitioned in such a way that, when a further object is presented as a
query, those objects closer to the query can be efficiently found. Most mechanisms use the triangle
inequality of the metric governing the space to avoid unnecessary distance calculation, e.g. deter-
mine subsets of the data that do not need to be exhaustively checked. In Chapter 5 we examine the
class of supermetric spaces that have a stronger property, called four-point property that allows
isometrically embedding any 4 points of the space into a 3D Euclidean space. This property gives
stronger geometric guarantees, and one in particular, which we name the Hilbert Exclusion prop-
erty, allows any indexing mechanism which uses hyperplane partitioning to perform better. One
outcome of this observation is that a number of state-of-the-art indexing mechanisms over super-
metric spaces can be easily refined to give a significant increase in performance; furthermore, the
improvement given is greater in higher dimensions. This, therefore, leads to a significant improve-
ment in the cost of metric search in these spaces. Moreover, we show how the four-point property
can be used to derive bounds on the actual distance and define novel partitioning approaches that
are possible only on supermetric spaces. To this respect, we define a novel indexing structure (the
Linear Regression tree) for supermetric spaces, as an example of the new area of investigation
opened up by our research.

• Proposing the n-Simplex projection [obj. (b)-(c)]: Many common metric spaces, including the
ones with Euclidean, Cosine, Jensen-Shannon, and Quadratic form distances, meet the n-point
property that allows isometrically embedding any n points of the space into a (n−1)-dimensional
Euclidean space. In Chapter 5 we show that for these spaces it is possible to project all the data
objects into a finite-dimensional Euclidean space by building some simplexes whose edge lengths
corresponds to the distance among a set of reference objects. This projection is particularly useful
when the size of the data is large or the original distance is very expensive (like the Jensen-Shannon
distance) since it allows transforming the data in a finite-dimensional Euclidean space by using the
distance of each data object from a set of n reference objects. Moreover, in the projected space
we derive distance upper and lower bounds that converge to the original distance as the number of
dimensions n becomes higher. Thanks to this property our n-Simplex projection shows promising
results for either metric indexing and dimensionality reduction tasks.

Outline of the Thesis

The structure of this thesis is summarized in Figure 1.3. Chapter 2 embraces background and literature
review of CBIR and similarity search in metric spaces. It also provides an introduction to Deep Learning
and CNN. In Chapter 3, we evaluate the state-of-the-art aggregations of local features, the CNN features
and their combinations for visual recognition. In particular, we perform a thoughtful comparison of
these techniques for recognizing ancient inscriptions, such as Latin and Greek epigraphs, and other
objects related to cultural heritage. Then, we investigate the possibility of aggregate binary local features,
and we propose our BMM-FV encoding. We then perform a complete comparison among the state-
of-the-art aggregation methods applied to binary local features. The mathematical derivation of the
BMM-FV is reported in Appendix A. Chapter 4 explores new solutions to process VLAD and CNN
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Appendix A.
BMM-FV Computation

1. Introduction

2. Background

6. Conclusions 

3. Efficient and Effective 
Image Features

4. Features Processing for 
Efficient Indexing

5. Improving Supermetric
Search through Finite 
Isometric Embeddingsa b c b

Figure 1.3: Visualization of the thesis structure indicating where the main dissertation objectives (points
(a), (b), and (c)) are addressed.

features before indexing them with permutation-based approaches. We evaluate the performance of the
proposed approach by a series of experiments. In Chapter 5 we focus on metric search and indexing:
we investigate properties deriving from finite isometric embeddings of a metric space into Euclidean
spaces, and we show how these proprieties can be used to perform space pruning, exact search and
dimensionality reduction. Chapter 6 summarizes our achievements and suggests some future research
directions.
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CHAPTER2
Background

Contributions presented in this thesis are all related to Content-Based Image Retrieval and Similarity
Search. This chapter reviews key concepts as well as many works related to these research fields. It
is organized as follows. Content-Based Image Retrieval is introduced in Section 2.1. Then Section 2.2
focuses on image representations for content-based search. Section 2.3 gives a brief overview of recent
deep learning approaches and then focuses on Convolutional Neural Networks. Section 2.4 moves to
similarity search with a particular focus on metric search and indexing. Finally, Section 2.5 describes
datasets used in this thesis.

In Table 2.1 we outline where the various topics serve as a background to the rest of this thesis.1

2.1 Content-Based Image Retrieval

Content-Based Image Retrieval (CBIR) embraces any technology that allows systems to organize archives
containing digital pictures so that they can be searched and retrieved by using their visual content [84].
So, “content-based” means that the search is performed without using text, tags or other metadata asso-
ciated with the images but rather analysing the images themselves. This implies that any image can be
used as a query (query-by-example) and that the retrieval system is expected to returns “similar” database
images. This search paradigm lends itself to explore collections of untagged or poorly annotated images,
which are nowadays rapidly increasing due to widespread access to digital cameras and the Web.

The content-based search is based on extracting pieces of information from the images, which we
call features, and on organizing and comparing images on the basis of these features. The request is
that images with similar contents are described by features that are mathematically similar. However,
teaching systems to automatically extract meaningful information form what is just a grid of coloured
pixel is a challenging task, principally due to the semantic [236] and intention [272] gaps. The semantic
gap refers to the discrepancy between the limited descriptive power of image features and the richness
of high-level semantic concepts that a user can naturally identify in an image. The intention gap is
even more subtle since it originates from the polysemy of images and the difficulty that a user suffers to
precisely express his/her search intent by a query at hand. Users who submit an image such as the one in

1We hope this helps the reader to skip sections that would not extend his/her knowledge or that are not related to a chapter of
interest.

7



“main” — 2018/5/6 — 19:17 — page 8 — #34i
i

i
i

i
i

i
i
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Table 2.1: Structure of this chapter, indicating where the various topics serves as a foundation for
subsequent chapters.

Sections Topics and Reference Notes

2.1 Content-Based Image Retrieval Introduction to CBIR and to some popular performance measures,
including those used in the experiments of Chapters 3 and 4.2.1.1 Retrieval Performance Measures

2.2 Image representations
Brief overview of techniques for representing image visual content.
Some local features (SIFT, ORB, LATCH, A-KAZE) and
aggregations of local features (BoW, VLAD, FV) are presented.
SIFTs are used in experiments of Sections 3.1 and 4.1.
The ORB, LATCH, and A-KAZE binary features are used in
Section 3.2.
BoW, VLAD and FV are used in Chapter 3. Moreover, VLAD is
used in Section 4.1 and FV serves as a basis for Appendix A.

2.2.1 Local Features
2.2.1.1 SIFT
2.2.1.2 Binary Local Features

2.2.2 Aggregations of Local Features
2.2.2.1 Bag-of-Words
2.2.2.2 VLAD
2.2.2.3 Fisher Vector

2.3 Deep Learning Introduction to deep learning and recently proposed deep features.
CNN are then described.
CNN features are used in Chapter 3 and in Section 4.2.

2.3.1 Deep Neural Networks and Deep Features
2.3.2 Convolutional Neural Networks

2.4 Similarity Search
Introduction to the similarity search problem and metric search.
Basic notions of metric space and normed metric space are provided,
as well as popular metric functions (including Euclidean, Hamming,
Cosine, Jensen-Shannon and Triangular distances), and similarity
queries (range and nearest neighbour search).
Euclidean, Hamming, Cosine distances and the similarity queries are
used practically in the whole thesis. Jensen-Shannon and Triangular
distances are used in Chapter 5.

2.4.1 Metric Space
2.4.1.1 Distance Measures

2.4.2 Intrinsic Dimensionality
2.4.4 Similarity Queries

2.4.4.1 Range Query
2.4.4.2 Nearest Neighbour Query

2.4.3 Efficiency Measures for Exact Search
2.4.5 Space Partitioning

Overview of space partitioning techniques that are typically uses by
metric indexes (including those later described in Section 2.4.7).
State-of-the-art pruning strategies are then reported, which are
fundamental for excluding regions of the search space in order to
reduce the cost of a query evaluation. The Hyperbolic Exclusion
(corollary of the double-pivot distance contains) is of particular
interest for Chapter 5 where we define a similar exclusion
condition.

2.4.5.1 Ball Partitioning
2.4.5.2 Excluded-Middle partitioning
2.4.5.3 Generalized Hyperplane Partitioning
2.4.5.4 Voronoi-like partitioning

2.4.6 Pruning Strategies
2.4.6.1 Object-Pivot Distance Constraint
2.4.6.2 Range-Pivot Distance Constraint
2.4.6.3 Pivot-Pivot Distance Constraint
2.4.6.4 Double-Pivot Distance Constraint

2.4.7 Metric Access Methods for Exact Search

Description of several metric access methods that are used in the
experiments of Chapter 5.

2.4.7.1 Vantage Point Tree
2.4.7.2 Generalized Hyperplane Tree
2.4.7.3 Bisector Tree and Monotone Bisector Tree
2.4.7.4 Spatial Approximation Trees
2.4.7.5 AESA and LAESA

2.4.8 Metric Space Transformations Definitions of principal metric space transformations, which are at
the core of many approximate search methods, such as
permutation-based indexing introduced in Section 2.4.9.2.
Finite isometric embeddings are used in Chapter 5.

2.4.8.1 Finite Isometric Embeddings

2.4.9 Permutation-Based Approximate Similarity Search Principles of approximate similarity search and permutation-based
indexing.
Permutation-based approaches are used in Chapter 4. The
Surrogate Text Representation is used in Section 4.1.

2.4.9.1 Performance Measures for Approximate Search
2.4.9.2 Permutation-Based Indexing
2.4.9.3 Surrogate Text Representation

2.5 Datasets

Descriptions of the datasets used in Chapters 3, 4, and 5.
2.5.1 Datasets used for Retrieval and Recognition Tasks
2.5.2 Datasets Used for Training
2.5.3 Datasets Used for Similarity Search
2.5.4 Other Datasets
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2.1. Content-Based Image Retrieval

Figure 2.1: Image polysemy and intention gap.

Figure 2.1 could have a dozen of different intentions: “find some images of the same scene”, “find other
pictures of a baby lying in the grass”, “find images of the same cathedral”, “find images with a child
wearing a hat”, etc.

Decades of research on relevance feedback, image annotation and search, as well as recent deep
learning approaches have helped to mitigate these issues [84, 118, 122, 167, 170, 278]. Meanwhile, tech-
niques of CBIR has been extensively used in many web search engines, where images can be searched
by using their visual content [2, 5, 14], and on smartphones apps, where information can be obtained by
pointing the smartphone camera toward a monument, a painting, a logo [1, 4, 13].

In facts, a specialization of the basic CBIR technology include the techniques of instance retrieval
and object recognition [253], where visual content of images is analysed so that objects contained in
digital pictures are recognized, and/or images containing specific objects are retrieved.

CBIR involves not only the extraction of visual information from images and their comparison, but
other important aspects like user intention analysis, query formation, database indexing, results scoring,
search reranking, retrieval browsing. [84] and [277] are excellent surveys on this topic. In this thesis, we
mainly focus on image representations for the instance retrieval task and approaches for indexing and
searching the extracted image features.

2.1.1 Retrieval Performance Measures
When evaluating a retrieval system we are interested both in the quality of the results and in the compu-
tational performance of the system. The ideal case is having high-quality results, with very fast response
and low memory occupation. In practice, the applicative scenario determines the preferred trade-off
between effectiveness and efficiency. For example, forensic image retrieval requires high accuracy of
the results. Applications running on mobile devices, instead, need to provide fast response and run on
systems with limited computation resources; in the latter case, high efficiency is of primary interest,
sometimes at the expense of some reduction in the quality of the results.

The measure used to evaluate the efficiency of an algorithm depends on the purpose of the algorithm
itself. For general image retrieval systems, usually, it is the time span between receiving the user’s query
and showing the retrieved results to the user. For feature extraction algorithms, most important factors
are the time needed to extract the features and the memory overhead. For an index algorithm, the focus
may be on time, the number of needed “operations” (distance computations, disk accesses, etc.), or the
amount of memory required to store the index.

As concerning the effectiveness, in this thesis, we focus on evaluating the quality of a list of search
results, ordered by their similarity to the query. We follow the standard approach of using a ground-

9
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Chapter 2. Background

truth (typically, manually-generated), which containing some representative queries and the lists of the
corresponding relevant results. In this context, the two most basic and popular measures are the precision
and the recall. The precision is the fraction of retrieved objects that are relevant to the query, so it gives
a measure of how exact an algorithm is in returning relevant objects. The recall (or sensitivity) is the
fraction of relevant objects that are successfully retrieved, so it gives a measure of how complete an
algorithm is in returning relevant objects.
Formally,

precision =
|retrieved ∩ relevant|

|retrieved|
(2.1)

and

recall =
|retrieved ∩ relevant|

|relevant|
(2.2)

where |·| denotes the size of a set. These notions are often expressed also using the following contingency
table

Relevant Non-relevant
Retrieved True Positive (TP) False Positive (FP)

Not Retrieved False Negative (FN) True Negative (TN)

as precision= TP
TP+FP and recall= TP

TP+FN . Note that precision and recall are set-based measures,
since they do not take into account the rank positions of the relevant objects in the result set. Another
common measure to evaluate unranked retrieval result-set is the harmonic mean of retrieval and recall,
referred to as F-score. Other alternative measures are the accuracy= TP+TN

TP+TN+FP+FN , the specificity=
TN

TN+FP , and the false negative rate= FN
FN+TP ; see also [117, pp.141]. However, it is worth noting that

in the context of a retrieval problem the data is often extremely skewed: a high percentage of the data is
non-relevant for a given query. Thus, a system returning only non-relevant objects can appear to perform
well according to measures such as accuracy or false positive rate. The advantage of the precision and
recall measures, instead, is that they focus the evaluation on the return of true positive (relevant) objects.

In the ranked retrieval context, the evaluation should take into account also the rank position of
each returned relevant object. If averaging the precision value obtained every time a relevant image is
encountered we obtain the so-called average precision. It equals the area under the precision-recall curve
and so it takes into account both precision and recall. By computing the average precision for multiple
queries and averaging all these values we obtain the mean Average Precision (mAP). The mAP provides
an overall measure of effectiveness and so it is commonly used for assessing image retrieval systems.
We use the mAP quality measure in the experiments of Chapters 3 and 4. In Section 3.1, we evaluate the
effectiveness of several state-of-the-art image representations for the recognition task. In that case, we
assess the quality of the results also by means of the probability p of finding an image of the same query
object within the first r results. It is defined as

p(r) = P (R ≤ r), (2.3)

where R is the random variable denoting the position of the first relevant image in the ranked result list
of a query. For r = 1, p equals the accuracy of a classifier that recognizes the query object as the most
similar that have been found. For r > 1, we estimate the probability p(r) as

1

N

N∑
i=1

[[rqi ≤ r]], (2.4)

whereN is total the number of tested queries, rqi is the position of the first relevant image when querying
qi, and [[·]] represents the Iverson bracket, which equals one if the argument is true, and zero otherwise.

It is worth noting that, even if not used in this thesis, there are many other measures for evaluating
ranked retrieval results, such as Position Error and Cumulative Gain (see for example [176, 271]).

10
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2.2. Image representations

Figure 2.2: Images compared by matching their local features and searching for a geometric transfor-
mation that can associate the regions of both images. In this example, ORB [221] features and the
RANSAC [102] fitting model were used. Note that no features are localized in flat regions (like the
sky) of the images because features need to be distinctive. In the right-hand figure, the green lines are
two of the four edges of a bounding box (estimated via RANSAC) delimiting the region of the figure
that matches the left-hand figure. The other two edges of the bounding box fall outside the image.

2.2 Image representations

At the core of any CBIR system there is the problem of representing images in some kind of feature
space. This means that each image is represented by a one or more features that capture some image
characteristics. Image features are typically represented by numerical descriptors that lie in a space
where a (di)similarity measure is provided to assess the (di)similarity between a pair of images on the
basis of their descriptors.

The image features are expected to be descriptive and discriminative. The general request is that
they are invariant, or at least robust, to various image transformations such as translation, rotation, scale
changes, illumination changes, etc. Since the computation of a good image representation is crucial to
the image retrieval problem, as well as to many computer vision applications, the research for effective
image features has been object of much interest from the research community. In the early years of
CBIR, global features were used to describe the image visual content by means of colour [153, 175],
texture [89, 202] and shape [175, 181], to name but a few. The main advantage of global features is that
they usually are fast to be extracted and compared; however, they have low discriminative power and are
considered too rigid to represent images since they often fail to identify salient visual characteristics.

The intuition that each local region of an image brings a different amount of information had led
to the ascendancy of local features (Section 2.2.1), like SIFT [173] and SURF [47]. Each local feature
provides a description of a local region of an image that is a patch of pixel surrounding an interest point.
The interest points are typically selected in regions with high-intensity variation (such as corners and
blobs) so that they can be repeatability identified under different views of the same image/object. In most
of the cases, each image is represented by hundreds or thousands of local features. In order to decide that
two images match, since they contain the same or similar objects, local descriptors in the two images
need to be pairwise compared to identify matching patterns. Then candidate matches can be validated
with a geometric consistency check, e.g. by using RANdom SAmple Consensus (RANSAC) [102] that
is a de-facto fitting model in computer vision (Figure 2.2).

The image comparison relying on local features suffers of low efficiency. In the worst case, given an
image as a query and a database of images, we have to compare each local feature of the query against
all the local features of any dataset image. Even if efficient data structures such as kd-tree [103] are used
to search matching features, the image comparison based on local descriptors does not scale on large
collections. To overcome this issue, researchers have investigated the use of statistical summaries of all
the local features extracted from an image in order to encode them into a compact descriptor. Aggregation
techniques (Section 2.2.2), such as Bag-of-Words [233], VLAD [143] and Fisher Vector [206], revealed
to be particularly suitable for image retrieval and search task. In fact, on one hand, they have proved
to be effective image representations that still preserve the discriminative power of the local descriptors
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[144, 208, 209]; on the other hand, they lead to reduce the cost of image search since each image is
represented by a single descriptor rather than thousands. The use of both aggregation approaches and
index structures for approximate similarity search (see Section 2.4) guarantees scalability on very large
datasets.

In the last few years, image features computed using deep learning (Section 2.3) have emerged as
effective image representations, clouding descriptors built upon local features and other hand-crafted
descriptors. In fact, the so-called deep features achieved the state-of-the-art results in several vision
tasks, including image retrieval and object recognition.

2.2.1 Local Features
A local feature is the characterization of a local image pattern that differs from its immediate neigh-
bourhood [250]. The image properties used to identify and describe those local patterns are various and
depend on the used approach. The idea at the core of quite all the techniques is to localize some inter-
est points, also called keypoints, and then describe a neighbourhood of each of them. The first phase
is referred to as feature detection and aims to automatically find distinctive points in the images; the
latter is the feature description that for each keypoint provides a numerical representation of some visual
characteristics of a patch surrounding that point.

As highlighted by Tuytelaars et al. [250], ideal local features should satisfy the following properties:

• repeatability: invariance and robustness to major image transformations,

• distinctiveness: high intensity variation in the patterns surrounding the feature,

• locality: description of local patch,

• quantity: sufficiently large number of features per image,

• accuracy: feature should be accurately identified in the image location, scale and shape,

• efficiency: fast feature extraction.

Most of the feature detectors identifies the keypoints at corners (e.g. Harris [123], SUSAN [237] and
FAST [220]), blobs (e.g. Hessian [48], Difference-of-Gaussian [173], SURF [47], KAZE [16]) or regions
(e.g. MSER [177]) of the image. Usually, not only the location of the keypoint is stored, but also the
scale and the orientation at which the feature is detected. Then, for each keypoint, one or more numerical
descriptors are computed by using histogram of oriented gradients (SIFT [173], SURF [47]), gradient
location and orientation (GLOH [185]), or pixel intensity comparisons (BRIEF [61], ORB [221]), to
name but a few.

More details on local features used in this thesis are given below.

2.2.1.1 SIFT

Nowadays, the Scale-Invariant Feature Transform (SIFT) [173] is the most cited and used local feature
thanks to its distinctiveness for recognition tasks and robustness to several image transformations. It uses
a scale-space representation created by a Gaussian pyramid algorithm. Candidate keypoints are localized
both in space (2D position in the image) and scale (a level on the pyramid) by searching for scale-space
extrema in the Difference-of-Gaussian function convolved with the image. Then keypoints that have low
contrast (point sensitive to noise), or that are poorly localized along an edge, are discarded. In order to
achieve rotational invariance, each stable keypoint is associated with one or more orientations, estimated
on the basis of local image gradients direction. The traditional choice is taking the highest peaks in a
histogram of 36 bins that cover the 360-degree range of orientations. Finally, for each keypoint (now
including a point, a scale, and an orientation) a descriptor is assigned after transforming the image
according to the detected scale and orientation. The feature descriptor is computed as the normalized
histogram of orientations of local image gradients (measured in a region around the selected point).
Original SIFT uses 4x4 arrays of histograms with 8 orientation bin in each. The final feature vector is
thus of 4x4x8=128 dimensions.

12



“main” — 2018/5/6 — 19:17 — page 13 — #39i
i

i
i

i
i

i
i

2.2. Image representations

Figure 2.3: Visualization of the FAST keypoint detector reported from [220].

The overall SIFT extraction is costly due to the local image gradient computations. In [47] inte-
gral images were used to speed up the computation and the Speeded Up Robust Features (SURF) was
proposed as an efficient approximation of the SIFT.

2.2.1.2 Binary Local Features

Binary local features [15, 61, 165, 221] were recently introduced to fulfil the need of compact local
descriptors that are fast to be extracted and compared. Binary descriptors are, as the name suggests,
binary strings with low memory footprint (usually 128, 256 or 512 bits). They are compared using
the Hamming Distance [121] (see Section 2.4.1) which is extremely efficient to be computed using
the bitwise XOR operation. However, the fundamental characteristic of these approaches is not just
using a “binary representation” (that can be obtained from any image feature by means of hashing or
binarization algorithms), but rather efficiently derive the binary descriptors from the image itself. To this
end, researchers have used pixel intensity comparisons, which are notably faster than (approximate or
exact) local gradients used in most state-of-the-art local features, like SIFT and SURF.

Nearly all the binary descriptors proposed in literature involve the following steps:

1. sample some pixel or patches of pixel in a region around a keypoint;

2. use a mechanism to measures the orientation of the region describing the keypoint and rotate it;

3. select a set of pixel or patch tuples (e.g. pairs, triples, etc.), and for each tuple compute a bit value
(0-1) as the result of some comparisons between the objects of the tuple.

Therefore, the main difference between the various approaches relies mainly on the choice of the point/-
patch sampling pattern, the orientation mechanism, and the pixel/patch comparison rules. For exam-
ple, the selection of the pixel tuples can be performed either randomly (BRIEF [61]), using a hand-
crafted pattern (BRISK [165]) or automatically leaned from training data (ORB [221], FREAK [15],
LATCH [166]).

In the following we briefly describe some popular binary features, that we also use in the experiments
of Section 3.2.

ORB The Oriented FAST and Rotated BRIEF (ORB) [221] descriptor, was built upon the well know
FAST [220] keypoint detector and the BRIEF [61] binary descriptor.

The original FAST uses fast pixel comparisons to identifies corner in images: as showed in Figure
2.3, it considers a circle of sixteen pixels around a candidate corner p. Then it classifies the point p as
a corner if there exist 12 contiguous points that are brighter than p by more than a threshold. However,
analysing only the four pixels at 1, 5, 9 and 13 permit to efficiently exclude many non-corner points so
that the full segment test criterion is applied only to the remaining candidates.

ORB adds a rotation component to FAST by using a simple measure of corner orientation based on
local first-order moments. Then for each corner (keypoint) it computes a binary descriptor as done in
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Figure 2.4: Visualization of the LATCH descriptor reported from [166]. Each bit of the LATCH descrip-
tor is computed by comparing a triplet of pixel patches.

BRIEF, which is the first, and also the simplest, of the family of binary descriptors. BRIEF is based on
intensity comparison of pairs of pixels randomly selected in a patch centred around a keypoint. So given
a set {s1, . . . , sD} of pixel pairs, BRIEF computes a binary vector of length D, where the i-th bit is the
result of an intensity comparison over the i-th pair. Specifically, given the pixel pair si = (pi,1, pi,2), if
the intensity (smoothed by a Gaussian filter) of the pixel pi,1 is greater than that of pi,2, then the i-th bit
of the binary descriptors is set to 1; otherwise, it is set to 0. ORB, unlike BRIEF, uses an unsupervised
learning approach to select the pixel pairs (rather than random selection).

Interestingly, the total ORB extraction process (keypoint and orientation detection + feature descrip-
tion) is an order of magnitude faster than SURF, and two orders faster than SIFT, according to the
experimental results reported in [126, 186, 221].

LATCH Comparing single smoothed intensities of pixels, as done in many binary descriptors, may
be sensitive to noise or slight image distortion. To overcome this issue Levi et al. [166] proposed to use
small patch comparisons, rather than pixel comparisons, and triplets rather than pairs of sampling points.
The resulting image descriptor was named Learned Arrangements of Three patCHes codes (LATCH).

In [166], the authors considered windows of 48×48 pixels centred on precomputed keypoints. Then,
for each image window, a certain number D of patch triplets are selected (e.g. D = 512) using a super-
vised learning approach. The original LATCH uses patches of 7x7 pixels whose similarity is measured
by the sum-of-squared-differences (SSD). Each triplet is composed by one “anchor” patch (a) and two
“companion” patches (c1, c2). If for the i-th triplet SSD(a, c1) < SSD(a, c2) then the i-th bit of the
LATCH descriptor is assigned to 1. If not, it is assigned to 0. Figure 2.4 exemplified the computation of
LATCH descriptor using triplets.

A-KAZE In [17], Alcantarilla et al. proposed a fast feature detection and description approach, called
Accelerated-KAZE (A-KAZE). It can be considered a SIFT-inspired method since it uses a multiscale
approach. It use a Fast Explicit Diffusion method [116] to build a non-linear scale space. Then, keypoints
are detected by searching maxima in scale and spatial location. The descriptors are then built using
information carried out from the non-linear scale space and using binary test between the average of areas
around keypoints instead of single pixels. Interestingly, while the Gaussian blurring used to build the
scale space in SIFT does not preserve the object boundaries, the non-linear diffusion filtering technique
used in A-KAZE preserves edges [213].

2.2.2 Aggregations of Local Features
In this section we describe some leading approaches to encode a set of local descriptors into a fixed-length
representation. By far, the most popular aggregation method has been the Bag-of-Words (BoW) [233]
(Section 2.2.2.1). It uses a finite visual vocabulary to quantize the local descriptors extracted from images
and then represents each image as a histogram of occurrences of visual words. The BoW representation
is very sparse and can be efficiently index by using inverted files.
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In the last decade, other effective encoding schemes, namely the Vector of Locally Aggregation De-
scriptors (VLAD) [143] (Section 2.2.2.2) and the Fisher Vectors (FVs) [206] (Section 2.2.2.3), have been
widely used for both image classification and large-scale image search. The VLAD method, similarly to
BoW, quantizes the local descriptors of an image by using a visual vocabulary. Differently from BoW,
VLAD encodes the accumulated difference between the visual words and the associated descriptors,
rather than just the number of descriptors assigned to each visual word. So, it exploits more aspects of
the distribution of the local descriptors of an image.

The FV uses the Fisher Kernel framework [137] to transform an incoming set of descriptors into a
fixed-size vector representation. The basic idea is to characterize how the sample of descriptors devi-
ates from an average distribution that might be understood as a “probabilistic visual vocabulary". As
highlighted in [144], the FV can be viewed as a probabilistic version of the VLAD. Moreover, compared
to BoW, which takes into account just 0-order statistics (occurrences of visual words), the FV offers
a better representation by encoding higher order statistics (first and optionally second order) related to
the distribution of the descriptors. Both FV and VLAD uses smaller visual vocabulary than BoW to
achieve a given performance so they result in a more efficient representation. However, the final VLAD
and FV descriptors are not sparse, inverted file scheme is not suitable index images based on these en-
codings. Typically, techniques of dimensionality reduction, such as the Principal Component Analysis
(PCA)2 [50, 148], compression with product quantization [115, 142] and binary codes [208] are used to
efficiently store these features. Moreover, multi-dimensional index or indexing methods for similarity
searching must be used to scale up to large datasets.

2.2.2.1 Bag-of-Words

The Bag of (Visual) Words (BoW) was initially proposed in [233] for matching objects throughout a video
database. Thereafter, it has been widely used for classification and CBIR tasks [81, 141, 211].

BoW uses a “visual vocabulary" to group together the local descriptors of an image and represent
each image as a set (bag) of visual words. The visual vocabulary is learned by clustering a large set of
local descriptors extracted from training images. The most common choice is using the k-means [171]
or the hierarchical k-means [195]. The cluster centres (centroids) are regarded as the "visual words" of
the vocabulary. Then, each local feature of an image is associated to its closest centroid and the image is
represented by a histogram of occurrences of visual words (Figure 2.5).

This approach was inspired by the BoW model used in natural language processing and information
retrieval [224], thus many text indexing techniques, such as inverted files [263], have been applied for
image search. In such cases the retrieval phase is performed by using the visual words in place of text
words and considering a query image as disjunctive term-query. However, as highlighted in [273], an
image query contains much more terms than a text query, e.g. 1500 visual terms rather than 3 text terms.
Therefore, thousands of posting lists should be accessed in the visual case.

From the very beginning [233] some words reduction techniques were used (e.g. removing 10%
of the more frequent words) and images have been ranked using the cosine similarity measure (Sec-
tion 2.4.1) in conjunction with the standard term frequency-inverse document frequency (tf-idf) [224]
weighting. In order to improve the efficiency of BoW, several approaches for the reduction of visual
words were investigated [25, 242]. Moreover, search results obtained using BoW were also improved
by applying re-ranking approaches [68, 139, 211, 246] and exploiting additional geometrical informa-
tion [205, 211, 244, 275]. In fact, the BoW encoding can additionally store the location of the local
features associated to each visual word in order to fast marching the local features of two images. In
this case, any two local features assigned to the same visual word are considered to match. Geometry
consistency check like RANSAC [102] can be further applied.

The quantization process used in the baseline BoW introduces a loss of information about the orig-
inal descriptors. For example, corresponding descriptors in two images may be assigned to different
visual words. To overcome the quantization loss, more accurate representation of the original descriptors

2 The PCA is the most popular of the techniques for unsupervised dimensionality reduction. The idea is to find a linear
transformation of n-dimensional to k-dimensional vectors (k ≤ n) that best preserves the variance of the input data. Specifically,
PCA projects the data along the direction of its first k principal components, which are the eigenvectors of the covariance matrix
of the (centred) input data.
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Figure 2.5: Simplified illustration of BoW and VLAD encodings. Given a visual vocabulary and the
local features extracted from an image, the BoW encodes the number of descriptors assigned to each
visual word while the VLAD encodes the accumulated differences between each visual word (µi) and
the associated descriptors (xi)

and alternative encoding techniques have been used, such as Hamming Embedding [139, 141], soft-
assignment [212, 255, 256], multiple assignment [141, 145], locality-constrained linear coding [260],
sparse coding [55, 265] and the use of spatial pyramids [158].

2.2.2.2 VLAD

The Vector of Locally Aggregation Descriptors (VLAD) is an encoding scheme introduced in [143].
It adopts the k-means to build a visual vocabulary {µ1, . . . ,µK}, also called “codebook". Similarly to
BoW, each local feature (xt) of an image is associated its closest visual word (NN(xt)) in the codebook.
Then for each visual word, VLAD accumulates the residual vectors, each defined as the differences
xt − µi between the centroid µi and the local feature xt assigned to it (Figure 2.5). Formally, the
accumulated residual vector for the centroid µi is

vi =
∑

xt:NN(xt)=µi

xt − µi. (2.5)

Finally, the vectors vi are concatenated into a single descriptor v = [v1, · · · ,vK ] referred to as VLAD.
Throughout the thesis, we refer to the accumulated sub-vectors vi simply as “residual sub-vectors”.

All the residual sub-vectors have the same size D which is equal to the size of the used local features.
Thus the dimensionality of the whole vector V is fixed and equals DK. Relatively small number of
centroids (e.g. K = 64− 256) is used.

A power-law normalization (v → |v|βsign(v)) and a `2-normalization (v → v/‖v‖2) are usually
applied.3 After this two VLADs can be effectively compared using the Euclidean distance or, equiva-
lently, the inner product [41, 144].

Since VLAD descriptors have high dimensionality, PCA can been used to obtain a more compact
representation [143]. In literature, several enhancements to the basic VLAD were proposed [41, 67, 87,
275].

3A common choice for the exponent β is 0.5.
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Figure 2.6: Simplified illustration of the FV encoding. The family of distribution M = {p(·|λ)}λ
parametrized by a vector λ can be regarded as a Riemannian manifold with a local metric given
by the FIM (Fλ) [227]. Given a set X of local descriptors of an image we can compute the score
function GXλ which lives in the tangent space TλM and give us the direction in which parameter λ
should be modified to best fit X . The distance between two score functions is given by the metric
induced by Fλ that can be expressed in term of Euclidean distance between the corresponding FVs.

2.2.2.3 Fisher Vector

The Fisher Kernel is a powerful framework introduced in [137] for classifying DNA splice site sequences
and to detect homologies between protein sequences. In [206], the Fisher Kernel was adopted in the
context of image classification as an efficient tool to encode image local descriptors into a fixed-size
vector representation.

The main idea of this method is to derive a kernel function to measure the similarity between two sets
of data, such as the sets of local descriptors extracted from two images. Specifically, the similarity of two
sample sets X and Y is measured by analysing the difference between the statistical properties of X and
Y , rather than comparing directly X and Y . To this scope a probability distribution p(·|λ) with some
parameters λ ∈ Rm is first estimated on a large training set and is used as “average distribution" over the
space of all the possible data observations. Then each sample X = {x1, . . . , xT } of data observations
is represented by a vector, named Fisher Vector, that indicates the direction in which the parameter λ of
the probability distribution p(·|λ) should be modified to best fit the data in X . In this way, two samples
are considered similar if the directions given by their respective Fisher Vectors are similar.

Specifically, as proposed in [137,206], the similarity between two sample sets X and Y is measured
using the Fisher Kernel, defined as

K(X,Y ) = (GXλ )>F−1
λ GYλ , (2.6)

where Fλ is the Fisher Information Matrix (FIM) and GXλ = ∇λ log p(X|λ) is the score function.
The computation of the Fisher Kernel is costly due to the multiplication by the inverse of the Fisher

Information Matrix (FIM). However, by using the Cholesky decomposition F−1
λ = L>λLλ, it is possible

to re-written the Fisher Kernel as an Euclidean dot-product, i.e.

K(X,Y ) = (GXλ )>GYλ , (2.7)

where
GXλ = LλG

X
λ (2.8)

is the FV of X (Figure 2.6). Note that the dimensionality of the FV depends only on the dimensionality
m of the parameter λ.
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Figure 2.7: A Venn diagram showing the relationship between Deep Learning, Representation Learning,
Machine Learning and Artificial Intelligence. Figure adapted from [112].

The FV is usually divided by T = |X| in order to avoid the dependence on the sample size [226] and
`2-normalized because, as proved in [209, 226], this is a way to cancel out the fact that different images
contain different amounts of image-specific information (e.g. the same object at different scales).

In the original definition of the FV [206, 208] the distribution p(·|λ) is chosen to be a Gaussian
Mixture Model (GMM) of parameter

λ = {wk,µk = [µk1, . . . , µkD],Σk = diag(σk1, . . . , σkD)}k=1,...,K

where K is the number of Gaussian, D is the dimension of each local descriptor, and wk, µk, Σk are the
mixture weight, the mean vector and the covariance matrix of the k-th Gaussian, respectively. By using
the GMM model, the FV of a set of D-dimensional local descriptors X = {x1, . . . , xT } is obtained as
the concatenation of the vector GXα ∈ RK , GXµ ∈ RKD, GXσ ∈ RKD, computed as

GXαk
=

1

T
√
wk

T∑
t=1

(γt(k)− wk) k = 1, . . . ,K (2.9)

GXµkd
=

1

T
√
wk

T∑
t=1

γt(k)
xtd − µkd
σkd

k = 1, . . . ,K, d = 1, . . . , D (2.10)

GXσkd
=

1

T
√
wk

T∑
t=1

γt(k)
1√
2

[
(xtd − µkd)2

(σkd)2
− 1

]
k = 1, . . . ,K, d = 1, . . . , D (2.11)

where γt(k) = p(k|xt, λ) is the probability for the observation xt to be generated by the k-th Gaussian.
The whole FV is of dimension (2D + 1)K. However, the FV is often used considering only the sub-
vector associated with the mean parameters (GXµ ) whose dimensionality isKD [143,144,208]. PCA can
also be applied to reduce the dimensionality.

2.3 Deep Learning

Recent years have witnessed an explosion of interest in a branch of machine learning called deep learn-
ing (Figure 2.7). Deep learning is a class of “representation-learning methods with multiple levels of
representation, obtained by composing simple but non-linear modules that each transform the represen-
tation at one level (starting with the raw input) into a representation at a higher, slightly more abstract
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Figure 2.8: Interest over the time of the term "Deep Learning" estimated using Google Trends (https:
//trends.google.com). Numbers represent search interest relative to the highest point on the
chart for the considered time interval. A value of 100 is the peak popularity for the term, a value of
50 means that the term is half as popular, and so on.

level” [161]. Having those multiple levels of representation/abstraction is fundamental since it gives gen-
eralization by allowing systems to automatically learn a hierarchy of features and deal with new domains
without having previous knowledge of them. Each level of a deep models depend on a certain number of
parameters that are learned from data by using general-purpose learning procedure, which can be super-
vised, semi-supervised or unsupervised. Typically, a deep model has hundreds of millions of trainable
parameters and so need hundreds of millions of training data [161].

Deep learning origins date back to the 1940s-1960s [125, 179, 219] and the 1980s-1990s [106, 160,
162, 222]. It was relatively unpopular for several years until 2006, when seminal works of research
groups led by Geoffrey Hinton (University of Toronto), Yoshua Bengio (University of Montreal) and
Yann LeCun (New York University) [49, 130, 216] have started to attract the attention of the research
community. However, it is only from 2012 that the popularity of deep learning has started to grow
exponentially (Figure 2.8).

What happened in 2012? Deep learning approaches achieved record-breaking results in speech
recognition [82, 188] and image classification [155]. To give an idea we report the image case. In
September 2012, these was a famous competition (ILSVRC2012) with the goal of estimating the con-
tent of images for retrieval and image annotation using a subset of the large hand-labelled ImageNet
dataset [88] as training. There were three tasks: classification, classification with localization and fine-
grained classification.4 Leading groups in computer vision participated to this challenge. They manly
used hand-engineered features, like Fisher Vector encodings of local features, and most of them man-
aged to get an error between 26% and 27% on the classification task. Also the University of Toronto
participated at the competition with a team composed by Alex Krizhevsky, Ilya Sutskever, and Geoffrey
Hinton. Differently from all the other teams, they used a deep learning approach. Their deep Convo-
lutional Neural Network (named AlexNet [155]) got an error rate of 16%, which created a huge gap in
the competition results. The next year, 24 teams participated to the ILSVRC2013 competition. Of these
only three used a non-deep learning approach, which was an early sign of the imminent “Cambrian explo-
sion” [215] of the deep learning technologies. In fact, deep learning have recently changed the research
landscape in a broad set of domains, not only image classification [155], but also visual object recogni-
tion [217], speech recognition [129], natural language processing/understanding [71], recommendation
systems [223], bioinformatics [164].

4see http://www.image-net.org/challenges/LSVRC/2012/ for further details
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While the state-of-the-art results obtained using deep learning are the key to its success, three main
factors have created a breeding ground for the resurgence of deep learning approaches: i) availability of
large datasets to train the models; ii) cheap and fast GPUs (to train and run large models); iii) algorithm
improvement with respect to the early works. Moreover a lot of open-source libraries (like Caffe, Theano,
Torch, TensorFlow, PyLearn2, MXNet) and cloud services (like Amazon Web Services and Microsoft
Azure) have supported many research or industrial projects on deep learning.

The Convolutional Neural Network (CNN) (Section 2.3.2) is just one kind of deep leaning mod-
els, which is mainly used to deal with images. Other examples of deep models are Recurrent Neural
Networks (RNN) (e.g. suitable to learn sequences) and Deep Autoencoders (e.g. suitable for data com-
pression), just to name a few.

2.3.1 Deep Neural Networks and Deep Features
A deep neural networks is an artificial neural network composed of multiple layers: an input layer, some
hidden layers, and an output layers. Each hidden layer computes certain mathematical operations in order
to extract some knowledge from its input and generate an output, which is then taken as input by the next
layer, and so on. The term “deep” means that we have more than one hidden layer. The hidden layers
should include some non-linear operations, otherwise we could reduce the network to a “shallow” one.
The operations made in each layer are parametrized by some learnable weights. The most common case
is learning the parameters by using a supervised algorithm that optimize a certain objective function (e.g.
minimizing a loss function). Once the network is trained it can be used to extract the desired information
from a set of previously unseen data. The kind of output produced by the network depends on the task
addressed, e.g. classification, regression, metric learning, etc. Interestingly, in order to produce the final
output the deep neural network extracts a hierarchy of features (deep features), which are the output
produced at each hidden layer. The key aspect is that these features are extracted using the parameters
that the network learned directly from the training data, and so that are not designed by human engineers.
In a feed-forward deep neural network, that is a deep neural network where the connections between the
units of the layers do not form a cycle, the features extracted in the first layers are less abstract than
that extracted in the last (higher) layers, which are also more specific for the task on which the network
has been trained. This allows us to use pretrained models to extract features to be then used for tasks
different from (but related to) the one used to train the network. For example, the famous AlexNet [155]
was trained in an image classification scenario, however the features extracted from its intermediate
layers have been proved to be effective descriptors of the image visual contents for image retrieval and
recognition tasks [39, 217, 268]. This is just an aspect of the transfer learning that is made possible by
deep models. Another aspect that goes in this direction is the fine-tuning of pretrained model: A model
pretrained on a specific task and dataset can be re-trained to deal with different task or data domain by
somehow re-use the prelearned parameters of the model. For example, some of the parameters of the
model are frozen before the new training phase (where eventually some of the last layers are replaced by
new ones), or they are used for initialize the model, instead of randomly generated values, in conjunction
with a small learning rate. On of the main advantage of fine-tuning is that it led to “train” (or better
“adapt”) a deep model even if using a relatively small training dataset.

2.3.2 Convolutional Neural Networks
Let us now introduce the CNNs that are feed-forward neural networks particularly suitable for data that
has a grid-like topology such as image data or time-series data. A CNN takes as input a tensor, which
is a multidimensional array, and will output a high-dimensional structured object, e.g. the probabilities
that the input data belongs to a certain class for a classification task, real values for regression task, etc.
For example in the case of image classification, the network takes as input a coloured image (that is
a three-dimensional tensor, where the last dimension refers to the RGB values) and output a vector of
scores (e.g. 0.70 for cat, 0.10 for tiger, 0.05 for dog, etc.).

According to the definition given by [112], a deep CNN is a deep neural network that uses a convo-
lution in at least one of its layers.5 In general, the convolution is an operation (indicated with ∗) of two

5Thereafter we use the term CNN to indicate deep CNN, i.e. we always consider the case of multiple hidden layers.
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functions x(t), w(t) that produce a third function

s(t) = (x ∗ w)(t) =

∫ ∞
−∞

x(t− τ)w(τ)dτ.

Actually, most of the neural network libraries and books uses the cross-correlation, defined as

s(t) =

∫ ∞
−∞

x(t+ τ)w(τ)dτ,

but call it “convolution”; thereafter we will do the same. In machine learning terminology, the first
argument x is the input (or receptive field), the second argument w is the kernel (sometimes referred to
as filter), and the output s is the so called feature map (or activation map). Here we consider the case in
which both the input and the kernel are finite-dimensional tensors with discrete indices (e.g. x(t) is the
value of x at the multidimensional index t, where t assumes a finite set of values). This means that in
practise the convolution is computed as a finite sum. Foe example, given x of dimension nx ×mx, and
the kernel w of dimension nw ×mw, then the feature map is a tensor (nx − nw + 1)× (mx −mw + 1)
whose element at the index (t1, t2) is

s(t1, t2) =
∑
τ1

(∑
τ2

x(t1 + τ1, t2 + τ2)w(τ1, τ2)

)
, (2.12)

where the indexes range according to domains of definition of the considered tensors. Figure 2.9 gives
an example of 2D convolution. Note that the standard convolution shrinks by one element less than the
kernel width; to control the size of the feature maps, the input is typically zero-padded. Moreover, in the
context of neural networks, a stride is used to control how the kernel convolves around the input volume
(Figure 2.10). We refer the interested reader to [112] for further details.

Typically, in a CNN there are two kinds of hidden layer: the convolutional and the fully-connected
layer. In most of the cases the convolutional layers are composed of several stages, notable including

• Convolutions: several convolutions are performed in parallel to produce the feature maps. It is
worth noting that the kernel of a convolution acts as feature detector, which explains the terminol-
ogy of “ feature map” used for the output.

• Non-linear function: a non-linear activation function is applied to each element of the map. An
example is the Rectified Linear Unit transform (ReLU) that replaces all the negative values by 0
(ReLU(x) = max(0, x)).

• Pooling: element at a certain location of the feature map are replaced with a summary statistic of
the nearby elements. Popular pooling functions are max-pooling [279] (which output the maxi-
mum value within a rectangular neighbourhood) and the Euclidean normalization of a rectangular
neighbourhood.

As pointed by Le Cun et al. [161] the role of the convolution stages is to detect local conjunction of
features from the previous layer, while the pooling modules aim to merge semantically similar features
into one. In general, the convolutional layers leverage on sparse connectivity (achieved using a kernel
smaller than the input), parameter sharing (each member of the kernel is used at every position of the
input, excluding boundary pixels), equivariance to translation (if the input is translated, the output change
in the same way).

The second popular kind of layer is the fully connected one that, as the name suggests, is a layer
where each unit receives information form all the units of the previous layer (full connectivity). It is
typically composed by an “inner product” stage, where the input is simply multiplied by a weight matrix,
followed by some non-linear stages. Given the large numbers of parameters in the fully-connected layers,
some regularization techniques are used to prevent overfitting and improve the performance. For example
the dropout technique randomly remove some units from the networks along with their incoming and
outcoming connections, which prevent complex co-adaptation on the training data [131].
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Figure 2.9: Example of convolution of 2D tensors.
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Figure 2.10: Example of convolution of 2D tensors with a stride of 2 in both the dimensions and zero-
padding of the input.
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Figure 2.11: Example of a CNN model: the BVLC Reference CaffeNet. The input is a RGB image of
size 224x224 pixels. Orange units corresponds to outputs of convolutions; green units corresponds
to outputs of the ReLU; blue units correspond to outputs of max-pooling; grey units correspond
to outputs of the Local Response Normalization (LRN); yellows units are the outputs of the fully-
connected stages; purple blocks indicates the use of dropout regularizations. The last layer ends with
a softmax module producing a distribution over the 1000 training classes.

Figure 2.11 show a simplified version of the BVLC Reference CaffeNet architecture, which mimics
the original AlexNet [155], with minor variations as described in [146].

More advanced and complex networks/modules have been proposed in the last years, notable includ-
ing Network in Network [169], Inception modules [240], residual networks [124] and several non-linear
activation and pooling function variants [187].

CNN Features As we already mentioned, the intermediate outputs (activations) of a feed-forward
deep neural networks can be used as data features for generic tasks that may differ from the originally
trained task. The first work in this direction using a CNN was [94] where the outputs of the sixth
and seventh layers, namely fc6 and fc7, of the pretrained AlexNet, were effectively used for object
recognition, scene recognition, domain adaptation, and fine-grained recognition. Babenko et al. [43]
used the output of the fifth layer, namely pool5, and that of fc6 and fc7 for image retrieval. Similarly,
[110, 218, 259] demonstrated that the deep features achieves high effectiveness in various vision and
retrieval task. Recently, Tolias et al. [247] exploited the activations of the CNN convolutional layers to
derive representations for image regions that are then aggregated into a compact vector representation,
called Regional Maximum Activation of Convolutions (R-MAC). Moreover, other works started to treat
features in a convolutional layer as local features to be then aggregated, using for example VLAD or
FV [39, 268].

Finally, it is worth noting that the features extracted from an image by various layers of a CNN cap-
ture image characteristics at various level of abstraction. For example, Zeiler and Fergus [270], by visu-
alizing which parts of an input image caused a given activation in the features maps of a model similar to
AlexNet, showed that: the output of the first convolutional layer capture the presence or absence of edge
at particular orientation and location in the image; the second layer detects corners and other colour/edge
conjunction; the third layer mainly capture motifs and textures; the fourth layer is more class-specific
and start detecting parts of objects; the last convolutional layer detect entire objects. Features extracted
by the fully connected layers, instead, capture more class-related and high-level characteristics.
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Chapter 2. Background

2.4 Similarity Search

Searching data objects that are close to a given query element under some similarity (or distance) function
is a fundamental task in a variety of application domains, including multimedia information retrieval,
data mining, pattern recognition and computational biology, to name but a few. This search paradigm,
referred to as similarity search, overcomes limitations of traditional exact-match search that, as pointed
in [271, ch.1] “is neither feasible nor meaningful for data types in the present digital age” since “modem
digital collections lacks structure and precision”. In the exact-match scenario, data is searched using a
fully comparable key, and the result of a query to a database is the set of objects whose key match the
query one. Therefore, exact-match has little meaning when dealing with complex data such as image,
audio and video, except for limited applications like searching for exact copies of a query object. The
similarity search, instead, is more suitable to search for complex and unstructured data. For example,
in the case of CBIR, the search is not computed at the level of the actual images (e.g. pixel by pixel
comparison) or as exact-match of the image representations, because even a small perturbation of an
image may affect the numerical values of its pixel intensities and of the associated image features. The
search is rather computed at the level of proximity of the image representations: the images whose
representations are closest to the representation of the query are top ranked. There are many other
important practical examples captured by the similarity search framework, see, for example, Chávez and
Navarro [66] and Zezula et al. [271].

To search a database for the objects similar to a query we can use either a similarity function or a
distance function. In the first case, we search for the objects with the greatest similarity to the query. In
the latter case, we search for the objects with the lowest distance from the query. A similarity function is
said to be equivalent to a distance function if the ranked list of the results to a query is the same.

One main issue related to the similarity search is the efficiency since the search algorithms should
provide results quickly and with low cost. As we see later the cost highly depends on the function used
to compare the objects and how the data is structured and searched. Similarly to [271], we define the
distance search problem as follows:

Definition 2.4.1 (Distance Search Problem). Let D be a domain and d : D × D → R a distance
measure on D. Given a finite subset S of D, preprocess or structure the data so that proximity queries
are answered efficiently.

The distance function used to compare data objects is chosen on the basis of the application domain
and of the nature of the query. Typically a proper distance is considered thanks to the solid mathematical
foundations underlying the notion of metric space (see Section 2.4.1). In fact, we will see that properties
governing the metric space, such as the triangle inequality, can be exploited to index and efficiently
search data objects.

In the realm of metric search methods we distinguish between exact and approximate methods. Given
a query, the exact methods guarantees to find the true result-set (e.g. all the object within a given distance
to the query), no matter how much computational resources are required6. However, as highlighted by
many researchers [64, 190, 261, 271], exact search work well only in space with low intrinsic dimen-
sionality7. For example, Weber et al. [261] experimentally showed that exact method based on space
partitioning degrades to sequential scan when dimensionality exceeds ten. This phenomenon, well know
as “curse of dimensionality" [210], means that the search scale poorly with data dimensionality and thus
a large fraction of the data need to be inspected to answer a query. Approximate search methods are
less (but still) affected by this phenomena and so they are used to face the search on a large dataset or on
space with high intrinsic dimensionality. One common approach is to lose some information and map the
data object into a more tractable space in order to perform the search in that space. Of course, the more

6Note that an exact method is not an exact-match method (except for pathological cases not used in practice). The former relies
on search all the objects whose similarity or distance to the query satisfies some search constraints (e.g. distance to the query less
than a threshold). The latter relies on finding an exact copy of the query (e.g. distance to the query equal to zero).

7The notion of intrinsic dimensionality of a metric space is formally introduced in Section 2.4.2. Intuitively, in spaces where
objects are represented as vectors it is the minimum number of coordinates needed to represent the objects without loss of informa-
tion. Even if general metric objects have not coordinates, it is possible to define a notion of “intrinsic dimensionality” of a metric
space that roughly reflects how hard it is to search that space.
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2.4. Similarity Search

efficiency of the approximate search comes at the expense of some reduction of the search accuracy. Suc-
cessful examples of approximate approach are the Locality-Sensitive Hashing (LSH) model [136] within
its extensions [46, 174] and the family of Permutation-Based Indexing (PBI) [36, 64, 198] approaches.

For a comprehensive introduction on similarity search and metric indexing see for example Chávez
et al. [66], Clarkson [69], Hjaltason and Samet [133], and Zezula et al. [271]. In this chapter, we provide
mathematical background of metric spaces (Section 2.4.1) and similarity queries (Section 2.4.4). We
then review space partitioning (Section 2.4.5) and pruning strategies (Section 2.4.6) that mainly serves as
ground for Chapter 5. In Section 2.4.7 we briefly overview some metric access methods before moving on
metric space transformations (Section 2.4.8) and permutation-based approximate search (Section 2.4.9).

2.4.1 Metric Space

In the context of similarity search and other applicative domains, the term distance is used to indicate a
generic function that measure the dissimilarity of two elements. When this function satisfies postulates
of non-negativity, identity, symmetry, and triangle inequality, it is called metric8 as defined below:

Definition 2.4.2 (Metric). A metric on a set D is a function d : D × D → R meeting the following
properties:

∀x, y ∈ D, d(x, y) ≥ 0 non-negativity (2.13)
∀x, y ∈ D, d(x, y) = 0 if, and only if, x = y identity of indiscernibles (2.14)
∀x, y ∈ D, d(x, y) = d(y, x) symmetry (2.15)
∀x, y, z ∈ D, d(x, z) ≤ d(x, y) + d(y, z) triangle inequality (2.16)

Definition 2.4.3 (Metric Space). A metric space is a pair (D, d) formed by a set D and a metric d on it.

There are various way to relax the metric postulates. We say that d is a pseudometric if it satisfies all
the metric postulates, but instead of the identity of indiscernibles only the reflexivity condition d(x, x) =
0 is required. On the other hand, a function d that satisfies all the metric postulates with the exception
of the symmetry, it is called quasimetric. Note that a quasimetric function can be easily transformed into
a metric, for example by considering dsym(x, y) = d(x, y) + d(y, x). Finally, if the triangle inequality
does not hold, we talk about semimetric.

Some enchantment of the metric postulates can be also considered. For example, a ultrametric is a
metric also satisfying

∀x, y, z ∈ D, d(x, z) ≤ max{d(x, y), d(y, z)}

which is a property stronger than the triangle inequality. In fact, while the triangle inequality implies
that the length of a side of a triangle is always less or equal to the sum of the lengths of other two
sides, in the ultrametric space every triangle is isosceles or equilateral. In Chapter 5, we introduce
and examine another class of metric spaces, that we call supermetrics, which also have geometrical
guarantees stronger than the traditional triangle inequality.

In a generic metric space there are no algebraic operations, except for the distance computations.
However, most of the spaces that arise in applications are vectors space. In this case, the metric objects
are vectors that can be added together and multiplied by scalars. When we define metric on vector space
we usually require that the metric interact with the algebraic operation. Specifically, suppose that V is
a vector space over R. We usually want to define a metric d on V such that for each x,y ∈ V , λ ∈ R
the “length” d(x − y,0) of the vector x − y equals the distance d(x,y), and the length d(λx,0) is
|λ|d(x,0). In such cases we said that the metric is determined by a length function- the so called norm.

8It is worth noting that in mathematics, the term “distance” and “metrics” are generally used as synonyms. In the rest of
this thesis we use these two terms interchangeably; it will be clear from the context if talking of a metric or not (terms such as
“dissimilarity function” or “not-proper metric” are used to avoid ambiguities). Moreover we restrict or analysis on metric space
over the field of real numbers R
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Inner Product 
Spaces

e.g. (ℝ2, ℓ2 )

Normed Vector
Spaces

e.g. (ℝ2, ℓ1 )

Metric Spaces

e.g. (Strings, Edit distance)

Figure 2.12: Relations between inner product, norm and metric spaces: an inner product induces a
norm, a norm induces a metric. However note that i) not all the metric spaces are metric vector
spaces; ii) not all the metric vector spaces are normed vector spaces; iii) and not all the normed
vector spaces are inner product spaces.

Definition 2.4.4 (Norm). A norm on a vector space V is a function ‖ · ‖ : V ×V → R such that for each
x,y ∈ V and each scalar λ, we have

‖x‖ ≥ 0 (2.17)
‖x‖ = 0 if, and only if, x = 0 (2.18)
‖λx‖ = |λ|‖x‖ (2.19)
‖x + y‖ ≤ ‖x‖+ ‖y‖. (2.20)

(V, || · ||) is called normed vector space and the number ‖x‖ is called norm or length of x.

Given a normed space it is always possible to define a metric on it:

Proposition 2.4.1. If (V, ‖ · ‖) is a normed vector space, then d : V × V → R defined by d(x,y) =
‖x− y‖ is a metric on V .

A metric associated with a norm has additional properties with respect to a generic metric function:

∀x,y, z ∈ V, d(x + z,y + z) = d(x,y) translation invariance (2.21)
∀x,y ∈ V, ∀λ ∈ R, d(λx, λy) = |λ|d(x,y) homogeneity (2.22)

Conversely if (V, ‖ · ‖) is a vector metric space whose metric d meets the above properties, then x →
d(x,0) is a norm. Note that these properties do not make sense in a generic metric space since we cannon
add points or multiply them by a scalar.

Finally, we observe that the norm of a vector space (and so the distance) sometimes is induced by an
inner product; in such cases we tall about inner product space.

Definition 2.4.5 (Inner product). An inner product on a vector space V is a function 〈·, ·〉 : V → R
such that

∀x ∈ V 〈x,x〉 ≥ 0 (2.23)
∀x ∈ V 〈x,x〉 = 0 if, and only if, x = 0 (2.24)
∀x,y ∈ V 〈x,y〉 = 〈y,x〉 (2.25)
∀x,y,∈ V, α ∈ R 〈αx,y〉 = α〈x,y〉 (2.26)
∀x,y, z,∈ V 〈x + z,y〉 = 〈x,y〉+ 〈z,y〉 (2.27)

Any inner product space is a normed space, and thus a metric space:
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Proposition 2.4.2. If (V, 〈·, ·〉) is a inner vector space, then ‖ · ‖ : V → R defined by ‖x‖ = 〈x,x〉 is a
norm on V , and d : V × V → R defined by d(x,y) =

√
〈x,x〉 is a distance on V . Moreover

∀x,y ∈ V d(x,y)2 = ‖x‖2 + ‖y‖2 − 2〈x,y〉. (2.28)

Figure 2.12 gives simple portrayal of the hierarchy of metric spaces.

2.4.1.1 Distance Measures

In the following, we present some distance functions that are mentioned or used in the remainder of this
thesis.

Minkowski Distances (`p) The family {`p}1≤p≤∞ is a family of metrics on Rn, called Minkowski
Distances, defined as

`p(x,y) = p

√√√√ n∑
i=1

|xi − yi|p, p ≥ 1 x,y ∈ Rn (2.29)

`∞(x,y) = max
i=1,...,n

|xi − yi|, x,y ∈ Rn (2.30)

The `1 distance is know as Manhattan distance (or City-Block distance). The `2 is the well-known
Euclidean distance. The `∞ is called Chebyshev distance or maximum distance.

The `∞ is determined by the norm

‖x‖∞ = max
i=1,...,n

|xi|,

while for all 1 ≤ p <∞ the `p metric is determined by

‖x‖p = p

√√√√ n∑
i=1

|xi|p.

The `2 is the only of these family of distances that is induced by an inner product, which is the
standard dot product 〈x,y〉 =

∑n
i=1 xiyi.

In the rest of this thesis we use the notation `np to indicate the metric space (Rn, `p). For example,
`22 = (R2, `2) is a 2D Euclidean space, `32 = (R3, `2) is a 3D Euclidean space, etc.

Hamming Distance The Hamming Distance [121] is a metric frequently used to compare binary
strings. Given two binary strings of equal length, it measures the number of bit positions in which
the two strings differ from each other. If we see the two binary string as a point in a real vector space,
the Hamming distance equals the `1 distance.

Note that the Hamming distance can be computed very efficiently with a bitwise XOR operation
followed by a bit count.

Cosine Distance (dCos) The term “cosine distance” does not have a unique meaning in the metric space
literature and so requires an explanation.

It has long been known that, for two values x,y in Rn, the function

Scos(x,y) =
x · y
‖x‖‖y‖

, (2.31)

referred to as the cosine similarity, gives the cosine of the angle between the vectors, which is a conve-
nient estimate of their dimensional correlation. The cosine similarity is a suitable similarity function in
application when the magnitude of the vectors is not important but the main concern is in the direction of
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the vectors. One advantage is that this measure is cheap to calculate, especially when the space is sparse
such as applications in information retrieval.

As it is bounded in [0, 1], the function f(x,y) = 1 − Scos(x,y) gives a bounded divergence coeffi-
cient; however this function is not a proper metric, as it lacks triangle inequality. A function which gives
the same rank order and is also a proper metric can be simply achieved by converting this value into the
angle between two vectors, which can be caused to range within [0, 1] by

d̃Cos(x,y) = cos−1(Scos(x,y))/π.

In the metric space literature, this metric is sometimes referred to as Cosine Distance [75, 101, 235].
However, there exists another rank-equivalent function based on the Cosine similarity:

dCos(x,y) =
√

1− Scos(x,y). (2.32)

This function is a proper metric and it is equivalent to the Euclidean distance computed on the normalized
vectors x/‖x‖ and y/‖y‖:

dCos(x,y) = dCos

(
x

‖x‖
,

y

‖y‖

)
=

1√
2

∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥
so it coincides with a rescaled Euclidean distance whenever the vectors are `2-normalized.

In this thesis, we always use dCos as cosine distance, unless stated specifically otherwise.

Quadratic Form Distance Let x, y two n-dimensional vectors, and M an n × n matrix, then the
function

dM (x,y) =
√

(x− y)>M(x− y) (2.33)

is a metric if (and only if) M = [mij ] is a symmetric semi-definite positive matrix [120]. The element
mij denotes how related (or rather, unrelated) the dimensions i and j of the vectors are. When the matrix
M is diagonal the corresponding distance is a weighted Euclidean distance.

Jensen-Shannon Distance (dJSD) In information theory, the difference between two probability dis-
tributions is often measured by the Kullback-Leibler divergence [156]. The set M1

+(A) of probabil-
ity distributions can safely interpret as a set of positive numeric vectors v ∈ Rn for some n where∑n
i vi = 1 (although the original definition extends to continuous spaces as well). In such cases, the

Kullback-Leibler divergence is computed as

KLD(x,y) =
∑
i

xi log
xi
yi
.

Note that it is not a metric since both symmetry and triangle inequality postulates are not satisfied. A
symmetric variant of KLD is the Jensen-Shannon divergence. The term Jensen-Shannon divergence is
used variously with slightly different meanings; to avoid ambiguity, we define it here as

JSD(x,y) = 1− 1
2

∑
i

(h(xi) + h(yi)− h(xi + yi)), x,y ∈M1
+(A)

where
h(z) = −z log2 z.

That formulation, explained in [73], is consistent with other authors and neatly bounds the range into
[0,1]. While the Jensen-Shannon divergence does not fulfil the triangle inequality, its squared-root
dJSD(x,y) =

√
JSD(x,y) is a proper metric on M1

+(A) ( [95], [201], [104]).
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Triangular Distance (d∆) In the space M1
+(A) of probability distributions it is possible to define the

following dissimilarity function

∆(v, w) =
∑
i

(vi − wi)2

vi + wi
, x, y ∈M1

+(A) (2.34)

which has been named in [248] as Triangular Discrimination. It has also occurred in literature with other
names, such as “chi-square like distance” [159]. Although rarely used in practice, it is of significant in-
terest as it has relatively tight upper and lower bounds over the much more expensive Jensen-Shannon
divergence [248]. The Triangular Discrimination is a semi-metric, but its square root d∆ =

√
(∆) is a

proper metric on M1
+(A) [159, 248].

Combination of metrics Finally, we observe that given n metric functions d1, . . . , dn over a domain
D, and n non negative value α1, . . . , αn, also the combination d =

∑n
i=1 αdi is a metric over D.

2.4.2 Intrinsic Dimensionality
In a vector space, each object is represented as a D-dimensional vector, for some value D called dimen-
sionality. It is often the case that an equivalent representation of the vector data can be provided with
lower dimensions. For example, suppose to have some vector points in R10 that all lie in a plane. Even
if each point is originally described using 10 coordinates, we can represent them using 2-dimensional
vectors that are the local coordinates in the plane where they lie. This fact is normally referred in term
of Intrinsic Dimensionality (IDim) of a set of data that can be lower than the dimensionality of the space
where they are defined. In literature, there are several definitions of the intrinsic dimensionality of a
vector space. Following Fukunaga [105] and Camastra [62], a dataset contained in RD is said to have
intrinsic dimensionality equal to M if its elements lie entirely within an M -dimensional subspace of
RD (where M < D). Actually, they differentiate between two possible estimations of the intrinsic di-
mensionality of a dataset: local and global. The local one makes the estimation using the information
contained in sample neighbourhoods, avoiding the projection of the data onto a lower-dimensional space.
The global approach instead uses all the data information to search the minimum M such that the data
can be projected in a M -dimensional space without loss of information. Several estimators of the IDim
(global or local) for vector spaces have been defined in the literature, [62] gives an excellent survey.

In general metric space the notion of “dimensionality” can be provided in term of the hardness of
searching that space using only the distance function to compare the data objects. Chávez et al. [66]
proposed to estimate the IDim of a metric space as µ2/(2σ2) where µ is the mean and σ is the standard
deviation of the histogram of distances between points in the metric space. The intuition at the core of this
definition is that in randomD-dimensional vector spaces the histogram of the distances has a larger mean
and smaller variance as the D increase. So if the histogram of distances for a set of metric data has large
mean and small variance is liked to have high intrinsic dimensionality. This definition is very popular
to estimate the IDim of a metric space, mainly because it is simple to calculate from sampling pairs
of the space and gives a reasonable measure of “intrinsic search difficulty” of the space. We used this
measure in the later chapters. It is worth mentioning that several different metric IDim estimators have
been proposed in the literature, including fractal-based methods, correlation-based methods, Distance
exponents, PCA-based methods. We refer to [192] for further details.

2.4.3 Efficiency Measures for Exact Search
The cost to answer a query are highly influenced the partitioning principle used to organize the data and
the query execution algorithm. As argued by Chávez and Navarro [66], the total cost can be split as

C = # distance evaluations× complexity of d(·) + extra CPU time + I/O time.

In many cases, only the number of distance evaluations is used as measure of the complexity of a search
algorithm, given that (i) in many applications the cost of the distance computations is so high that the
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R(q, 1.5) = {o3, o4, o6, o8}
(a) Range query

k −NN(q) = {o3, o6, o4}
(b) k-Nearest Neighbour Query (k=3)

Figure 2.13: Examples of a range query (a) and a k-NN query (b).

other components of the cost can be neglected, (ii) in general, the raw timing and the extra CPU cost
can vary quickly as hardware evolves, and (iii) I/O time can be the dominant factor in some applications
and negligible in others. Clearly, for a dataset of N objects queries can be answered by evaluating N
distances (sequential scan). The main goal is organize the data such that each query can be answered
with a sublinear cost in term of distances evaluations. However, in some cases counting only the number
of distances computations is not a good measure of the overall efficiency, as for example when evaluating
new indexing mechanisms.

2.4.4 Similarity Queries

In real applications, we are interested in searching a (large) finite set of objects S which is a subset of
a data domain D. The general requirement is to efficiently find members of S which are similar to an
arbitrary member of D (the query object), where the distance function d gives the only way by which
any two objects may be compared - the bigger the distance d(x, y), the less similar the data x, y ∈ D.
Notice that the query is a generic object of the space D and so it may not exist in the collection S ⊂ D
to be searched.

A similarity query is defined by a query object and a proximity condition; the response to the query
is the set of the objects satisfying the considered condition with respect to the query. The most common
types of similarity queries are the range query and k-nearest neighbour query. For a comprehensive
description of similarity queries see [271, ch.4].

2.4.4.1 Range Query

Probably the most simple type of similarity query is the range search query R(q, t), which is specified
by a query object q ∈ D and threshold distance t ∈ R. It retrieves all the objects found within distance t
of q, i.e.

R(q, t) = {x ∈ S| d(x, q) ≤ t}.

Figure 2.13a shows an example of range query in a planar domain.
The basic strategy to answer a range query R(q, t) is to examine all the database objects, compute

the distance of the objects to the query, and report on the result set only those within distance t from q.
This general algorithm is adapted and enchanted by further filtering and pruning strategies on the basis
of the index structure used to organize the data objects. Some of them are described in the Sections 2.4.6
and 2.4.7.
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2.4.4.2 Nearest Neighbour Query

Given a query object q and a integer k, the k-Nearest Neighbour query kNN(q) finds the k objects in S
closest to q (Figure 2.13b). Formally, k −NN(q) is a subset of S such that

|k −NN(q)| = k (2.35)
∀x ∈ k −NN(q),∀ y ∈ S r k −NN(q) d(x, q) ≤ d(y, q) (2.36)

If several objects lie at the same distance from the k-th nearest neighbour, the ties are solved arbitrarily.
The k-nearest neighbour is often adopted as search paradigm since, as highlighted in [96] and [203],

it allows us to control the size of the results set, and it is simpler to be used in high-dimensional space
where it is not obvious to define a meaningful distance value to be used with other search paradigms
such as the range query.

The basic strategy for evaluating a k-NN query (without assuming any index structure of the data)
incrementally builds the result set as follows: Initially select k objects and order them with respect to the
distance from q. Let tk the distance of the k-nearest object in the result set. All the other objects oi are
consecutively scanned and if the distance d(oi, q) is smaller tk the object oi is inserted in the response
and previous k-th nearest neighbour is removed. The threshold tk is updated to d(oi, q) and the process
continue. To achieve sub-linear search complexity, index structures and pruning rules are typically used.

2.4.5 Space Partitioning

Typically the search space S is too large to allow an exhaustive search (i.e. examining the entire data
set). In major cases, the data can be preprocessed and partitioned in order to build an index data structure
that allow saving distance computations when answering a query.

Each index is constructed off-line and it is maintained by a specificity designed access method.
Metric access methods make use of properties of the metric governing the space to arrange the data
objects in such a way as to minimize the time required to retrieve the query results. At query time,
properties of the metric space (e.g. triangle inequality) are exploited to determine subsets of S that
do not need to be exhaustively checked. Such avoidance is normally referred to as exclusion or space
pruning (several pruning strategies are described later in Section 2.4.6).

2.4.5.1 Ball Partitioning

Ball partitioning [252] entails the selection of a reference object p ∈ D, a covering radius r ∈ R, and the
subdivision of the object in the search space S based on their distance from p. Formally S is partitioned
into two subsets:

Sin = {x ∈ S | d(x, p) ≤ r} (2.37)
Sout = {x ∈ S | d(x, p) > r}. (2.38)

See Fig. 2.14 for example. Typically, the covering radius r is chosen to be equal to the median of
{d(x, p), ∀x ∈ S} in order to have a balanced split. In that case, the redundant condition d(x, p) ≥ r is
usually added in the definition of Sout so that each element at the median distance can be assigned to one
of the subsets in an arbitrary, but balanced, fashion [271, ch.5]. Some of the most important techniques
using ball partitioning are: Burkhard-Keller Tree (BKT) [59], Fixed Queries Tree (FQT) [44], Vantage
Point Tree (VPT) [266]. We describe VPT in Section 2.4.7.1.

2.4.5.2 Excluded-Middle partitioning

The Excluded-middle partitioning [267] is another example of radius-based partitioning (see Fig. 2.14b).
We do not explicitly use this partitioning principle in the thesis, but we report it for reference. This
technique divides the search space into three subsets S1,S2,S3, on the basis of a covering radius r and a
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Sout

Sin

p
r

(a) Ball Partitioning

S2

S1

S3

p
r

2δ

(b) Excluded-Middle partitioning

Figure 2.14: Examples of Radius-Based Partitioning.

threshold δ:

S1 = {x ∈ S | d(x, p) ≤ r − δ} (2.39)
S2 = {x ∈ S | d(x, p) > r + δ} (2.40)
S3 = {x ∈ S | r − δ < d(x, p) ≤ r + δ}. (2.41)

As pointed by Zezula et al. [271, ch.5], the excluded-middle partitioning can be envisaged as an extension
of the ball partitioning principle, motivated by the fact that when a query lies near the border of the ball
Sin the search process requires to access to both the partitions Sin and Sout. The central idea of the
excluded-middle partitioning is to form a third partition (of thickness 2δ), containing points near the
border of Sin, so that when considering a range search R(q, t) with t < δ, for sure we can exclude at
least one region.

Two examples of index structure built using this partitioning principle are the Excluded Middle Van-
tage Point Forest [267] and the D-Index [93]

2.4.5.3 Generalized Hyperplane Partitioning

The Generalized Hyperplane Partitioning [252] breaks the set S into two subsets according to the dis-
tances of data objects to two reference objects p1, p2.Formally:

S1 = {x ∈ S | d(x, p1) ≤ d(x, p2)} (2.42)
S2 = {x ∈ S | d(x, p1) ≥ d(x, p2)} (2.43)

Objects with the same distance to both p1 and p2 can be assigned to either S1 or S2. An example of
hyperplane partitioning is given in Fig. 2.15a. In general, the hyperplane partitioning does not grantee a
balances split, and a suitable choice of pivots to achieve this is challenging in generic metric space.

Some of the most important indexing techniques using generalized hyperplane partitioning are: Gen-
eralized Hyperplane Tree (GHT) [252], Bisector Tree (BST) [149], and Monotonous Bisector Tree
(MBT) [197], which we describe in Sections 2.4.7.2 and 2.4.7.3.

2.4.5.4 Voronoi-like partitioning

An extension of generalized hyperplane partitioning is the Voronoi (or Dirichlet) partitioning [42]. In
this type of partitioning, a finite set of pivot points p1, . . . , pn ∈ D are chosen, and the rest of S is divided
into n subsets according to which of these pivots is closer. So Voronoi-like partitioning it can be viewed
as a “multiway generalized hyperplane partitioning” [127, pag.212]. Formally:

Si = {x ∈ S | d(x, pi) ≤ d(x, pj) for all j 6= i} i = 1, . . . n. (2.44)
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(a) Generalized Hyperplane Partitioning
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S3

S2

p1

p2

p4
p3

(b) Voronoi-like Partitioning (4 pivots, l = 1)
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(c) Voronoi-like Partitioning (4 pivots, l = 2)
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p4
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(d) Voronoi-like Partitioning (4 pivots, l = 4)

Figure 2.15: Examples of Hyperplane-Based Partitioning.

An example of Voronoi-like partition is depicted in Fig. 2.15b.
The Voronoi partitioning can be applied recursively. The first level (l = 1) is the one described

above, where each object is assigned to the closest pivot. On the second level (l = 2) each cluster Si is
partitioned into at most n − 1 subsets Si,j using the n − 1 pivots {p1, . . . , pi−1, pi+1, . . . , pn}, where
Si,j = {x ∈ Si | d(x, pj) ≤ d(x, pk) for all k 6= i, k 6= j}. This partitioning process can be repeated l
time, with l ≤ n. Fig. 2.15c and Fig. 2.15d show an example of Voronoi-like partitioning for respectively
level l = 2 and l = 4.

Please note that the Voronoi partitioning are uniquely determined by the hyperplanes Hpi,pj = {x ∈
D | d(x, pi) = d(x, pj)} and their intersections. In theory, at level l we have a maximum of n(n −
1) · · · (n− l+ 1) partitions; however, not all of these partitions really exist for a particular space and set
of pivots due to geometrical constrains [234]. For example, in the case depicted in Fig. 2.15c the cluster
S1,3 and S3,1 do not exist.

Voronoi-like partitioning of metric space is at the core of Geometric Near-neighbor Access Tree
(GNAT) [57], Metric Index (M-index) [198], and other PBI techniques [36, 96]. We discuss PBI tech-
niques in Section 2.4.9.2.

2.4.6 Pruning Strategies
Pruning conditions allow excluding certain regions or objects from the searching process. As observed
by Zezula et al. [271, ch.7], “pruning conditions must be applied not only to avoid accessing irrelevant
sets of objects, but also to minimize the number of distances computed.” The main rationale behind
such strategies is to use already-evaluated distances between data objects and some reference objects,
and exploit metric postulates (in particular, the triangle inequality) to determine bounds on distances
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(a) (b)

Figure 2.16: Illustration, in a planar domain, of the Object-Pivot pruning rule (a) and its generalization
using two pivots (b). Any solution to the query R(q, t) must lie in the regions bounded by the arcs
shown in the figure.

between the query and the other data objects.
For exact metric search, almost all indexing methods can be divided into those which use a single

reference point to give radius-based exclusion, and those which use two or more reference points to give
hyperplane-based exclusion. Many variants of each have been proposed, including many hybrids; [271],
[66], [225] [133] give excellent surveys.

In the following, we report several bounding strategies and related pruning rules that are employed,
in a specific form, in practically all metric access methods. In Chapter 5 we will define a new pruning
rule, which we named Hilbert Exclusion, that allows any indexing mechanism which uses hyperplane
partitioning to perform better in many common metric spaces.

2.4.6.1 Object-Pivot Distance Constraint

A fundamental distance bounding condition is the object-pivot distance constraint, which is a direct
consequence of the triangle inequality.

Lemma 2.4.1 (Object-Pivot Distance Constraint [271]). Given a metric space (D, d), and three arbitrary
objects q, p, o ∈ D, it always guaranteed:

|d(p, q)− d(p, o)| ≤ d(q, o) ≤ d(p, q) + d(p, o). (2.45)

Consequently, the distance d(q, o) can be bounded from below and above, provided the distance d(p, q)
and d(p, o) are know.

Corollary. Given a rage query R(q, t), an object o and a pivot p. Let m = d(o, p) a precomputed
distance; then

d(p, q) ≤ t−m ⇒ d(q, o) ≤ t [o is a solution]

|d(p, q)−m| > t ⇒ d(q, o) > t [o can be excluded]
(2.46)

This pruning rule is typically used when the dataset is partitioned according to the distances of the
data objects from one or more pivots. Such distances are stored during the insertion of the objects in
the data structure so that at query time some object o can be pruned or selected as a solution without
explicitly compute d(q, o) (see Figure 2.16).

Fig 2.17 shows an example, reported from [271, p.27], in which this pruning rule is beneficial with
respect to the sequential scan of all the data objects. Suppose that an index structure is built over eleven
objects oi using a ball-partitioning principle in a recursively manner. The first level of the tree is obtained
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(a) Binary tree built using a recursive ball partitioning of the space
S = {o1, . . . , o11}

q

p1

p3

p2

r1

t

o11 o5

o1

o7
o8

o4 o6

o10

o3 o9

o2

r2

r3

(b) Geometric point of view (ball partitioning of the
space and range search R(q, t) for t = 1.5)

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10 o11

p1 2.1 3.5 3.0 2.5 1.7 1.7 4.4 2.7 4.1 1.9 2.3
p2 3.6 4.1 - 1.6 3.6 0.7 - - - 2.1 4.1
p3 - - 5.7 - - - 6.7 4.2 2.2 - -

(c) Precomputed Object-Pivot distances (computed at building time)

d(q, p1) = 2.2

d(q, p2) = 0.4

d(q, p3) = 4.5

(d) Query-Pivot distances

Figure 2.17: Example of an index structure built over eleven objects {o1, . . . , o11} obtained using re-
cursively a ball-partitioning principle (example and visualization adapted from [271]).

using the pivot p1: all the object inside the ball of centre p1 and radius r1 are stored in the lefty sub-
tree, the others are stored in the right sub-tree. The sub-trees are recursively partitioned using the same
principle with the pivots p2 and p3. In general, given this binary tree, a range search R(q, t) is performed
in a top-down fashion: it starts at the root node and decides which sub-trees must be visited. The
pruning rules helps to optimize the search procedure. In particular, the object-pivot distance constrain
is usually applied to leaf nodes containing the data. For example, assume that a range query R(q, t)
with t = 1.5 is issued and that the search algorithm has reached the left-most leaf node containing
objects {o4, o6, o10}. At this stage, instead of examine all the object of the leaf, which would require
three distance computations, we can compute only the distance between the query and the pivot p2 and
exploit the precomputed distances d(p2, o4), d(p2, o6) and d(p2, o10) to omit some query-object distance
evaluations. Since the absolute value of the difference between d(p2, o10) and d(p2, q) is greater than
the query threshold t, o10 can be excluded without computing the actual distance d(q, o10). Moreover,
since d(p2, q) + d(p2, o6) is smaller that the query threshold, the object o6 can be directly included in
the solution set, saving one more distance computation. For what concern the object o4, since d(p2, q) +
d(p2, o4) > t and |d(p2, q) − d(p2, o4)| < t we cannot either include or exclude the point from the
solution set without computing the actual distance d(q, o4).

If the distance of an object is stored for multiple pivots {p1, . . . , pn}, the previous pruning rule can
be applied for each pivot an so the distance between d(o, q) can be avoided if

max
i
|d(q, pi)− d(pi, o)| > t. (2.47)

This condition, referred to as pivot filtering [92], is a direct consequence of the following generalization
of the Lemma 2.4.1:

Lemma 2.4.2. Given a metric space (D, d), a set of n pivots pi and two arbitrary objects q, o ∈ D, it
always guaranteed:

max
i=1,...,n

|d(pi, q)− d(pi, o)| ≤ d(q, o) ≤ min
i=1,...,n

(d(pi, q) + d(pi, o)). (2.48)
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Consequently, the distance d(q, o) can be bounded from below and above, whenever the distances
d(pi, q) and d(pi, o) are know.

The filtering power of pivot-based exclusion can be augmented by selecting good set of pivots, as
proposed in [58, 60].

2.4.6.2 Range-Pivot Distance Constraint

Some index structures do not store all distances between database objects and pivots. In order to mini-
mize the space needed to build the index, an alternative is to store only the minimum and the maximum
distance of the objects from the pivots (covering radii). In such case, a weaker form of the object-pivot
distance constraint, called range-pivot distance constraint, is applied.

Lemma 2.4.3 (Range-Pivot Distance Constraint [271]). Given a metric space (D, d) and objects p, o ∈
D such that rmin ≤ d(p, o) ≤ rmax with rmin, rmax ∈ R+, and given some q ∈ D, the distance d(q, o) is
bounded as follow:

max{d(q, p)− rmax, rmin − d(q, p), 0} ≤ d(q, o) ≤ d(q, p) + rmax. (2.49)

Corollary. Given a range query R(q, t) and a cluster Sp such that for all x ∈ Sp we have rmin ≤
d(p, o) ≤ rmax, then

d(q, p) ≤ t− rmax ⇒ All the objects in Sp are solutions

max{d(q, p)− rmax, rmin − d(q, p)} > t ⇒ Sp can be excluded
(2.50)

2.4.6.3 Pivot-Pivot Distance Constraint

Whenever the distance d(q, p) is not explicitly computed, but a high and lower bounds of it are provided,
we can use the following principle:

Lemma 2.4.4 (Pivot-Pivot Distance Constraint [271]). Given a metric space (D, d) and objects q, p, o ∈
D such that rmin ≤ d(p, o) ≤ rmax and rmin

q ≤ d(p, q) ≤ rmax
q , the distance d(q, o) is bounded by the

range:
max{rmin

q − rmax, rmin − rmax
q , 0} ≤ d(q, o) ≤ rmax

q + rmax. (2.51)

Corollary. Given a range query R(q, t), a pivot p, and a cluster Sp such that for all x ∈ Sp we have
rmin ≤ d(x, p) ≤ rmax. If rmin

q ≤ d(p, o) ≤ rmax
q then

rmax
q ≤ t− rmax ⇒ All the objects in Sp are solutions

max{rmin
q − rmax, rmin − rmax

q } > t ⇒ Sp can be excluded
(2.52)

2.4.6.4 Double-Pivot Distance Constraint

Differently from the previous bounding rules, the double-pivots distance constrain, is based upon gener-
alized hyperplane partitioning. Let p1 and p2 two pivots used to partition the space S into

S1 = {x ∈ S | d(x, p1) ≤ d(x, p2)}
S2 = {x ∈ S | d(x, p1) ≥ d(x, p2)}.

According to the triangle inequity and the Lemma 2.4.1 (object-pivot distance constraint), any solution
s to the query R(q, t) is such that

d(q, pi)− t ≤ d(s, pi) ≤ d(q, pi) + t for i = 1, 2.

Assume, without loss of generality, that the query q lies in S2, then if d(q, p1)− d(q, p2) > 2t we have
d(s, p1)− d(s, p2) ≥ 0, which implies that s ∈ S2 and so S1 can be excluded.
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Figure 2.18: Assume to have a generalized Hyperplane partitioning of the space given two pivots p1 and
p2. The hyperplane Hp1,p2 divided the space into two subsets according to which of the two pivots is
closer. The boundary defined by the exclusion condition |d(q, p1)− d(q, p2)|/2 > t is a hyperbola
focused at p1 and p2, with semimajor axis t.

Lemma 2.4.5 (Double-Pivot Distance Constraint [271]). Assume a metric space (D, d), the objects
p1, p2 ∈ D, and on object o ∈ S1. Given a query object q ∈ D and the distances d(q, p1) and d(q, p2),
the distance d(q, o) is lower-bounded as follows:

max{d(q, p1)− d(q, p2)/2, 0} ≤ d(q, o). (2.53)

Corollary (Hyperbolic Exclusion). Assume a range query R(q, t) and a hyperplane partitioning of the
space S for the two pivots p1, p2 ∈ D. If q ∈ S1 then

d(q, p2)− d(q, p1)

2
> t ⇒ S2 can be excluded. (2.54)

By symmetry, if q ∈ S2 then

d(q, p1)− d(q, p2)

2
> t ⇒ S1 can be excluded. (2.55)

Regarding the example showed in Figure 2.16, since the query is closer to the pivot p2 than p3 and
since (d(q, p3)− d(q, p2)) /2 = 2.05 is bigger than t = 1.5 we can exclude the left subtree (objects
o2, o3, o7, o8, o9) saving 6 distance computations. Please, also note that this constrain does not employ
any already evaluated distance from a pivot to a database object, but only the distances between pivots
and the query.

We refer to the pruning rule 2.54 as Hyperbolic Exclusion to recall that all possible positions of
the query object q with a constant value (d(q, p2)− d(q, p1))/2 form a hyperbolic curve, which is the
boundary of the exclusion condition (see Figure 2.18).

2.4.7 Metric Access Methods for Exact Search
In this section, we present some basic index structures that exploit the partition and pruning rules intro-
duced in the previous section. We focus only on structures that are used or referred in the remainder of
this thesis. More comprehensive surveys can be found in literature [66, 133, 271].
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2.4.7.1 Vantage Point Tree

The Vantage Point Tree (VPT) [266] recursively partition the space using the ball partitioning principle
with median distance as covering radius. This lead to the construction of a balanced binary tree. Starting
with the whole dataset, this technique select a pivot p (also called vantage point) and split the data into
two subsets on the basis of the median distance rm from the pivot. So data points with distance from p
less than or equal to rm are stored in the left subtree, and the points with a distance greater than or equal
to rm are stored in the right subtree. Each subtree is then recursively partitioned by selecting a pivot and
using the same ball partitioning principle. One or more objects can be stored in the leaves.

The search algorithm for a range query R(q, t) traverses the VPT from the root to the leaves. For
each internal node, the distance between the actual pivot and the query is evaluated to decide if include
or not the pivot in the result set. Then the distances between the query and the pivots of the left and right
subtree are evaluated in order to decide which subtree needs to be accessed according to the pruning
rules reported in the Corollaries of Lemma 2.4.3 (range-pivot distance constraint) and Lemma 2.4.1
(object-pivot distance constraint). Note that both subtrees can be visited simultaneously.

2.4.7.2 Generalized Hyperplane Tree

The Generalized Hyperplane Tree (GHT) [252] recursively partition a dataset using the hyperplane par-
titioning: Two pivots p1 and p2 are selected at each node, the objects closest to p1 are stored in the left
subtree, the ones closest to p2 are stored in the right subtree. In this way a binary tree (not necessarily
balanced) is build over the data, such as the example showed in Figure 2.16.

The range search algorithm, in every step of the traversal, typically uses the Hyperbolic exclusion
(Corollary of Lemma 2.4.5) to decide which subtree to access.

2.4.7.3 Bisector Tree and Monotone Bisector Tree

The Bisector Tree (BST) [149], similarly to GHT, recursively divides the space using the generalized
hyperplane partitioning. Differently from GHT, BST stores at each node the covering radii, i.e. the
maximum and the minimum distance between the pivot and any objects in its subtree. The information
about the covering radii allows exploiting the radius-pivot distance constraint (Lemma 2.4.3) for space
pruning during a range search.

A variant of BST is the Monotonous Bisector Tree (MBT) [197]. The main idea of MBT is re-using
pivots of the internal nodes so that fewer distance computations are needed to build the index and execute
a query. Specifically, pivots representing the left and the right subtrees are copied to the corresponding
left and right child internal nodes.

2.4.7.4 Spatial Approximation Trees

The Spatial Approximation Tree (SAT) [191], also referred to as sa-tree, is a data structure that approaches
to the searched object spatially: it starts at some point in the space and gets iteratively closer to query.
Its core idea is building a graph where nodes are elements of the search space S and edges connect
each object (node) to its “strictly” neighbours. Having such ideal data structure allows one to spatially
traverse the search space by visiting neighbour objects that are closer and closer to a given database
object. However, this graph cannot uniquely be determined in a generic metric space [191, 271]. A
simplified structure is built instead: A root node p is arbitrarily chosen. Then a minimal set N(p) of its
neighbours are selected such that

o ∈ N(p) ⇐⇒ ∀x ∈ N(p) r {o}, d(o, p) < d(o, x).

This means that N(p) contains all the objects that are closer to p than to any other element of N(p).
ComputingN(p) is a non-trivial optimization problem so some heuristics (see [191]) are used in practice.
Once computed N(p) all the other elements not in N(p) ∪ {p} are assigned to their closest element in
N(p). Each element in N(p) is then recursively used as the root of a new subtree. The nodes of the tree
store their covering radii, i.e. the maximum distance between a node and any elements of the subtree
rooted at it. During the search SAT uses both Hyperbolic exclusion and pruning rules based on covering
radius: for a range query R(q, t), and a given node a with covering radius rmax

a then
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1. if d(q, p)− rmax
a > t then there is no need to consider the subtree rooted at a;

2. let c the closest element to q between {a}∪N(a)∪{ancestors of a}, for any b ∈ N(a) if d(q, b)−
d(q, c) > 2t there is no need to visit the children b.

It is worth noting that the tree is not balanced and its shape depends on the chosen root node (different
selections of the root will generate different trees with likely different search costs). Moreover, SAT is a
static data structure: once built it cannot handle object insertions or deletion.

A dynamic version of SAT, the Dynamic Spatial Approximation Tree (DSAT), was proposed in [193].
The DSAT is built incrementally, via insertion, but in this case the arity of the nodes is fixed and the
neighbours to a node are selected in the first-come-first-serve basis. As a consequence of this building
mechanism, a parent node is always “older” than its children (according to the insertion timestamps).

As highlighted by Chávez et al [65]: “A very surprising and unintended feature of the DSAT is the
boosting in the searching performance”. In fact, it was experimentally proved that SAT it is slower than
its dynamic version (for certain arity combinations), even if at construction time the former has a full
knowledge of the search space [194]. This unexpected result was further investigated in [65], where it
was showed that changing only the insertion policy of SAT and leaving all the other settings unchanged
highly boost the performance. They proved that even a random insertion policy produce a faster version
of SAT. Moreover they proposed to select “distal” instead of “proximal” nodes, which actually is the
opposing of the original SAT insertion policy. The resulting tree, named Distal Spatial Approximation
Tree (DiSAT) [65], showed promising results. The main rationale for using distal nodes is it increases
the separation of the hyperplanes while reducing the size of the covering radius, which allows more
exclusions at query time.

2.4.7.5 AESA and LAESA

The Approximating and Eliminating Search Algorithm (AESA) [258] is an indexing techniques based on
pre-computing all the object-to-object distances, which are then exploited to give efficient answers to
similarity search queries.

For a dataset of m objects {o1, . . . , om}, AESA computes the m(m − 1)/2 distances between all
pairs of objects. The distances are stored in a m × m symmetric matrix (or equivalently a table): the
element at position ij is the distance d(oi, oj).

During the search for a range query R(q, t), some data objects are used as pivots to filter and refine
a set of candidate results. The initial candidate set contains all the data objects. An object p is first
picked at random and used as a pivot: the distance d(q, p) is computed and used for pruning some object
according to the object-pivot distance constraint (Lemma 2.4.1). Specifically every object o such that
|d(p, q)− d(p, o)| < t is eliminated from the candidate set. Note that d(p, o) is a pre-computed distance.
The search algorithm then chooses another pivot from the remaining objects and repeats the previous
procedure to further eliminate some data objects. This process is repeated until the size of the candidate
set is small enough; then each candidate object o is compared with the query (i.e. the actual distance
d(o, q) is evaluated) and objects satisfying d(o, q) ≤ t are returned in the result set.

One main drawback of AESA is that both space and construction time complexity is quadratic with
the number m of data objects. For this reason AESA is applicable when indexing rather small data sets.

The Linear AESA (LAESA) [184] reduces this complexity by storing distances from objects to only
a fixed number n of pivots. The search procedure is nearly the same of AESA, except that not all the
objects are used as pivots, and that the pivot filtering (Eq.(2.47)) is used to filter out the objects. As for
AESA, objects in the resulting candidate set are then directly compared to the query object.

2.4.8 Metric Space Transformations
It is sometimes the case that a metric space transformation is applied before indexing a dataset or an-
swering to a query. The central idea is to project all the metric objects and the query itself to a new
metric space where the results of a query (or candidate set for it) can be efficiently computed. Typically
in the projected space the metric is less expensive then the original metric or less distance computation
are required to answer a query.
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For example the searching process used in LAESA (Section 2.4.7.5) is based on the following metric
embedding:

Φ : (D, d)→ (Rn, `∞)

o→ [d(o, p1), . . . , d(o, pn)]

given the set of pivots {p1, . . . , pn}. Then for a range queryR(q, t), if `∞(Φ(q),Φ(o)) > t we eliminate
the object o from the search because the Lemma 2.4.2 guarantees that `∞(Φ(q),Φ(o)) is never greater
than d(q, o). In other words, `∞(Φ(q),Φ(o)) is a lower bounding of d(q, o).

Definition 2.4.6 (Upper and Lower Bounds). Let f : (D1, d1)→ (D2, d2) a metric embedding. We say
that d2 is a lower-bounding of d1 (or f is contractive) if

∀x, y ∈ D1 d1(x, y) ≤ d2(f(x), f(y)). (2.56)

The distance d2 is an upper-bounding of d1 if

∀x, y ∈ D1 d1(x, y) ≥ d2(f(x), f(y)). (2.57)

Definition 2.4.7 (Proximity preserving). The mapping f : (D1, d1)→ (D2, d2) is proximity preserving
if

∀x, y, z ∈ D1 d1(x, y) ≤ d1(x, z) ⇒ d2(f(x), f(y)) ≤ d2(f(x), f(z)). (2.58)

If a the metric transformation is contractive then a range query can be directly performed in the
projected space; similarly, if it is proximity preserving then a k-NN query can be directly performed in
the projected space. However, as pointed in [66]: “most current algorithms for NN-queries are based in
range queries, and with some care they can be done in the projected space if the mapping is contractive,
even if it is not proximity preserving”.

A measure of how good is a metric space (D2, d2) in approximate another space (D1, d1) can be
provided in term of distortion:

Definition 2.4.8 (Distortion). The distortion for an approximation (D2, d2) of a space (D1, d1) mapped
by a function f : (D1, d1)→ (D2, d2) is the smallest D such that, for some scaling factor r

∀x, y, z ∈ D1 r · d2(f(x), f(y)) ≤ d1(x, y) ≤ D · r · d2(f(x), f(y)) (2.59)

A special case of proximity preserving mappings with distortion equal to one, is that corresponding
to projection that preserve all the actual interpoint distances:

Definition 2.4.9 (Isometric embedding). The mapping f : (D1, d1) → (D2, d2) is an isometric embed-
ding if d1(x, y) = d2(f(x), f(y)), for all x, y ∈ D1.

Clearly when the metric embedding is isometric then searching in the projected space is equivalent
to searching in the original space, whatever query paradigm is used.

2.4.8.1 Finite Isometric Embeddings

Now we focus on a particular class of metric embedding which preserve the distance between a finite set
of data objects. We used this class of transformations in Chapter 5 to improve the search in the so-called
supermetric spaces.

Definition 2.4.10 (Finite isometric embedding). A finite isometric embedding of one metric space (D1, d1)
in another (D2, d2) is achieved when for any finite selection X of points from D1 (X ⊂ D1, |X | < ∞)
exists a mapping function f : (D, d1)→ (D2, d2) such that d1(x, y) = d2(f(x), f(y)), for all x, y ∈ X .

We say that D1 is isometrically n-embeddable in D2 if this property is true for any finite selection of
n points from D1:
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Figure 2.19: For any three points x1, x2 and x3 whose distances satisfy the triangle inequality property,
a triangle can be constructed within 2D Euclidean space such that x′1 is at the origin, x′2 lies on the
X-axis, and x′3 is where the distances B and C intersect. From [74].

Definition 2.4.11 (Isometric n-embeddability). A metric space (D1, d1) is isometrically n-embeddable
into (D2, d2) if for any n points o1, . . . , on ∈ D1 there exists a function f : (D, d1) → (D2, d2) such
that

∀ i, j = 1, . . . n d1(oi, oj) = d2(f(oi), f(oj)). (2.60)

The idea of characterizing a space metrically by means of “n-point relations" seems to have origi-
nated in the paper [86] published in 1892 by de Tilly, a Belgian artillery officer. Some of the question
raised by de Tilly were answered by some mathematicians of the late 19th century, but only in 1928 Karl
Menger [182] provided a first systematic development of abstract distance geometry. As highlighted by
Blumenthal [51], “distance geometry may operate in any kind of space in which a notion of “distance”
is attached to any point-pair of the space”. The main interest of the distance geometry is in all those of
transformations of sets for which the distance between two points is invariant.

The first observation to be made in this context is that any metric space is isometrically 3-embeddable
in 2D Euclidean space (`22). This means that any three points of a metric space can be represented in
two-dimensional Euclidean space while preserving all the three interpoint distances (see Figure 2.19).
The 3-embeddability in 2D Euclidean space is apparent from the triangle inequality property of a proper
metric. In fact, the two properties are equivalent: for any semimetric space which is isometrically 3-
embeddable in `22, triangle inequality also holds.

It turns out that many useful metric spaces have a stronger property: they are isometrically 4-
embeddable in 3D Euclidean space (`32), i.e. any four points of the space can be represented in a three-
dimensional Euclidean space while preserving all the

(
4
2

)
= 6 interpoint distances. In the mathematical

literature, this has been referred to as the four-point property [51]. Wilson [262] shows various properties
of such spaces, and Blumenthal [51] points out that results given by Wilson, when combined with work
by Menger [182], generalise to show that some spaces have the n-point property: that is any n points can
be isometrically embedded in a Euclidean (n− 1)-dimensional space).

The most important results in finite isometric embeddings from the perspective of our work are given
by Schoenberg and Blumenthal. Schoenberg [229] shows that if a kernel function has certain simple
properties, then it can be used to construct a metric space which is isometrically embeddable in a Hilbert
space 9. Blumenthal [51] shows that any space which is isometrically embeddable in a Hilbert space has
the n-point property for every possible integer n. In combination these are extraordinarily strong from
our perspective: for any kernel function with the correct properties, we can construct a proper metric
space with the n-point property. We have studied such spaces in the context of metric search where we

9A Hilbert space H can be thought of as a generalization of Euclidean space to any finite or infinite number of dimensions. It
is an inner vector space which is also a complete metric space with respect to the distance function induced by the inner product.
This means that every Cauchy sequence in (H, d) converges to a point in H (intuitively, there are no “points missing” from H).
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show how the n-point embeddings can be used to improve metric indexing and searching. We expand on
this observation in Chapter 5.

2.4.9 Permutation-Based Approximate Similarity Search
The precise processing of a similarity query can be relatively expensive in terms of computational cost.
In fact, if the search space is very large or it has a high intrinsic dimensionality, the exact methods rarely
outperforms the sequential scan [190, 261]. Thus, an approximate search is likely to be of use in cases
where the exact search is intractable. Algorithms for approximate search can be much more efficient
than exact ones, at the expense of some accuracy reduction. However, controlled imprecision is totally
tolerated in many applications, such as in multimedia retrieval where the notion of “similarity” may differ
on the user’ expectations and close approximations may be good enough for human perception [99].

Approaches to approximate search can be broadly divided into two main categories [99,271]: (i) the
ones based on reducing the subset of data that needs to be examined; (ii) the ones which exploit some
space transformations.

The first category encompasses early termination strategies (e.g. stopping the search algorithm after
a certain percentage of the dataset has been accessed, or after a specified time has elapsed) and relaxed
branching strategies (e.g. use a “relaxed” pruning rule to avoid to access to region with a low likelihood
to contains solutions to the query).

In the second category, the approximation is given by changing the object representation and/or the
distance function in order to work in a more tractable space. A typical example is using a dimensionality
reduction methods, such as PCA. Metric transformations that provide lower bounds on the actual distance
are preferred when dealing with range queries. Metric transformations that are proximity preserving are
preferred when dealing with nearest neighbour queries. In facts, in such cases even if the result set
contains “false hits”, it is still possible to obtain the exact result set by subsequently refining the approx-
imate results according to the original distance function. Of course, the request is that the searching in
the embedded space is much more efficient than searching in the original space (e.g. embedding a space
with the Jensen-Shannon Distance into a small dimensional Euclidean space with the technique that we
propose in Section 5.4). However, there exist many approximate approaches using metric transforma-
tions that are not distance-preserving or that do not satisfy the lower bounding property. In that cases,
the desire is that the transformed space somehow preserve the proximity of the original objects and that
it can be efficiently indexed and searched. Successfully example are the LSH model [136] within its
extensions [46,174] and Permutation-Based Indexing (PBI) [36,64,96] approaches. In the following, we
introduce some measures of performance typically used to evaluate the efficiency and effectiveness of
approximate algorithms. We then review principles of PBI.

2.4.9.1 Performance Measures for Approximate Search

The main goal of approximate similarity search is to reduce search time for answering a similarity query
by introducing a possibly “small” error in the results. Thus, performance assessments

The improvement in efficiency of an approximate algorithm with respect to an exact search is ex-
pressed as the ratio between the cost of the exact and the approximate execution of a query. This is
mainly applied to early termination strategies. The cost may denote the number of disk accessed, or the
number of distance evaluation, to execute a query.

Several measures for assessing the accuracy of an approximation technique have been proposed in
the literature (see [271, ch.9]). We focus on precision and recall, introduced in Section 2.1.1, which are
widely used in information retrieval. In the context of approximate similarity search, the results-set of
the exact search play the role of a ground-truth. So, if R denotes the results-set of the exact search and
RA the result-set returned by the approximation algorithm, we have

precision =
|R ∩ RA|
|RA|

(2.61)

and

recall =
|R ∩ RA|
|R|

. (2.62)
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2.4. Similarity Search

Please note that in this context the interpretation of precision/recall may be misleading with respect their
typical use in information retrieval. For example, for a range query, may often happen that RA ⊆ R
and thus that precision is always 1 (e.g. when using contractive mappings). In this case, the precision
gives no useful information. Moreover, in the case ok a k-NN query the precision equals the recall since
the exact and the approximate result set have cardinality k. In such cases we will use the terminology
recall@k:

recall@k =
|R(k) ∩RA(k)|

k
(2.63)

whereR(k) andRA(k) are the top-k sets of results returned by exact and approximate similarity search,
respectively.

2.4.9.2 Permutation-Based Indexing

Permutation-based methods are characterized by representing each data object as a sequence of identi-
fiers (permutation) in such a way that similar objects have similar permutations. Similarity queries are
executed by searching for data objects whose permutation representation is similar to the query one.

Typically, the permutation is computed as a ranking list of some preselected reference points, called
pivots, according to their distance to a given object. In this case, the similarity between objects is assessed
on the basis of their relative distance to pivots.

The idea of approximating the distance between any two objects of a metric space by comparing
their permutation-based representation was originally proposed in [38, 64]. The main rationale behind
this proposal is that if two objects are very close one to the other, they will sort the set of pivots in a very
similar way, and thus the corresponding permutation representations will be close as well.

Permutation-based searching belongs to a class of filter-and-refine methods: given a query, the search
is firstly performed on a simplified representation of the original data (the permutation) in order to ef-
ficiently find a list of candidate results; the candidate set can be then refined by directly comparing
the candidate objects with the query, using the distance in the original space. Search methods based
on permutations mainly differ in the way of producing the candidate set (i.e. the filtering step). One
straightforward way is the brute-force searching in the permutation space. However, this approach is not
feasible on very large scale. Furthermore, when the distance in the original space is cheap to be com-
puted (e.g., Euclidean distance), the brute-force search in the permutation space is not much faster than
the brute-force search in the original space [190]. Several techniques for indexing and searching of per-
mutations were proposed, including (i) index permutations using inverted files, like the Metric Inverted
File (MI-File) [36] and its modifications (e.g. the Neighborhood APProximation index (NAPP) [241]);
(ii) using prefix tree, like the Permutation Prefix Index (PP-Index) [96], the Pivot Permutation Prefix
Index (PPP-Index) [200] and the M-index [198]; (iii) other existing index methods for generic metric
space [100].

In [24], various pivot selection techniques (namely, random selection, k-medoids [151], Balancing
Pivot-Position occurrences (BPP) [24], Farthest-First Traversal (FFT) [111], and Pivoted Space Incre-
mental Selection (PSIS) [60]) were tested on three permutation-based indexing/searching approaches
(i.e. MI-File, PP-Index, and linear scan of the permutations). The results revealed that each indexing
approach has its own best selection strategies but also that the random selection of pivots, even if never
the best, results in good performance.

In [109] a Surrogate Text Representation (STR) derived from the permutation representation has
been proposed. The conversion of the permutations in a textual form allows using off-the-shelf text
search engines to perform similarity search.

Permutation-Based Representation Let D a domain of data objects (e.g. image features), and let
d : D × D → R+ a dissimilarity function, such as a metric distance. Given a fixed set of pivots
P = {p1, . . . , pn} ⊂ D we define a permutation-based representation Πo (briefly permutation) of an
object o ∈ D as the sequence of pivots identifiers ordered by their similarity to o.

Formally, the permutation Πo = [Πo(1),Πo(2), ...,Πo(n)] lists the pivot identifiers {1, . . . , n} in an
order such that ∀ i, j ∈ {1, . . . , n}

Πo(i) < Πo(j)⇔
(
d(o, pΠo(i)) < d(o, pΠo(j))

)
∨
(
d(o, pΠo(i)) = d(o, pΠo(j)) ∧ (i < j)

)
. (2.64)
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p1p2

p3

p4

o1

o2

o3o4

o5

П𝑜1 = 2, 3, 1, 4

П𝑜1
−1 = 3, 1, 2, 4

p1 p2  p3  p4

Figure 2.20: Example of permutation-based representations of an object, given a set of four reference
points. Black points are data objects. Grey points are reference objects.

In other word, pΠo(j) is the pivot at position j in the ranked list of the nearest pivots to the the object o.
For example, given four pivots p1, p2, p3, p4 and an object o, if Πo = [2, 3, 1, 4] then p2 is the nearest
pivot to o, p3 is the 2nd nearest pivot, and so on.

By denoting as Π−1
o (i) the position of a pivot pi in the permutation Πo, we obtain an equiva-

lent representation Π−1
o = [Π−1

o (1),Π−1
o (2), . . . ,Π−1

o (n)], called inverted permutation, which satisfies
Πo(Π

−1
o (i)) = i. The inverted permutation is very useful for essentially one reason: it allows us to

represent permutations in a Cartesian coordinate system and easily define most of the commonly-used
distances between permutations as distances between Euclidean points.

In some applications just the l-nearest pivots are used to represent an object, with l < n. In this
cases, the truncated permutation (or permutation prefix), defined as Πo,l = [Πo(1), . . . ,Πo(l)], and the
inverted truncated permutation, defined as

Π−1
o,l (i) =

{
Π−1
o (i) if Π−1

o (i) ≤ l
l + 1 otherwise

(2.65)

are used.
In summary, the value at the coordinate i in the permutation Πo is the identifier of the pivot at i-th

position in the ranked list of the nearest pivots to o. In the inverted representation Π−1
o , each coordinate

dimension corresponds to a pivot and so the value at the coordinate i is the rank of the pivot pi in the list
of the nearest pivots to o (see also Figure 2.20).

Please note that the computation of the distances between pivots and the data objects is just one, yet
effective, approach to associate a permutation to each data object. For example, in Chapter 4 (Sec.4.2) we
propose an effective and efficient approach to generate permutations for indexing Convolutional Neural
Network features, without computing any object-pivot distances.

Distances between permutations Statisticians have used a number of different measures of closeness
for ranked lists. The works of Kendall and Gibbons [152] and Diaconis [91] provide a formal treatment
of this topic. The most used metrics to compare permutations in the context of PBI are the Kendall’s tau,
Spearman’s footrule, Spearman’s rho and the extensions of these metrics to partially ranked list (i.e.,
top-l distances) [80, 97].

Definition 2.4.12 (Kendall’s tau (Kτ )). The Kendal’s tau distance between two permutation Πx, Πy on
n elements equals the minimum number of pairwise adjacent transpositions to convert one permutation
to the other. Formally,

Kτ (Πx,Πy) =

n∑
i,j=1

Ki,j(Πx,Πy) (2.66)

where

Ki,j(Πx,Πy) =

{
0 if

(
Π−1
x (i)−Π−1

x (j)
) (

Π−1
y (i)−Π−1

y (j)
)
> 0

1 otherwise
. (2.67)
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Definition 2.4.13 (Spearman’s footrule (SF )). Given two permutations Πx, Πy on n elements, the Spear-
man’s footrule is defined as

SF (Πx,Πy) =
∑

1≤i≤n

(Π−1
x (i)−Π−1

y (i)) (2.68)

Definition 2.4.14 (Spearman’s rho (Sρ)). Given two permutations Πx, Πy on n elements, the Spearman’s
rho is defined as

Sρ(Πx,Πy) =

√ ∑
1≤i≤n

(
Π−1
x (i)−Π−1

y (i)
)2

(2.69)

The majority of PBI methods, e.g. [36, 96, 189, 198, 200], do not use the full-length permutations
in practice, but rather use only the nearest reference points to represent and compare data objects (i.e.
using the permutation prefixes typically in conjunction with top-l distances [97]). These approaches, on
one hand, follow the intuition that the most relevant information of a permutation is in the very first, i.e.
nearest, pivots. On the other hand, they are based on experimental results showing that using positions
of the top ` out of n pivots often lead to obtain better or similar effectiveness than using the full-length
permutation, resulting also in a more compact data encoding.

Example of top-l distances are the Spearman’s rho and the Spearman’s footrule with location param-
eter l, which were initially proposed in [97] to compare partial ranked list ( a list that contains rankings
for only a subset of items).

Definition 2.4.15 (Spearman’s footrule/rho with location parameter l (SF,l / Sρ,l)). Given two permu-
tations Πx, Πy on n elements, and theirs truncated permutations for an integer l < n, we define the
Spearman’s footrule with location parameter l as

SF,l(Πx,Πy) =
∑

1≤i≤n

(Π−1
x,l (i)−Π−1

y,l (i)). (2.70)

Similarly, the Spearman’s rho with location parameter l is defined as

Sρ,l, (Πx,Πy) =

√ ∑
1≤i≤n

(
Π−1
x,l (i)−Π−1

y,l (i)
)2

. (2.71)

Note that only the first l elements of the permutations are needed, in order to compare any two objects
with the Sρ,l or SF,l.

Permuthahedron Since the inverted permutation representation Π−1
x belongs to Rn, the Spearman’s

rho between two (truncated) permutations corresponds to the Euclidean distance between the corre-
sponding inverted (truncated) permutations. Similarly, the Spearman’s footrule distance corresponds to
the Manhattan distance between the inverted (truncated) permutations. Thus, the use of the inverted
representations allows us to represent the permutations of the pivots identifiers in a Cartesian coordinate
system.

For example, let consider all possible permutation-based representation of n = 3 objects (i.e., the
set of all permutations on 3 elements): {[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]}. It is easy to
see that all these points lie on the plane x+ y+ z = 6 and represent the vertices of a regular hexagon as
depicted in Figure 2.21.

Consider now the n = 4 case: the vectors of all possible Π−1
o lie in a three-dimensional subspace of

R4 and are the vertices of a truncated octahedron (see Figure 2.22).
In general, the n! points x obtained by permuting the coordinates of the vector [1, 2, . . . , n], form the

vertices of a (n− 1)-dimensional polytope embedded in a n-dimensional space, referred to as permuta-
hedron (also spelled permutohedron) [107, 280]. In particular, given that both the sum of vector values
xi (i.e., Π−1

o (i)) and the sum of their squared values are fixed, all the vertices of the permutahedron lie
on both the hyperplane of equation

x1 + x2 + · · ·+ xn =
n(n+ 1)

2
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Figure 2.21: The six points in R3 obtained
by permuting the coordinate of the vector
(1, 2, 3). From [31].
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Figure 2.22: Permutahedron with 4! = 24
vertices. From [31].

the n−sphere of equation

x2
1 + x2

2 + · · ·+ x2
n =

n(n+ 1)(2n+ 1)

6
.

That is they lie on a n − 1 sphere residing in n-dimensional space given by the intersection between an
hyperplane and a sphere both in Rn [228].

The permutahedron is a very interesting convex polytope. It is centrally symmetric and its vertices
can be identified with the permutation of n objects in such a way that two vertices are connected by an
edge if and only if the corresponding permutations differ by an adjacent transposition. It is rather easy
to see that the squared Euclidean distance between any two vertices is an even integer, moreover, for
n > 4, the squared distances constitute every even integer up through the maximum possible value, that
is 1

3 (n3 − n) [228, 280].
As observed in [228], standing on any vertex of a permutahedron and looking around at neighbouring

vertices, the view of the surrounding space is the same: there would be n − 1 adjacent vertices evenly
distributed around the observation vertex, which Euclidean distance is

√
2. Furthermore, the number of

vertices and their relative positions within a generic r-ball neighbourhood is independent of the observa-
tion vertex. This is not true in practice: Skala [234] proved that not all the permutations actually exist in
the permutation-based encoding defined by a given preselected pivots.

Other observations on PBI Choosing the total number n of the pivots and the prefix length l of
the truncated encodings is an open issue. They seem to depend on the size of the dataset, its intrinsic
dimensionality and on the distance used to compare the permutations. Some heuristics were proposed in
the literature. Amato et al. [36] proposed to use n > 2

√
N reference objects, where N is the size of the

dataset. They used the Spearman’s footrule distance with location parameter l (SF,l) and experimentally
observed that if the dataset is clustered, the optimal parameter l is around N/cl, where cl is the number
of clusters in the dataset.

In [189], Mohamed and Marchand-Maillet also used SF,l and empirically derived that with their
Metric Suffix Array (MSA) the best ratio between the number of nearest pivots and the dataset is l =√
N/2 and the closest pivots can be chosen out of n = 2l reference points.

In general, choosing the total number n of pivots and the optimal length l highly depends also on
the used index. For example, the MI-File [36] benefits from using high value for n and relatively small
number l (e.g. n = 2, 000 and ` = 100 to index 1M-CoPhIR dataset [54]), while M-index [198], PP-
Index [96] and PPP-Index [200] achieve good recall using short prefix and relatively few pivots (e.g.
n = 100/200 and l = 6/8 to index 1M-CoPhIR dataset) but they typically build several copies of the
index using different set of pivots (e.g. 4 indexes).
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2.5. Datasets

2.4.9.3 Surrogate Text Representation

In [109], Gennaro et al. firstly proposed a technique, called Surrogate Text Representation (STR), that
exploits the permutation-based representation to associate an object with a text encoding. As pointed
in [19], “the objective is to define a function that transforms a global descriptor into a sequence of terms
(i.e. a text document) that can be fed into a text search engine as for instance Lucene. Of course, the
ultimate goal is to obtain that the distance between the documents and the query is an approximation of
the original distance function of the global descriptors”. Thus the main advantage of the text encoding
of a metric object is that any off-the-shelf text retrieval engine can be used to perform similarity search.

The textual representation is obtained by associating each pivot with a unique alphanumeric keyword
and each object with a sequence of the keywords, built on the basis of the permutation-based represen-
tation of the object. Specifically, given a set of n pivots, each object o is first encoded as a permutation
Πo of the pivot identifiers. Each pivots pi is then associated to a unique keywords τi (e.g., τ1 =“A”,
τ2 =“B”, etc.) and each object permutation Πo is transformed into a text document to composed as the
concatenation of some keywords. The text is build in such a way that the occurrence of the keyword τi
in to reflects the closeness of the pivot pi to the object o. So, if considering the inverted permutation
Π−1
o we have that the lower the value Π−1

o (i) the higher the frequency of the term τi in the document to.
Formally, the text document is a space-separated concatenation of one or more keywords as follows:

to =

n⋃
i=1

n−Π−1
o (i)⋃

j=1

τi, (2.72)

where, by abuse of notation, we denote the space-separated concatenation of keywords with the union
operator ∪. For example, given an inverted permutation Π−1

o = [3, 1, 4, 2] and the codebook { τ1 =“A”,
τ2 =“B”, τ3 =“C”, τ4 =“D”} we obtain that in to the frequency of “A” is 4 − 3 = 1, the frequency of
“B” is 4− 1 = 3, and so on, obtaining to =“B B B D D A”.

The next step is index the transformed objects with inverted files. In order to reduce the size of the
inverted index, just l < n closest pivots are used for indexing, i.e. a location parameter is considered. In
this case the text encoding is

to,l =

n⋃
i=1

l+1−Π−1
o,l (i)⋃

j=1

τi. (2.73)

Typically, two different location parameters are used: lo for indexing and lq for querying since the
performance of the inverted files is optimal when the size of the queries are much smaller than the size
of the documents. Thus, the general requirement is lq < lo.

The resulting text representations are then indexed and searched by using conventional text search
engine, such as Lucene, that typically use Cosine Similarity to measure the matching degree of a query
vector with document vectors. The justification is that, given two objects o and q, the Cosine Similarity
between the textual representation to and tq reflects the similarity between the permutations Πo and Πq

if the Spearman rho distance is used for comparing the permutations. We provide a formal proof of this
in Section 4.1.1, where we also propose an extension of the baseline STR for effectively encoding VLAD
features. In summary, the baseline STR representation is equivalent to the permutation representation
with the Spearman rho distance. The main advantage of STR with respect to the permutations is that it
gives us the possibility of exploit high-performance text search engine library with little implementation
effort.

2.5 Datasets

In this Section, we summarize datasets used in the later chapters (grouped on the basis of their use in this
thesis).

47



“main” — 2018/5/6 — 19:17 — page 48 — #74i
i

i
i

i
i

i
i

Chapter 2. Background

2.5.1 Datasets used for Retrieval and Recognition Tasks
Here we report image collections for which a ground-truth is provided, or it has been manually built from
us. The ground-truth is used to measure the retrieval performance of various tested approaches.

INRIA Holidays [139] is a collection of 1, 491 images which mainly contains personal holidays pho-
tos. The images are of high resolution and represent a large variety of scene type (natural, man-made,
water, fire effects, etc). The dataset contains 500 queries, each of which represents a distinct scene or
object. For each query, a list of positive results is provided. Some example images are shown in Figure
2.23. This dataset is used in the experiments of Chapters 3 and 4.

Figure 2.23: Example photos from the INRIA Holidays dataset.

Oxford5k [211] consists of 5, 062 images collected from Flickr. The dataset comprise 11 distinct
Oxford buildings together with distractors. There are 55 query images: 5 queries for each building. The
collection is provided with a comprehensive groundtruth. For each query there are four image sets: Good
(clear pictures of the object represented in the query), OK (images where more than 25% of the object is
clearly visible), Bad (images where the object is not present) and Junk (images where less than 25% of
the object is visible or images with high level of distortion). Some examples of the collection are shown
in Figure 2.24. This dataset is used in the experiments of Chapter 3.

Figure 2.24: Example photos from the Oxford5k collection.

Epigraphic Database Roma (EDR) [3] is part of the international federation of Epigraphic Databases
called Electronic Archive of Greek and Latin Epigraphy (EAGLE). EAGLE federation’s purpose is to
collect all published Greek and Latin inscriptions up to the 7th century A.D., while EDR aims at collect-
ing the whole epigraphy of Rome and of the Italian peninsula. Presently EDR has records for 82, 921
inscriptions and contains 54, 374 photos. In Chapter 3 we describe a subset of 17, 155 photos related
to 14, 560 inscriptions that we had access and for which we have manually built a ground-truth. Some
example images are shown in Figure 2.25.

Figure 2.25: Example images from EDR collection.
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2.5. Datasets

Pisa Dataset [10] is composed of 1, 227 photos of 12 monuments and landmarks located in Pisa. This
dataset was created during the VISITO Tuscany project10 and the photo were crawled by Flickr 11. It is
divided into a training set consisting of 226 photos (20% of the dataset) and a test set consisting of 921
photos (80% of the dataset). Some example photos are shown in Figure 2.26. This dataset is used in the
experiments of Chapters 3.

Figure 2.26: Example photos from the Pisa dataset, uploaded to Flickr by the following users (left to
right): LivornoQueen, eddip51, allylic, and Bunburyshire.

2.5.2 Datasets Used for Training

The following data collections are used in our experiments for various learning stages (e.g., learning a
visual vocabulary).

Flickr60k [139] is composed of 67, 714 images extracted randomly from Flickr. This dataset is used
in the experiments of Chapters 3 as training set for INRIA Holidays dataset. Some examples of the
collection are shown in Figure 2.27.

Figure 2.27: Example photos from the Flickr60k dataset, uploaded to Flickr by the following users (left
to right): Don Stein, royare, Rob Phillips, and thegloaming.

Paris6k [212] contains 6, 300 high resolution images collected from Flickr by searching for famous
Paris landmarks. We used this dataset in the experiments of Chapters 3 as a training set for the Oxford5k
dataset, as proposed by the authors of the dataset. Some example images are shown in Figure 2.28.

Figure 2.28: Example photos from the Paris6k dataset. We downloaded the images from [9] where no
information about the authors of the photos is provided.

10http://www.visitotuscany.it/index.php/en
11Some photos are no longer available on Flickr, however we have access to whole dataset thanks to the collaboration with

ISTI-CNR
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Chapter 2. Background

2.5.3 Datasets Used for Similarity Search
Finally, we report datasets used in the context of similarity search.

Yahoo Flickr Creative Commons 100 Million (YFCC100M) dataset [243] contains almost 100M
images, all uploaded to Flickr between 2004 and 2014 and published under a CC commercial or non-
commercial license. We used this dataset in Chapter 4. It is worth noting that in our experiments we do
not directly access to the images of this dataset, but we rather use the CNN features extracted by Amato
et al. [28]. In fact, for these features there exists a ground-truth for exact similarity related to 1,000
queries [28]. Some example images are shown in Figure 2.29.

Figure 2.29: Example photos from the YFCC100M dataset, uploaded to Flickr by the following users
(left to right): Johan Fabry, Ed Mitchell, Denise Fasanello, Patrick Ashley, and Barney Loehnis.

SISAP Colors and Nasa are two datasets that are commonly used as benchmarks for metric indexing
approaches. The Nasa [8, 101] dataset contains 40,150 feature vectors, each of 20 real coordinates,
generated from images downloaded from NASA photo and video archive site. The Colors [101] set
contains 112,682 feature vectors of dimension 112, representing color histograms of medical images.
We have not the access to the original images.

2.5.4 Other Datasets
Finally, we report other datasets used (or, implicitly used) in this thesis.

MIRFlickr [135] is a dataset of 1 million Flickr images. In literature, the MIRFlickr dataset is often
used as distractor set for the INRIA Holidays data, and we do the same in Chapters 3 and 4. In [79], it
was shown that MIRFlickr contains about 2, 407 pairs of near duplicate images, which makes this dataset
also attractive for testing near-duplicate detection algorithms. With this respect we used MIRFlickr data
in Chapter 5. Some example images are shown in Figure 2.30.

Figure 2.30: Example photos from ILSVRC2012, uploaded to Flickr by the following users (left to right):
Hugo Adolfo Beltran Olivas, Dave Wild, Martin P. Szymczak, and Silke Gerstenkorn.

ILSVRC2012 is a subset of the famous ImageNet [88], which is a very large visual database organized
according to the WordNet12 hierarchy. Actually, it contains more than 15M images related to about 22K
categories. The ILSVRC2012 is a subset of ImageNet created during the Large Scale Visual Recognition
Challenge 2012. It contains about 1.5 million images and 1, 000 classes. Even if we do not use this

12http://wordnet.princeton.edu/
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dataset explicitly, here we report it since it has been used as learning data for several pretrained CNN
models that we use in Chapters 3 and 4.

Places205 is a subset of Places Database [276], which is very large scene-centric database. Places
Database contains contain more than 7 million images from 476 place categories. Its subset Places205
contains 2.5 million images from 205 scene categories. As for ILSVRC2012, we do not explicitly use
Places205, but in the experiments of in Chapters 3 and 4 we use some CNN models trained on it.
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CHAPTER3
Efficient and Effective Image Features

Performance of CBIR and recognition systems, in term of efficiency and effectiveness, highly depends on
the features employed to represent the image visual content. Therefore, the research for “good” image
descriptors has been the object of much interest from the research community. State-of-the-art image
representations rely on local features (e.g. SIFT), aggregations of local features (e.g. FV), and deep
learning (e.g. CNN features), introduced in Sections 2.1 and 2.3. Local features are at the core of many
computer vision applications thanks to their robustness to geometric transformations and their effective-
ness for matching local structures between images. However, representing and comparing images on the
basis of local features is not efficient due to the complexity of extracting, storing, and matching the local
descriptors. On one hand, aggregation techniques provide a meaningful summary of all the extracted
features of an image into a single descriptor, allowing to speed up and scale up the image search. On
the other hand, the cost for extracting, representing, and comparing local visual descriptors has been
dramatically reduced by recently proposed binary local features (e.g. ORB). In order to achieve higher
efficiency, few works have recently mixed together these two research directions by defining aggregation
methods for binary local descriptors [108, 114, 163, 251, 257, 274]. In recent years, the popularity of the
local feature-based methods has been overtaken by deep learning approaches, which have demonstrated
impressive performance in many vision tasks. For example, Razavian et al. [217] showed that the ac-
tivations produced by an image within the top layers of a CNN can be used as high-level descriptors,
achieving state-of-the-art quality results for object image classification, scene recognition, fine-grained
recognition, attribute detection and image retrieval. Compared to descriptors built upon local features,
the CNN features seems to carry richer high-level semantic information. However, they are less robust
to some geometrical transformations of the images1, which are crucial to instance retrieval tasks. In [63]
a fusion of FV and CNN features was investigated to improve retrieval results and balance the lack of
geometrical invariance of the CNN features. Recently, other researchers exploited hybrid architecture in
order to achieve higher effectiveness [207, 231, 239].

In this chapter, we investigate both issues related to effectiveness and efficiency of image features.
First we focus on effective image features. Particularly, in Section 3.1 we compare effectiveness of FV,
CNN features and their combination. Our evaluation is performed in an applicative scenario that is rec-

1The robustness of the CNN features to image transformations depends on the used architecture and the training of the model.
In [63] it is shown that features extracted using some common pre-trained models are less robust to transformation such as rotation
or scale changes than FVs build upon SIFTs.

53



“main” — 2018/5/6 — 19:17 — page 54 — #80i
i

i
i

i
i

i
i

Chapter 3. Efficient and Effective Image Features

ognizing ancient inscriptions and other objects of cultural heritage. Interestingly, combining FV and
CNN features into a single image representation allows us to achieve very high effectiveness. In Section
3.2, we focus on efficiency by performing an extensive comparison among the state-of-the-art aggrega-
tion methods applied to binary features. Furthermore, we mathematically formalize the application of
Fisher Kernels to binary features by proposing the BMM-FV, which is a Fisher Vector computed using a
Bernoulli Mixture Model. Finally, we investigate the combination of the aggregated binary features with
the CNN features. Interestingly, the combination of the CNN with our BMM-FV allowed us to obtain a
relative improvement over the CNN results that are in line with that recently obtained in [63] using the
combination of the CNN with the FV built upon SIFTs. The advantage of using the BMM-FV is that
it relies on binary local features whose extraction process is about two orders of magnitude faster than
SIFTs (e.g. for extracting 2000 features from an image ORB takes about 26ms, while SIFT needs more
than one second [126]).

The research presented in this chapter was published in [18, 21, 34, 37, 53], as regards the evaluation
of effective image descriptors and its application to recognize ancient inscriptions, and [32, 33, 35] for
the research on the aggregations of binary local features and the definition of the BMM-FV.

Our research activity was conducted in the context of the Europeana network of Ancient Greek and
Latin Epigraphy (EAGLE) that is a best-practice network partially funded by the European Commis-
sion. One of the main motivations of the project was to collect in a single repository information about
the thousands of Greek and Latin inscriptions presently scattered in a number of different institutions
(museums and universities) across all Europe. The collected information, about 1.5 million digital ob-
jects (texts and images), represent approximately 80% of the total amount of classified inscriptions in
the Mediterranean area. That information is ingested into Europeana and is also made available to the
scholarly community and to the general public, for research and cultural dissemination, through a user-
friendly portal. The EAGLE portal2 supports advanced query and search capabilities, including visual
search [12,18,37]. In order to increase the usefulness and visibility of its content, EAGLE has developed
also a mobile application [53] that enables users (like tourists and scholars) to obtain detailed information
about the inscriptions they are looking at by simply taking pictures with their smartphones and sending
them to the EAGLE portal for recognition (e.g., Figure 3.1). This represents a profitable and user-friendly
alternative to the traditional way of retrieving information from an epigraphic database, which is mainly
based on submitting text queries, for example, related to the place where an item was found or where it
is currently located.

3.1 Evaluation of the State-of-the-Art for Visual Recognition

In this section, by discussing an applicative scenario, we compare several image representations that can
be used to perform image retrieval and recognition. In particular, we thoroughly tested FV, CNN, and
their combinations to visually recognize ancient inscriptions, such as Greek and Latin epigraphs. We then
compare the obtained results with that we previously achieved in this context by using BoW and VLAD
representations [30]. Our experiments, conducted on 17, 155 photos related to 14, 560 inscriptions, show
that BoW and VLAD are outperformed by both Fisher Vector and CNN features. More interestingly,
combining FV and CNN features into a single image representation allows us to achieve very high
effectiveness by correctly recognizing the query inscription in more than 90% of the cases (rather than
about 70% previously obtained with BoW and VLAD [30]). Our results suggest that combinations of FV
and CNN can be effectively exploited to visually search other databases of objects, for example, related
to cultural heritage (monuments, landmarks, paintings, etc.). In this respect, we also report results of FV
and CNN features to search the Pisa Dataset [26] which contains photos of monuments and landmarks
located in Pisa. The combination of FV and CNN leads to improve the retrieval performance also in this
case.

2https://www.eagle-network.eu
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3.1. Evaluation of the State-of-the-Art for Visual Recognition

(a) Example of image search using the EAGLE Flagship Mobile Application
(https://www.eagle-network.eu/resources/flagship-mobile-app/)

(b) Example of image search using using the EAGLE Web Portal
(https://www.eagle-network.eu/image-search/)

Figure 3.1: An application that enables a user to get information about a visible inscription by taking
a photo, e.g. by using the EAGLE Flagship Mobile Application (a), or by uploading a query image
on the EAGLE Web Portal (b). The EAGLE visual search engine, developed by ISTI-CNR, retrieves
the photographed object from a database that currently contains more than 1 million inscriptions
and provides the related information to the user [18, 37, 53]. In the depicted example, the provided
information includes the transcription of the inscription (M(arcus) Vipsanius / Narcissus, / rogator
ab scaena.), the type of the inscription (sepulcralis), the type of the object (tabula), and its present
location (Roma), just to cite some.

3.1.1 Combining FVs and CNN Features
Recently, researchers have shown that CNN features and local features have complementary behaviour
under some image transformations. For example, in [63] extensive experiments on benchmark dataset
for image retrieval showed that FVs (computed from SIFT or SIFTPCA) are particularly robust to im-
age rotation, while the CNN features (extracted by common pre-trained models) have limited level of
rotation invariance. Furthermore, according to their experiments, the CNN features are less affected by
small-scale changes than FVs. So, in order to leverage on the positive aspects of both these methods,
Chandrasekhar et al. [63] proposed a fusion of FV and CNN features and other works [207, 231, 239]
have started exploring

Inspired by the recent literature, in this thesis we evaluate the combination of FV and CNN features
using the following approach. Each image is represented by a couple (c,f), where c and f are respec-
tively the CNN descriptor and the FV descriptor of a given image. Then, we evaluate the distance d
between two couples (c1,f1) and (c2,f2) as the convex combination of the `2 distances of the CNN
descriptors (i.e. ‖c1 − c2‖2) and the FV descriptors (i.e. ‖f1 − f2‖2). In other words, we define

d ((c1,f1), (c2,f2)) = alpha ‖c1 − c2‖2 + (1− α) ‖f1 − f2‖2 (3.1)
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Figure 3.2: Image recognition pipeline using the combination of FV and CNN

with 0 ≤ α ≤ 1. Choosing α = 0 corresponds to use only the FV approach, while α = 1 corresponds to
use only CNN features. In our case, both the FV and the CNN features are `2 normalized so the distance
function between the CNN descriptors has the same range value of the distance function between the FV
descriptors. Please note that combinations between CNN features and other image descriptors can be
computed in a similar way by considering the convex combination of the respective distances. However,
when the range of the two used distances is not the same, the distances should be rescaled before the
convex combination (e.g. divide each distance function by its maximum value) in order to balance the
contribution of each singular approach in the final result.

An example of visual recognition pipeline using FV and CNN is depicted in Figure 3.2.

3.1.2 Experiments on the Epigraphic Database Roma

Here we experimentally evaluate the state-of-the-art FV and CNN features, as well as their combinations,
for recognizing ancient inscriptions. We first introduce the used dataset (Section 3.1.2.1) and other
experimental settings (Sections 3.1.2.2 and 3.1.2.3). We then report results and their analysis (Sections
3.1.2.4).

3.1.2.1 Dataset and Ground Truth

Since ISTI-CNR was a partner of the EAGLE project, we had the opportunity to access and use a subset
of the Epigraphic Database Rome (EDR) [3] (described in Section 2.5.1), which was made available
to us by Sapienza University of Rome. The data subset we had access is composed of 17, 155 photos
related to 14, 560 inscriptions, so in most cases just one photo is provided for each inscription object.

To carry out our performance analysis, we selected 70 queries, i.e. images to be recognized, and we
manually built a ground truth for them. For each query, the ground truth contains all the images of the
EDR dataset that were associated with the same object of the query, according to their metadata. During
the retrieval tests we removed the query photo from the knowledge base. For this reason, we selected
as query only inscriptions that have more than one photo in the dataset. Furthermore, the queries were
carefully selected in order to represent the various types of inscriptions contained in the dataset (as, for
example, inscriptions with a different state of preservation, or incised on different material). Figure 3.3
shows five query examples together with the corresponding relevant images. It is worth noting that the
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3.1. Evaluation of the State-of-the-Art for Visual Recognition

Figure 3.3: Example of queries (on the right) and their associated images in the ground truth (on the
left).

EDR dataset (and so the ground truth) often contains very different viewpoints of the same object, which
makes the retrieval of all the images relevant to a given query more challenging.

3.1.2.2 Performance Measures

In order to recognize the actual object in a query image, we perform a visual similarity search between
all the images in the dataset. When examining the ranked result list of a query it is evident that the greater
the ranked position of a relevant image the less valuable it is for the user, because the less likely the user
will examine that image. The main goal is to have one relevant image as the first result. Whenever this is
not the case, it is interesting to understand at which position in the result list a relevant image appears. In
fact, in order to achieve better effectiveness, re-ranking techniques can be applied to the results list. Due
to efficiency issues, the re-ranking is typically performed on a subset of the result list (the top-ranked
results), which is the reason why we are interested in measuring the position of the first relevant image
in the result list. Therefore we report, for each technique, the probability p of finding an image of the
same query object within the first r results, varying r between 1 and 100.

The retrieval performance of each method was also evaluated by the mean Average Precision (mAP),
with the query removed from the ranking list. During the mAP computation, not just the first relevant
image but all the images associated with the query are considered. Therefore, while p(r) measures how
good each method is in reporting at least one relevant image in the first r positions of the result list, the
mAP reveals how good each method is in reporting all the relevant images in the top positions.

Details on how p(r) and the mAP are evaluated were described in Section 2.1.1.

3.1.2.3 Features Extraction

All the experiments were conducted using the publicly available Visual Information Retrieval library
(VIR) [98] and other open source libraries. Here we report the details on the used image features and
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Chapter 3. Efficient and Effective Image Features

how they were extracted.

Local features: We extracted SIFT local features by using OpenCV (Open Source Computer Vision
Library) [56]. We obtained an average of 1,591 SIFT per image. However, the information about
the scale at which the features were extracted allows us to select a subset of local features that
are in principle more relevant. In fact, features detected at higher scale refer to bigger regions
than others and should also be present at lower resolution versions of the same image or of the
same object. Thus, the criterion that the bigger the scale the higher the importance can be used
to perform feature selection, as proposed in [25]. In the experiments, we reduced the number of
local features extracted from an image by selecting the 250 features detected at highest scales. We
refer to the latter approach as reduced-keypoints. Clearly, the feature selection was not applied
whenever the number of features extracted from an image was already less than 250.

Subsequently, the SIFT descriptors are reduced from 128 to 64 components by using PCA. The
PCA rotation matrix was learned on about 2M of local features randomly selected from the whole
dataset. We will see that the advantage of using PCA-reduced descriptors is twofold: the PCA
decorrelates the dimension of the vectors, which is a wished property before the FV encoding, and
decreases the memory footprint of the descriptors.

GMM and Fisher Vector: We implemented and integrated methods to compute the Gaussian Mixture
Model and the Fisher Vector into the VIR [98], which is publicly available on GitHub. As com-
monly done in literature, and also described in Section 2.2.2.3, we estimate a GMM with the
assumption of diagonal covariance matrices. So we consider a GMM of parameters

λ = {wk,µk = [µk1, . . . , µkD],Σk = diag(σk1, . . . , σkD)}k=1,...,K

where K is the number of Gaussian, D is the dimension of each local descriptor, and wk, µk, Σk

are the mixture weight, the mean vector and the covariance matrix of the k-th Gaussian, respec-
tively. The parameters in λ were learned by optimizing a maximum-likelihood criterion with the
Expectation Maximization (EM) algorithm [50, ch.9]. EM is an iterative method that is deemed
to have converged when the change in the likelihood function, or alternatively in the parameters
to be estimated, falls below some threshold ε. As stopping criterion for the GMM estimation
we used the convergence in `2-norm of the mean parameters, choosing ε = 0.05. As suggested
in [50, ch.9], the GMM parameters used in EM algorithm were initialized with: (a) 1/K for the
mixing coefficients wk; (b) centroids precomputed using k-means for the GMM means µk; (c)
mean variance of the clusters found using k-means, for the diagonal elements σkd of the GMM
covariance matrices.

Both the k-means and the GMM estimation were performed using in order of 1M local descriptors
randomly selected from the whole dataset. As a common post-processing step [144, 209], the
FVs were power-law normalized and subsequently `2-normalized. We recall that he power-law
normalization is parametrized by a constant β and it is defined as x → |x|βsign(x). In our
experiments we used the common choice of β = 0.5.

We evaluated the performance of FV approach for various settings, summarized as follows.

• SIFT or SIFTPCA64: We built the FV both using full-size SIFT local descriptor (D=128)
and SIFT reduced to 64 dimensions by means of PCA (SIFTPCA64).

• Reduced-keypoint or not: We tested the scale selection of the local features, as described
above.

• FV or FVµ: We evaluated the performance of the whole FV as well as the FV related just
to the mean vectors (as defined in Equation 2.10, Section 2.2) that we indicate with FVµ. In
fact, in literature [143,144,208] the FV is often used considering the components associated
with the mean parameters only since it results in a more compact vector representation.

• K ∈ {32, 64, 128, 256} : We varied the number K of Gaussian mixtures. However, we did
not take into accountK bigger that 256 because the dimensionality of the resulting FV would
be very large and the estimation of the GMM expensive.
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3.1. Evaluation of the State-of-the-Art for Visual Recognition

CNN features: We tested four different pre-trained CNN models, downloaded from the Caffe Model
Zoo3, namely

• AlexNet (BVLC Reference CaffeNet). This model mimics the original AlexNet [155], with
minor variations as described in [146]. The model has 8 weight layers (5 convolutional + 3
fully-connected). It was trained on subset of ImageNet [88], that we refer to as ILSVRC20124,
with about 1.5 million images and 1, 000 classes. The input image are fixed-size to 227×227
RGB.

• OxfordNet [232]. This is an improved version of the model used by the VGG team in the
ILSVRC-2014 competition. The model was trained on ILSVRC2012 dataset and contains
16 weight layers (13 convolutional + 3 fully-connected). The input image are fixed-size to
224× 224 RGB.

• PlacesNet [276]. PlaceNet model shares the same architecture of BVLC Reference CaffeNet,
while being trained on 205 scene categories of Places Database [276] with about 2.4 million
images.

• HybridNet [276]. The architecture of HybridNet is the same as the BVLC Reference Caf-
feNet. The model was trained on 1,183 categories (205 scene categories from Places205
Database and 978 object categories from ILSVRC2012 5) with about 3.6 million images.

In our tests we used Caffe [146] and, for each model, we extracted the output of the last convo-
lutional layer after pooling (pool5) and the first two fully-connected layers (fc6, fc7). The only
preprocessing we did is resizing the input images to the canonical resolution (e.g. 227× 227 pix-
els for the AlexNet) and then subtracting from each pixel the mean RGB value (104, 117, 123)
computed on ILSVRC2012 data.

Most of the papers reporting results obtained using the CNN features maintain the ReLU [63, 94,
217], i.e., negative activations values are discarded replacing them with 0. In our experiments,
we reported the results obtained both with and without the ReLU. Moreover, we `2-normalize the
resulting descriptors, as done in [43, 63, 217].

Note that pool5 still contains spatial information from the input image, however it is very high
dimensional (25, 088 components for OxfordNet and 9, 216 components for AlexNet, PlacesNet,
and HybridNet). fc6 and fc7 are 4, 096-dimensional vectors.

3.1.2.4 Results

We start our experimental analysis by extensively testing both the FV and CNN approaches. Then, we
take into account the combination of FV and CNN features into a single image representation. Finally,
we compare our best results with the retrieval performances previously achieved in [30] using BoW and
VLAD image representations.

Fisher Vector In Figure 3.4 we show the mAP achieved by FV and FVµ varying the number K of
Gaussian mixtures and different local feature setting (SIFT/SIFTPCA and keypoint reduction). As ex-
pected the bigger K the better the performance. Moreover, the Fisher Vectors computed from SIFT-
PCA64 are more compact and more effective than the respective vectors computed from SIFT. This is a
consequences of the standard FV representation that assume a diagonal covariance matrix. So, perform-
ing PCA on the local descriptors before performing FV aggregation is crucial since it decorrelated the
dimensions of the descriptors (see also [144]). For this reason in the following we analyse just the results
obtained using SIFTPCA64.

The whole FV performs better than FVµ and, interestingly, the use of keypoint-reduction technique
further improves the results. Thus, the overall best mAP was 0.55, obtained using FV with K = 256 and
reduced-keypoints.

3https://github.com/BVLC/caffe/wiki/Model-Zoo
4See also Section 2.5 where all the used/cited datasets are described.
5Not all the 1,000 categories of ILSVRC2012 are used due to an overlap with some categories of Places205 Database.
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Figure 3.4: mAP for Fisher Vector descriptors, varying the number K of mixture components of the
GMM. FV indicates the full-sized Fisher Vector, while FV µ is the Fisher Vector referred only to the
mean values of the GMM. The representations are computed both using all the keypoints extracted
from images and the reduced-keypoint approach. In (a) we report the results obtained using SIFT
descriptors; in (b) we report the results obtained with SIFTPCA64 descriptors.

Table 3.1: Performance of various Fisher Vector representations. FV is the full-size Fisher Vector, while
FV µ is the Fisher Vector referred only to the mean values of the GMM. All the FVs were computed by
using SIFTPCA64. The Reduced-keypoints column indicates if the local feature selection was used.
K is the number of mixture components of the GMM. Dims and bytes are respectively the number of
components and the average size in bytes of each vector representation. The results are ordered with
respect to the mAP quality measure. Bold numbers denote maxima in the respective column.

Method Reduced K Dims Bytes mAP p p p
keypoints (r = 1) (r = 10) (r = 100)

FV × 256 33,024 132,096 0.55 0.73 0.76 0.87
FV × 128 16,512 66,048 0.52 0.69 0.76 0.84
FVµ × 256 16,384 65,536 0.51 0.69 0.77 0.86
FVµ × 128 8,192 32,768 0.50 0.67 0.74 0.80
FV 256 33,024 132,096 0.49 0.66 0.79 0.94
FV 128 16,512 66,048 0.48 0.64 0.76 0.93
FV × 64 8,256 33,024 0.48 0.63 0.76 0.83
FVµ 256 16,384 65,536 0.47 0.64 0.73 0.89
FV × 32 4,128 16,512 0.46 0.59 0.73 0.83
FVµ 128 8,192 32,768 0.45 0.60 0.73 0.89
FVµ × 32 2,048 8,192 0.43 0.57 0.66 0.79
FVµ × 64 4,096 16,384 0.43 0.57 0.71 0.81
FV 64 8,256 33,024 0.43 0.57 0.74 0.89
FVµ 64 4,096 16,384 0.42 0.56 0.64 0.84
FV 32 4,128 16,512 0.42 0.59 0.67 0.83
FVµ 32 2,048 8,192 0.39 0.59 0.67 0.79
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3.1. Evaluation of the State-of-the-Art for Visual Recognition

Table 3.2: Performance comparison of PCA-reduced FV encodings. The original FV was computed by
using SIFTPCA64 with reduced-keypoints. K is the number of mixture components of the GMM.
Dims and bytes are respectively the number of components and the average size in bytes of each
vector representation. Bold numbers denote maxima in the respective column. The fist column is
reported from Table 3.1 for reference.

Method Reduced K Dims Bytes mAP p p p
keypoints (r = 1) (r = 10) (r = 100)

FV × 256

33,024 132,096 0.55 0.73 0.76 0.87
PCA→ 8,192 32,768 0.54 0.71 0.74 0.86
PCA→ 4,096 16,384 0.55 0.70 0.77 0.86
PCA→ 2,048 8,192 0.51 0.66 0.73 0.83
PCA→ 1,024 4,096 0.40 0.51 0.66 0.71

Table 3.1 summarizes the obtained mAP and probabilities p of finding at least one relevant image
between the first r results, with r = 1, 10, 100. The results show that the keypoint reduction is in general
useful, especially according to the mAP and p(1) quality measures. For example the full-size FV with
K = 256 and reduced-keypoints correctly recognized the query object as the first result in the 73% of
cases. However, the use of all the extracted local features, respect to the reduced-keypoint approach,
has led to obtain better probabilities p for bigger value of r (e.g. in the 94% of the cases the FV with
K = 256 recognized the query object between the top 100 positions of the result list while the FV with
K = 256 and reduced-keypoints reached a probability of 87%).

We already observed that for the same K the FV outperforms FVµ and that the performances in-
creases with increasing K. However, in order to limit the size of the Fisher Vector representation, in
literature, the FVµ have been usually preferred to the full-size FV. This is not our case, because for the
same size of the final vector representation and for the same used local features, the whole FV provided
us with similar performance to that of FVµ also if the last uses biggerK. For example, FV withK = 128
and FVµ with K = 256 have quite the same dimension (about 16, 400 components) and similar mAP
(0.52/0.51) and probabilities p. However, the cost of learning the GMM and computing the FV increases
withK, so in our case it would be advisable to use the whole FV (with smallerK) than FVµ (with bigger
K).

The performances obtained using 256 mixtures of Gaussian are promising, but the resulting FV is
very high-dimensional. In order to reduce the cost of storing and comparing FV, we evaluated the effect
of PCA-dimensionality reduction. Table 3.2 shows the results for the PCA-reduced version of the FV
computed using 256 mixtures of Gaussian and reduced-keypoints. It is worth noting that the size of the
FV could be effectively reduced by 88% (from 33, 024 to 4, 096 components) maintaining performance
basically unchanged. Thus, it is clearly convenient to use FV in conjunction with PCA dimensionality
reduction.

CNN Features In figure 3.5 and table 3.3 we report the results obtained using the outputs of the last
convolutional layer (pool5) and the first two fully-connected layers (fc6, fc7) of the OxfordNet, Hybrid-
Net, AlexNet and PlacesNet. The outputs of fc6 and fc7 layers are considered both before and after
applying the ReLU activation function.

OxfordNet exhibits the overall best performance, followed by HybridNet and AlexNet. Features
extracted using PlacesNet, instead, have the lowest mAP results. Let us remind that HybridNet and
PlacesNet share the same architecture of AlexNet, while being trained on different datasets: AlexNet is
trained on 1.2 million images of ILSVRC2012, PlacesNet is trained on 2.4 million images of Places205
Database, and HybridNet is trained on both the previous datasets. The ILSVRC2012 is more object-
centric than Places205 dataset, so it could be considered more appropriate for our test data that contains
a lot of photos of peculiar objects (inscriptions) rather than scenes. Thus, our results confirm the fact,
already pointed out in [63], that an appropriate choice of the training dataset may improve retrieval
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Figure 3.5: mAP for CNN features extracted by the last convolutional layer (pool5) and the first two
fully-connected layers (fc6, fc7) of some state-of-the-art pretrained models, namely OxfordNet, Hy-
bridNet, AlexNet and PlacesNet. The outputs of fc6 and fc7 layers were analysed both before and
after applying the ReLU.

performance significantly. In facts, in our case, the models trained on ILSVRC2012 perform better than
the one trained on Places205 Dataset.

This suggests that results could be further improved if an epigraphic-related dataset is used for train-
ing or fine-tuning the CNN models. However, in our tests we used just pre-trained models for the follow-
ing reasons. First, a large amount of labeled data is needed to train the networks and we had not access
to such amount of epigraphic labeled images. The EDR dataset is not suitable for learning, nor for model
fine-tuning because in most cases contains just one image for an inscription. Moreover, several research
articles [63, 110, 217] have shown that CNN off-the-shelf features perform well for visual recognition
tasks even without using fine-tuning on domain-specific dataset.

In our tests, the ReLU activation function improves the results just for the OxfordNet descriptors
while the other CNNs have better performance by extracting the descriptor without applying the ReLU.
Layer pool5 performs the best for all CNNs and the performance drops with increasing in depth. We
expected this result, since deep learning methods learn representations of data with multiple levels of ab-
straction: the higher the level, the bigger the abstraction [112]. Thus, the higher layers are not only more
abstract but also more specific for the task on which it has been trained. In our case, we are interested
in recognizing ancient inscriptions whose visual appearance is very different from that captured by the
most of the classes of ILSVRC2012 and PlaceNet that were to train the considered CNNs model. So the
lower level features as the ones extracted from pool5 results more appropriate for our task. However, it
is worth mentioning that the dimensionality of pool5 is higher and thus the extracted feature larger.

In summary, the best results are achieved by OxfordNet pool5 with a mAP of 0.54 and probability
p(r) equals to 66%, 77%, 93% respectively for r = 1, 10, 100. These results are similar to that of Hy-
bridNet pool5 (mAP 0.53) and AlexNet pool5 (mAP 0.52). However, the dimensionality of OxfordNet
pool5 is almost triple that AlexNet or HybridNet pool5. To overcome this issue we analysed the effect of
the PCA dimensionality reduction. Table 3.4 reports results for PCA-reduced version of both OxfordNet
pool5 ad fc6. PCA results to be a worthwhile in term of both efficiency and effectiveness since it can
considerably reduce the dimensionality of the image descriptors without loss in accuracy. Conversely,
limited reduction tends to improve accuracy for both pool5 ad fc6. For example, Oxford pool5 which
originally has 25, 088 components and a mAP of 0.54, reaches a mAP of 0.57 when reduced to 2, 048
components and the probabilities p are improved after the dimensionality reduction as well.

The results related to the full-dimensional image descriptors, i.e. without PCA dimensionality re-
duction, show that FV approach slightly outperforms CNN features, in fact FV with K = 256 reaches
a mAP of 0.55 while the best mAP obtained using CNN features is 0.54 (OxfordNet pool5). However,
the deep features used in this set of experiments are very sparse (as consequence of the ReLU activation
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3.1. Evaluation of the State-of-the-Art for Visual Recognition

Table 3.3: Performance comparison of different output layers of OxfordNet, HybridNet, AlexNet and
PlacesNet. Dims and bytes are respectively the number of components and the average size in bytes
of each vector representation. Results are ordered with respect to the mAP measure. Bold numbers
denote maxima in the respective column.

Method Layer Dims Bytes mAP p p p
(r = 1) (r = 10) (r = 100)

OxfordNet pool5 25,088 100,352 0.54 0.66 0.77 0.93
HybridNet pool5 9,216 36,864 0.53 0.66 0.81 0.90
AlexNet pool5 9,216 36,864 0.52 0.66 0.81 0.89
OxfordNet fc6 ReLU 4,096 16,384 0.50 0.64 0.84 0.91
OxfordNet fc6 4,096 16,384 0.50 0.63 0.80 0.93
PlacesNet pool5 9,216 36,864 0.49 0.64 0.77 0.90
HybridNet fc6 4,096 16,384 0.48 0.59 0.80 0.93
AlexNet fc6 4,096 16,384 0.48 0.59 0.83 0.87
HybridNet fc6 ReLU 4,096 16,384 0.47 0.56 0.76 0.90
OxfordNet fc7 ReLU 4,096 16,384 0.45 0.59 0.74 0.86
OxfordNet fc7 4,096 16,384 0.44 0.56 0.76 0.89
AlexNet fc6 ReLU 4,096 16,384 0.44 0.54 0.79 0.86
HybridNet fc7 4,096 16,384 0.42 0.54 0.76 0.90
AlexNet fc7 4,096 16,384 0.41 0.50 0.71 0.84
HybridNet fc7 ReLU 4,096 16,384 0.41 0.53 0.71 0.87
PlacesNet fc6 4,096 16,384 0.38 0.49 0.64 0.90
AlexNet fc7 ReLU 4,096 16,384 0.37 0.44 0.69 0.86
PlacesNet fc6 ReLU 4,096 16,384 0.36 0.49 0.66 0.84
PlacesNet fc7 ReLU 4,096 16,384 0.27 0.49 0.64 0.90
PlacesNet fc7 4,096 16,384 0.25 0.49 0.64 0.90

Table 3.4: OxfordNet CNN: performance comparison after PCA dimensionality reduction. Results for
both pool5 and fc6 ReLU are reported. Dims and bytes are respectively the number of components
and the average size in bytes of each vector representation. The results related to the full-size features
(i.e. the pool5 and fc6 features before PCA-reduction) are reported from Table 3.3 for reference. Bold
numbers denote maxima in the respective column and for each approach.

Method Layer Dims Bytes mAP p p p
(r = 1) (r = 10) (r = 100)

OxfordNet pool5

25,088 100,352 0.54 0.66 0.77 0.93
PCA→ 4,096 16,384 0.57 0.70 0.80 0.93
PCA→ 2,048 8,192 0.57 0.70 0.83 0.93
PCA→ 1,024 4,096 0.55 0.67 0.81 0.90
PCA→ 512 2,048 0.53 0.66 0.81 0.90
PCA→ 256 1,024 0.50 0.63 0.77 0.87

OxfordNet fc6 ReLU

4,096 16,384 0.50 0.64 0.84 0.91
PCA→ 2,048 8,192 0.52 0.66 0.84 0.91
PCA→ 1,024 4,096 0.53 0.67 0.84 0.91
PCA→ 512 2,048 0.52 0.66 0.83 0.94
PCA→ 256 1,024 0.51 0.63 0.81 0.94
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function) while the FV are almost dense. This explains the more robustness to dimensionality reduc-
tion showed by the CNN features, which are therefore particularly suitable when very compact image
descriptors are needed to reduce the memory consumption. For example, OxfordNet fc6 reduced to just
256-dimensional vector achieve a mAP of 0.51 that is 10% higher than the mAP achieved by FV256
reduced to the same dimension. In addition, it is interesting to note that OxfordNet fc6 reduced to 2, 048
components (0.57 mAP) even outperform the overall best FV approach (0.55 mAP).

Combination of FV and CNN Features Here we report the results combining FV and CNN features
as described in Section 3.1.1. Figure 3.6 shows the mAP obtained by combining FVs with OxfordNet
pool5 and fc6 ReLU features. The FVs were computed using SIFTPCA64 with reduced-keypoints and
varying K from 32 to 256. The best results is a mAP of 0.75 obtained, as expected, by combining FV
and CNN features with their respective best settings, i.e. FV with K = 256 (0.55 mAP) and OxfordNet
pool5 (0.54 mAP). All the combinations show an improvement with respect to the single use of CNN or
FV features. It is interesting to note that, for an appropriate value of α, there is a valuable improvement
also when CNN is combined with less effective Fisher Vector, such that obtained with small K. The
advantage is having a minor cost for computing and storing the FV while still improving the retrieval
performance. To get an idea of the costs, in our tests that use a CPU implementations, the FV encoding of
a set of SIFTPCA64 descriptors required about 40 ms for K = 64, and about 160 ms for K = 256. The
extraction of the CNN feature using Caffe [146] took about 300 ms per image. However, the bottleneck
in the tested combinations of FV and CNN features was the SIFT extraction that took more than one
second per image.

According to our results, seems that exists an optimal α for each combination of FV and CNN, i.e.
a value such that mAP reach a maximum. The maximum performance was obtained for α between 0.2
and 0.3 when considering high number of Gaussian mixtures (i.e. K = 256, 128). Considering that the
SIFT influences the overall cost of the features extraction, the proposed combinations are not suitable for
applications that require high efficiency. Thus, in the following we focus on effectiveness, considering
the combination of the best FV and CNN approaches, that are FV with K = 256 and OxfordNet pool5
and fc6 ReLU. We fix α = 0.25 since it maximizes the performance of the considered combinations.
Table 3.5 summarizes the obtained results and explores also the PCA-reduced version of FV and CNN
features, given that both benefit from PCA-reduction. However, for FV we did not consider reduction to
less than 4,096 components since in these cases the mAP degraded as shown in Table 3.2. Interestingly,
for all the combinations we recognized the query as the first result between 84% and 93% of cases and
almost always we correctly recognized the query at least in the 100 top positions, even if the dimension
of the original descriptors is significantly reduced.

In our scenario, the combination of the OxfordNet pool5 (reduced to 1,024 components) with the
FV256 (reduced to 4,096 dimensions), could be considered as a good compromise between efficiency
and effectiveness since it has a relatively small representation (5,120 components) and reaches very high
performance (0.73 of mAP and p(r) equals to 89%, 96%, 100% respectively for r = 1, 10, 100).

Comparison with the State-of-the-Art To the best of our knowledge, in literature, the topic of visual
recognition of ancient inscriptions has only been faced in our previous work [30], where BoW and
VLAD approaches were analysed. The experimental set up (dataset, ground truth, quality measures,
local features extraction, etc.) used in [30] is the same as in this thesis, so the results are comparable.

In this section, we summarize the best results we obtained using FV, CNN and their combinations
(top part of the Table 3.6) and we compare them with the results previously achieved using VLAD and
BoW approaches (bottom part of Table 3.6).

In [30] the BoW approach achieved a maximum of 0.52 mAP using a visual vocabulary of 200, 000
words and performing geometric consistency check with RANSAC [102]. The VLAD approach with
256 visual words (computed using SIFT descriptors and reduced-keypoints) reached the same mAP and
slight better probabilities p(r). Quite worse results are obtained using BoW with 400,000 words and
using the cosine similarity measure in conjunction with tf-idf weighting scheme.

Interestingly, all the previous results of BoW and VLAD have been overcomed by both FV and
OxfordNet features, even if used individually (except for the full-size fc6 ReLU). For example, FV256
has quite the same dimensionality of VLAD256 but gets a 4% better mAP and slight better probabilities
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Figure 3.6: mAP for various combinations of FV and OxfordNet features. α = 0 corresponds to
use only FV, while α = 1 corresponds to use only the OxfordNet feature. The FV representations
are computed varying the number K of Gaussian mixture (for K = 32, 64, 128, 256) and using
SIFTPCA64 with reduced-keypoints. In (a) results for the combinations between FVs and OxfordNet
pool5 are reported. Similarly, in (b) the results of the combinations between FVs and OxfordNet fc6
ReLU are considered.

Table 3.5: Performance of various mixtures of FV and OxfordNet features, by using α = 0.25 in the
convex combination of FV and CNN distances. Both full-sized and PCA-reduced features are con-
sidered. The FV representations are computed using SIFTPCA64 with reduced-keypoints. Dims and
bytes columns indicate respectively the number of components and the average size in bytes of each
vector representation. For each approach, the bold numbers denote maxima in the respective column.

Method Dims Bytes mAP p p p
(r = 1) (r = 10) (r = 100)

pool5, FV256 58,112 232,448 0.75 0.93 0.97 0.99
(pool5→PCA 2,048), FV256 35,072 140,288 0.70 0.86 0.96 1.00
(pool5→PCA 1,024), FV256 34,048 136,192 0.70 0.87 0.96 1.00
(pool5→PCA 512), FV256 33,536 134,144 0.67 0.84 0.94 1.00
pool5, (FV256→PCA 4,096) 29,184 116,736 0.74 0.91 0.96 0.99
(pool5→PCA 2,048), (FV256→PCA 4,096) 6,144 24,576 0.73 0.89 0.96 1.00
(pool5→PCA 1,024), (FV256→PCA 4,096) 5,120 20,480 0.73 0.89 0.96 1.00
(pool5→PCA 512), (FV256→PCA 4,096) 4,608 18,432 0.69 0.84 0.96 1.00

(fc6 ReLU), FV256 37,120 148,480 0.68 0.87 0.94 1.00
(fc6 ReLU→PCA 2,048), FV256 35,072 140,288 0.68 0.86 0.97 1.00
(fc6 ReLU→PCA 1,024), FV256 34,048 136,192 0.68 0.86 0.94 1.00
(fc6 ReLU→PCA 512), FV256 33,536 134,144 0.68 0.86 0.93 1.00
(fc6 ReLU), (FV256→PCA 4,096) 8,192 32,768 0.67 0.84 0.94 1.00
(fc6 ReLU→PCA 2,048), (FV256→PCA 4,096) 6,144 24,576 0.68 0.86 0.97 1.00
(fc6 ReLU→PCA 1,024), (FV256→PCA 4,096) 5,120 20,480 0.68 0.84 0.97 1.00
(fc6 ReLU→PCA 512), (FV256→PCA 4,096) 4,608 18,432 0.68 0.84 0.94 1.00
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Table 3.6: Summary of the best results obtained using FV, CNN and their combinations, and comparison
with the state-of-the-art results achieved using BoW and VLAD. The combinations of FV and CNN
were computed using α = 0.25. The CNN features were extracted using OxfordNet. Results related
to FV and CNN are reported from Tables 3.1, 3.2, 3.3, 3.4, and 3.5. Results related to BoW and
VLAD are reported from [30]. Dim and Bytes are respectively the number of components and the
average size in bytes of each vector representation. The results are ordered with respect to the mAP
quality measure. Bold numbers denote maxima in the respective column.

Method Dim Bytes mAP p p p
(r = 1) (r = 10) (r = 100)

pool5, FV256 × 58,112 232,448 0.75 0.93 0.97 0.99
pool5, (FV256 →PCA 4,096) × 29,184 116,736 0.74 0.91 0.96 0.99
(pool5→PCA 1,024), (FV256→PCA 4,096) × 5,120 20,480 0.73 0.89 0.96 1.00
(pool5→PCA 512), (FV256→PCA 4,096) × 4,608 18,432 0.69 0.84 0.96 1.00
pool5→PCA 2,048 2,048 8,192 0.57 0.70 0.83 0.93
FV256 × 33,024 132,096 0.55 0.73 0.76 0.87
FV256→PCA 4,096 × 4,096 16,384 0.55 0.70 0.77 0.86
pool5 25,088 100,352 0.54 0.66 0.77 0.93
fc6 ReLU→PCA 1,024 1,024 4,096 0.53 0.67 0.84 0.91
FV128 × 16,512 66,048 0.52 0.69 0.76 0.84

VLAD256 [30] ? 32,768 131,072 0.52 0.69 0.74 0.84
BoW 200k RANSAC [30] • 4,773 19,092 0.52 0.66 0.70 0.74
BoW 400k Cos-TFIDF [30] ? 235 940 0.51 0.64 0.76 0.87

× Descriptor computed by using SIFTPCA64 with reduced-keypoints

• Descriptor computed by using SIFT

? Descriptor computed by using SIFT with reduced-keypoints

p(r). Furthermore, OxfordNet pool5, reduced to a vector of dimension 2, 048, far outperforms either
BoW and VLAD both in effectiveness and memory occupation.

The overall best results were obtained by combining FV256 with OxfordNet pool5, with a gain over
BoW and VLAD of +22% in mAP and +24% in retrieving a relevant image as the first result.

The mixture of FV256 with OxfordNet pool5 is very high dimensional (58,112 components) so a
PCA-reduced version of FV and CNN features are preferred to obtain more compact image representa-
tion while preserving effectiveness. However, as we previously observed, we did not consider reduction
of FV256 to less than 4,096 components since in these cases the mAP decreases and the retrieval gain
due to the features’ combination do not balance the extra cost of FV256 extraction with respect to the
single use of the PCA-reduced version of OxfordNet pool5.

In conclusion, our results show that combinations of FV and CNN achieve very high effectiveness
in recognizes ancient inscription and can be profitably used when efficiency is not the main concern.
The memory occupation can be downsized using PCA, and the cost of FV-CNN combination can be
reduced using cheaper FV (i.e., FV with small K). In Figure 3.7 we report some examples of top results
obtained using different image representations. Please note that while our objective is to recognize a
specific inscription (namely to have a correct answer in the first positions of the result list), the use of
CNN-features (both pure and combined with FV) allow us to retrieve images that, even if are not correct
answers, represent objects very similar to the query one. Thus, they are better from a qualitative point of
view.
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'077485'

pool5, FV256

(pool5→ 1,024), (FV256→4,096)

pool5→2,048

FV256→4,096

VLAD256

'076092-2'

pool5, FV256

(pool5→ 1,024), (FV256→4,096)

pool5→2,048

FV256→4,096

VLAD256

'076092-2'

pool5, FV256

(pool5→ 1,024), (FV256→4,096)

pool5→2,048

FV256→4,096

VLAD256

Figure 3.7: Qualitative results for different image representation approaches. On the left, we show the
query image; on the right, for each method, we report the top five results. The correct answers are
outlined in green. The query images are removed from the result list.
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Table 3.7: Performance of the combination of FV and OxfordNet pool5 feature, varying the parameter
α. α = 0 corresponds to use only FV, while α = 1 corresponds to use only the OxfordNet feature.
The FV was computed using K = 256 Gaussians. dim and bytes are respectively the number
of components and the average size in bytes of each vector representation. Bold numbers denote
maxima in the respective column.

(a) Full-sized descriptors

Method α Dim Bytes mAP p p p
(r = 1) (r = 10) (r = 100)

FV256 0 33,024 132,096 0.56 0.85 0.97 1.00
pool5, FV256 0.25 58,112 232,448 0.65 0.93 0.99 1.00
pool5, FV256 0.50 58,112 232,448 0.61 0.91 0.98 1.00
pool5, FV256 0.75 58,112 232,448 0.58 0.89 0.98 1.00
pool5 1 25,088 100,352 0.56 0.88 0.97 1.00

(b) PCA-reduced descriptors

Method α Dim Bytes mAP p p p
(r = 1) (r = 10) (r = 100)

FV256→PCA 4,096 0 4,096 16,384 0.51 0.82 0.97 1.00
(pool5→PCA 1,024), (FV256→PCA 4,096) 0.25 5,120 20,480 0.64 0.92 0.99 1.00
(pool5→PCA 1,024), (FV256→PCA 4,096) 0.50 5,120 20,480 0.61 0.90 0.98 1.00
(pool5→PCA 1,024), (FV256→PCA 4,096) 0.75 5,120 20,480 0.58 0.88 0.98 1.00
pool5→PCA 1,024 1 1,024 4,096 0.56 0.87 0.98 1.00

3.1.3 Experiments on the Pisa Dataset

The results on the Epigraphic Database Roma reported in the previous sections show that the use of
a combination of FV a CNN features leads to improve the retrieval performance with respect to use
the FV or the CNN feature alone. In this Section, we further analyse the retrieval performance of FV-
CNN combination in another cultural heritage context. To this scope, we used the publicly available
Pisa Dataset [10] (described in Section 2.5.1) that contains photos of 12 monuments and landmarks
located in Pisa. This dataset has also been used in [26,45,150] for classification and indexing tasks. The
experimental settings and the performance measure are the same used in the previous section. The total
number of queries is 921.

In Table 3.7 (a) we report the results obtained using FV with K = 256, OxfordNet pool5 and
their combinations for various values of the parameter α (used in the convex combination). Also in
this scenario the combination of FV and CNN features leads to improve the retrieval performance. As
happened in the experiments on the Epigraphic Database Rome, we observed that exists an optimal value
for the parameter α where the combination achieved the maximum mAP. The optimal α was obtained
around 0.25, where the corresponding mAP of 0.65 is achieved, while the use of either FV or CNN leads
to have a mAP of 0.56. For α = 0.25 we also correctly recognize the query as first results in the 93% of
the cases.

In Table 3.7 (b) we evaluated the case in which the PCA is used to reduce the dimensionality of
FV and CNN feature before the combination. We reduced the OxfordNet pool5 from 25,088 to 1,024
components and the FV representation from 33, 024 to 4, 096. Also in this case the optimal α was 0.25.
The retrieval results obtained using the PCA-reduced version of FV and CNN feature are in line with
that obtained using the full-sized descriptors. Thus also in this case it is better to use the PCA reduction
to have more compact representations while preserving the effectiveness.
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3.1.4 Summary

The previous sub-sections investigated the problem of visually recognize ancient inscriptions, or other
objects of cultural heritage, by testing state-of-the-art approaches for instance retrieval (VLAD, BoW,
FV, CNN features).

Extensive experiments showed that very high effectiveness can be achieved by combining FV and
CNN features. In fact, in more than 90% of the cases we correctly recognized the query objects using
a 1-NN classifier. Moreover, we achieved a mean average precision near to 0.70, which means that the
overall ordering of the results is good. Nevertheless, the combination of FV and CNN is costly due to the
extraction and storage of both FV and CNN features. We showed that PCA dimensionality reduction can
be effectively used to reduce the memory occupation of FV-CNN combination without loss in accuracy.
In addition, the cost of the FV computation can be reduced using small number of Gaussian mixtures
since also in this case we observed that the retrieval performance of CNN features is improved by the
combination with the FV. However, the extraction of both the image descriptors may still be too costly
to be dealt with devices with very limited resources, especially due to the SIFTs extraction. An efficient
alternative, proposed in the next section, is combining CNN features with a FV encoding of binary local
features, whose extraction process is up two orders of magnitude faster than SIFT.

3.2 BMM-FV: A Novel Efficient Approach for Encoding Binary Features

Now we focus on cases where the efficiency is one of the main concerns, as when considering applica-
tions running on devices with low resources, or when response time must be very fast. For this reason, we
consider the case where the binary local features are extracted and used to represent images, since their
extraction process is notable efficient [126, 221]. These features have a compact binary representation
that is not the result of a quantization, but rather is computed directly from pixel-intensity comparisons
(see Section 2.2.1).

Even if the process for extracting binary features is very efficient, each image is still represented by
thousands of local descriptors and, so there is a significant amount of memory consumption and time
required to compare local features within large databases. While the information provided by each local
feature is crucial for tasks such as image stitching and 3D reconstruction, for other tasks, including
image retrieval, the aggregation techniques provide useful summaries of the local features of an image.
The advantage is twofold: 1) reduction of the cost of image comparison (each image is represented by a
single descriptor rather than thousands of descriptors); 2) aggregated descriptors have been proved to be
particularly effective for image retrieval and classification tasks. Nevertheless, aggregation methods are
defined and used almost exclusively in conjunction with non-binary features, so the cost of extracting
local descriptors and to aggregate them on the fly is still high.

In this section, we investigate the use of state-of-the-art aggregation methods on the top of binary
local features. The objective is to improve efficiency and reduce computing resources needed for image
matching by leveraging on

We expect this topic to be relevant for applications running on devices with low CPU and memory
resources, as for instance mobile and wearable devices, that use binary features. In these cases, the
combination of aggregation methods with binary local features leads to scale up image search on large
scale, where direct matching is not feasible. In this section we:

• provide an extensive comparison and analysis of the aggregation methods applied to binary local
descriptors on two standard benchmarks, namely INRIA Holidays [139] and Oxford5k [211];

• propose a novel formulation of the Fisher Vector to encode binary descriptors, named BMM-FV.
Our FV encoding is built using a Bernoulli Mixture Model (BMM) and preserves the structure of
the traditional FV built using a Gaussian Mixture Model, so existing implementations of the FV
can be easily adapted to work also with BMMs;

• evaluate our BMM-FV on the top of several binary local features (ORB [221], LATCH [166],
A-KAZE [17]) whose performances have not been yet reported on benchmark for image retrieval;
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• evaluate the combination of the BMM-FV (and other encodings of binary features) with the emerg-
ing CNN features, including experiments on a large scale.

Our results show that the use of aggregation methods with binary local descriptors is generally effec-
tive even if, as expected, retrieval performance is worse than that obtained applying the same methods
directly to non-binary features. The BMM-FV approach provided us with performance results that are
better than all the other tested aggregations of binary descriptors. In addition, we found that some ag-
gregation methods lead to obtain very compact image representation with a retrieval performance com-
parable to that of direct matching, which actually is the most used approach to evaluate the similarity of
images described by binary local features. Finally, we show that the combinations of BMM-FV and CNN
improve the latter retrieval performances and achieves effectiveness in line with that obtained combining
CNN and FV built upon the costly SIFTs.

In the following sections we first review how traditional BoW and VLAD methods have been adapted
in literature to work with binary features (Section 3.2.1). Then we present our BMM-FV encoding
(Section 3.2.2), and finally, we report the experimental analysis (Section 3.2.3).

3.2.1 BoW and VLAD Encodings of Binary Local Features

Traditional BoW and VLAD approaches use a “visual vocabulary” to encode the local descriptors of
an image into a single fixed-size descriptor (see Sections 2.2.2.1 and 2.2.2.2). The visual vocabulary
is built by clustering a large set of local descriptors, where the centroids act as “visual words”. The
k-means [171] clustering is traditionally used to this scope.

In order to extend these encoding schemes to deal with binary features, we need a cluster algorithm
able to cope with binary strings and with the Hamming distance. The k-medoids [151] algorithms is
suitable for this scope, but it requires a computational effort to calculate a full distance matrix between
the elements of each cluster. In [114] it was proposed to use a voting scheme, named k-majority, to
process a collection of binary vectors and seek for a good set of centroids to be used with the BoW
model. Initially the centroids are randomly selected and each element of the collection is associated with
its nearest centroid (according to the Hamming distance). Subsequently, for each cluster, a new centroid
is computed by assigning 1 to its i-th bit if the majority of the binary vectors in the cluster have a 1 in
the i-th bit. The algorithm iterates until no centroids are changed during the previous iteration. After the
visual words are computed, the BoW aggregation is performed as usual, but using the Hamming distance
rather than the Euclidean when searching the closest centroid to a given descriptor. In [163,274] the BoW
model and the k-means clustering were modified to fit the binary features by replacing the Euclidean
distance with the Hamming distance, and by replacing the mean operation with the median operation. It
is immediate to prove that the resulting representation is equivalent to the BoW based on k-majority.

Of course, even in not explicitly investigated in literature, the k-majority and the k-medoids can be
also used to build the visual vocabulary for the VLAD representations. Alternatively, a naive way to
apply the VLAD scheme to binary local descriptors is treating binary vectors as a particular case of real-
valued vectors. In this way, the k-means algorithm can be used to build the visual vocabulary and the
difference between the centroids and the descriptors can be accumulated as usual. This approach was
used in [257], where a variation to the VLAD image signature, called BVLAD, was defined to work with
binary features. Specifically, the BVLAD is the binarization of a VLAD obtained using power-law, intra-
normalization, `2 normalization and multiple PCA. Thereafter we have not evaluated the performance of
the BVLAD because, unlike the other techniques of aggregation of binary features, it uses binarization
by thresholding which is an extra step after the aggregation phase. The binarization of the final image
signature was out of the scope our study.

3.2.2 BMM-FV and Other FV Encodings of Binary Features

The main idea of the Fisher Vector encoding (see Section 2.2.2.3) is to represents a set of data objects,
like the set of local descriptors extracted from an image, in term of its statistically property with respect to
a probability distribution p(·|λ) of some parameters λ ∈ Rm. The distribution p(·|λ) models a generative
process in the space of all the possible data observations, and typically it is estimated on a training set.
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Traditional definition of FV, uses a GMM to model the data, considering that any continuous distribution
can be approximated arbitrarily well by an appropriate finite Gaussian mixture [180, ch.6].

Since the Bernoulli distribution models an experiment that has only two possible outcomes (0 and 1),
a reasonable alternative to characterize the distribution of a set of binary descriptors is to use Bernoulli
Mixture Model (BMM). In order to encode binary local features, we derive and test an extension of the
FV, which we name BMM-FV, built using a BMM . Specifically, we chose p(·|λ) to be multivariate
Bernoulli mixture with K components and parameters λ = {wk,µk = [µk1, . . . , µkD]}k=1,...,K :

p(xt|λ) =

K∑
k=1

wkpk(xt), xt ∈ {0, 1}D (3.2)

where

pk(xt) =

D∏
d=1

µxtd

kd (1− µkd)1−xtd (3.3)

and
K∑
k=1

wk = 1, wk > 0 ∀ k = 1, . . . ,K. (3.4)

To avoid enforcing explicitly the constraints in (3.4), we used the soft-max formalism [154, 226] for
the weight parameters:

wk = exp(αk)/

K∑
i=1

exp(αi). (3.5)

So, given a set X = {xt, t = 1, . . . , T} of D-dimensional binary vectors, xt ∈ {0, 1}D, and as-
suming that the samples are independent we have that the score vectorGX

λ with respect to the parameter
λ = {αk,µk}k=1,...,K is (see Appendix A.1) the concatenation of

GXαk
=

T∑
t=1

∂ log p(xt|λ)

∂αk
=

T∑
t=1

(γt(k)− wk)

GXµkd
=

T∑
t=1

∂ log p(xt|λ)

∂µkd
=

T∑
t=1

γt(k)

(
xtd − µkd

µkd(1− µkd)

)
where γt(k) = p(k|xt, λ) is the occupancy probability (or posterior probability). The occupancy proba-
bility γt(k) represents the probability for the observation xt to be generated by the k-th Bernoulli and it
is calculated as γt(k) = wkpk(xt)/

∑K
j=1 wjpj(xt).

The FV of a set X is then obtained by normalizing the score GX
λ by the matrix Lλ, which is the

square root of the inverse of the Fisher Information Matrix (FIM), and by the sample size T . In the
Appendix A.2 we provide an approximation of FIM under the assumption that the occupancy probability
γt(k) is sharply peaked on a single value of k for each descriptor xt, obtained following an approach
very similar to that used in [226] for the GMM case. By using our FIM approximation, we got the
following normalized gradient:

GXαk
=

1

T
√
wk

T∑
t=1

(γt(k)− wk)

GXµkd
=

1

T
√
wk

T∑
t=1

γt(k)

(
xtd − µkd√
µkd(1− µkd)

)

The final BMM-FV is the concatenation of GXαk
and GXµkd

for k = 1, . . . ,K, d = 1, . . . , D and is
therefore of dimension K(D + 1).
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Table 3.8: Comparison of the structure of the FVs derived using BMM with that derived using GMM.
Parameters for BMM are λB = {wBk ,µBk }k=1,...,K and for GMM are λG = {wGk ,µGk ,Σ

G
k }k=1,...,K ,

where wB
k , µBk are the mixture weight and the mean vector of the k-th Bernoulli and wG

k µ
G
k , ΣG

k

are respectively the mixture weight, mean vector and the (diagonal) covariance matrix of the k-th
Gaussian.

Traditional FV (GMM-FV) [226]

GXαG
k
=

1

T
√
wGk

T∑
t=1

(
γGt (k)− wGk

)
GXµG

kd
=

1

T
√
wGk

T∑
t=1

γGt (k)
xtd − µGkd
σGkd

GXσG
kd

=
1

T
√
wGk

T∑
t=1

γGt (k)
1√
2

[
(xtd − µGkd)2

(σGkd)
2

− 1

]

BMM-FV (our formalization)

GXαB
k
=

1

T
√
wBk

T∑
t=1

(
γBt (k)− wBk

)
GXµB

kd
=

1

T
√
wBk

T∑
t=1

γBt (k)
xtd − µBkd√
µBkd(1− µBkd)

BMM-FV (Uchida et. al [251])

(GXαB
k

not explicitly derived in [251])

GXµB
kd

=

∑T
t=1 γt(k)

(−1)1−xtd

(µB
kd

)xtd(1−µB
kd)

1−xtd

T

√
TwBk

(∑K
i=1 w

B
i µ

B
id

(µB
kd

)2
+

∑K
i=1 w

B
i (1−µB

id
)

(1−µB
kd

)2

)

Sànchez [226] highlights that the FV derived from GMM can be computed in terms of the following
0-order and 1-order statistics: S0

k =
∑T
t=1 γt(k) ∈ R, S1

k =
∑T
t=1 γt(k)xt ∈ RD. Our BMM-FV can

be also written in terms of these statistics as

GXαk
=

1

T
√
wk

(S0
k − Twk)

GXµkd
=

S1
kd − µkdS0

k

T
√
wkµkd(1− µkd)

.

We finally observe that, as done with the traditional FV encoding, we used power-law and `2 nor-
malization of the final BMM-FV to improve its effectiveness.

An extension of the FV by using the BMM has been also carried in [227, 251]. Our approach differs
from the one proposed in [251] in the approximation of the square root of the inverse of the FIM (i.e.,
Lλ) . It is worth noting that our formalization preserves the structure of the traditional FV derived
by using the GMM, where Gaussian means and variances are replaced by Bernoulli means µkd and
variances µkd(1− µkd) (see Table 3.8). In [227], the FV formalism was generalized to a broader family
of distributions knows as the exponential family that encompasses the Bernoulli distribution as well as the
Gaussian one. However, [227] lacks in an explicit definition of the FV and of the FIM approximation in
the case of BMM which was out of the scope of their work. Our formulation differs from that of [227] in
the choice of the parameters used in the gradient computation of the score function 6. A similar difference
holds also for the FV computed in [227] using a GMM, given that in [227] the score function is computed

6A Bernoulli distribution p(x) = µx(1− µ)1−x of parameter µ can be written as exponential distribution p(x) = exp(ηx−
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w.r.t. the natural parameters of the Gaussian distribution rather than the mean and the variance parameters
which are typically used in literature for the FV representation [206,208,226]. Unfortunately, the authors
of [227] did not experimentally compare the FVs obtained using or not the natural parameters.

In our experiments, the FV derived as in [251] obtained very similar retrieval performance to that of
our BMM-FV, thus we report just the results obtained by using our formulation. Furthermore, we have
not experimentally evaluated the FVs computed using the gradient with respect to the natural parameters
of a BMM or a GMM as described in [227], because the evaluation of the performance obtained using or
not the natural parameters in the derivation of the score function is a more general topic which reserve
to be further investigated outside the specific context of the encodings binary local features.

3.2.3 Experiments
We now evaluate and compare the performance of aggregations of binary local features on two bench-
marks for image retrieval. We also compare the results against matching the local features without any
aggregation, which actually is the most used approach whenever the images are represented by binary
local features. First, we introduce the experimental settings (Section 3.2.3.1). Then we compare BoW,
VLAD, FV based on the GMM, and BMM-FV approaches to aggregate ORB binary features (Section
3.2.3.2). The performance of the BMM-FVs is evaluated using different binary features (namely ORB,
LATCH, and A-KAZE). We further test the combination of our BMM-FV with the CNN features (Sec-
tion 3.2.3.3). Finally, we report experimental results on large scale (Section 3.2.3.4).

3.2.3.1 Experimental Setup

Below is the description on the datasets, the performance measure and feature extraction procedures used
in the experiments.

Datasets The experiments were conducted using two publicly available datasets, namely INRIA Hol-
idays [139] and Oxford5k [211], that are de-facto standard benchmarking datasets for image retrieval
[40,139,143,144,208,245,275]. As in many other articles, e.g. [139,143,144,212], all the learning stages
(clustering, etc.) were performed off-line using independent image collections. Flickr60k dataset [139]
was used as training set for INRIA Holidays, while Paris6k dataset [212] was used as training set for
Oxford5k.

For large-scale experiments we combined the Holidays dataset with the 1 million MIRFlickr dataset
[135], used as distractor set as in [23, 139]. Compared to Holidays, the Flickr datasets is slightly biased,
because it includes low-resolution images and more photos of humans.

We described all these datasets in Section 2.5. Here we additionally note that when using INRIA
Holidays, as done by the authors of the dataset, we resized the images to a maximum of 786, 432 pixels
(768 pixels for the smaller dimension) before extracting the local features.

Features Comparison and Performance Measure The cosine similarity in conjunction with a term
weighting scheme (e.g., tf-idf) is adopted for evaluating the similarity between BoW representations,
while the Euclidean distance is used to compare VLAD, FV and CNN-based image signatures. Note
that in our case the Euclidean distance is equivalent to the cosine similarity (scos(x1, x2) = (x1 ·
x2)/(‖x1‖2‖x2‖2)) since the vectors are `2-normalized 7.

The image comparison based on the direct matching of the local features (i.e. without aggrega-
tion) was performed adopting the distance ratio criterion proposed in [126, 173]. Specifically, candidate
matches to local features of the image query are identified by finding their nearest neighbors in the

log(1 + eη)) where η = log( µ
1−µ ) is the natural parameter. In [227] the score function is computed considering the gradient

w.r.t. the natural parameters η while in this paper we used the gradient w.r.t. the standard parameter µ of the Bernoulli (as also
done in [251] ).

7If the vectors are `2- normalized then searching for the objects with greatest cosine similarity to the query is equivalent to
searching for the objects with lowest Euclidean distance from the query. In fact, in such case, we have scos(x1, x2) = 1 −
1
2
`2(x1, x2)2, which implies that the ranked list of the results to a query is the same (i.e., `2(x1, x2) ≤ `2(x1, x3) if, and only

if, scos(x1, x2) ≥ scos(x1, x3)∀x1, x2, x3).
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database of images. Matches are discarded if the ratio of the distances between the two closest neigh-
bours is above the 0.8 threshold. The similarity between two images is computed as the percentage of
matching pairs with respect to the total local features in the query image.

The retrieval performance of each method was measured by the mAP. In the experiments on INRIA
Holidays, we computed the average precision after removing the query image from the ranking list.
In the experiments on Oxford5k, we removed the junk images from the ranking before computing the
average precision, as recommended in [211] and in the evaluation package provided with the dataset.

Features Extraction Details on how the features for the various approaches were extracted are re-
ported in the following.

Local features: In the experiments we used ORB [221], LATCH [166], and A-KAZE [17] binary local
features. We used OpenCV [56] to extract up to 2, 000 local features per image.

Visual Vocabularies and Mixture Models: The visual vocabularies used for building the BoW and
VLAD representations were computed using several clustering algorithms, i.e. k-medoids, k-
majority and k-means. The k-means algorithm was applied to the binary features by treating the
binary vectors as real-valued vectors.

The parameters λB of the BMM and λG of the GMM were learned independently by using the
the Expectation Maximization (EM) algorithm [50, ch.9]. As stopping criterion, we used the
convergence in `2-norm of the mean parameters, choosing ε = 0.05 as convergence threshold. As
suggested in [50, ch.9], the BMM/GMM parameters used in EM algorithm were initialized with:
(a) 1/K for the mixing coefficients wBk and wGk ; (b) random values chosen uniformly in the range
(0.25, 0.75), for the BMM means; (c) centroids precomputed using k-means for the GMM means;
(d) mean variance of the clusters found using k-means for the diagonal elements of the GMM
covariance matrices.

All the learning stages, i.e. k-means, k-medoids, k-majority and the estimation of GMM/BMM,
were performed using in order of 1M descriptors randomly selected from the local features ex-
tracted from the training sets (namely Flickr60k for INRIA Holidays and Paris6k for Oxford5k).

BoW, VLAD, FV: The various encodings of the local features (as well as the visual vocabularies and
the mixture models) were computed using VIR [98], where we integrated the code for computing
the BMM-FV. These representations are all parametrized by a single integer K. It corresponds to
the number of centroids (visual words) used in BoW and VLAD, and to the number of mixture
components of GMM/BMM used in FV representations.

For the FVs, we used only the components Gµ associated with the mean vectors because, in this
context, we observed that the components related to the mixture weights do not improve the results
much.

As a common post-processing step [144, 209], both the FVs and the VLADs were power-law
normalized and subsequently `2-normalized. The exponent β = 0.5 was used in the power-law
normalization. We also applied PCA to reduce VLAD and FV dimensionality. The projection
matrices were estimated on the training datasets.

CNN features: We used Caffe [146] on the pre-trained HybridNet [276] model to extracted the output
of the first fully-connected layer (fc6) after applying the ReLU. The resulting 4, 096-dimensional
descriptors were `2 normalized. As preprocessing step we warped the input images to the canonical
resolution of 227 × 227 RGB and we subtract (from each pixel) the global mean RGB value
(104, 117, 123) computed on ILSVRC2012.

3.2.3.2 Comparison of Various Encodings of Binary Local Features

In Table 3.9 we summarize the retrieval performance of various aggregation methods applied to ORB
features, namely the BoW, the VLAD, the FV based on the GMM, and the BMM-FV. In addition, in
the last line of the table, we report the results obtained without any aggregation, which we refer to as the
direct matching of local features.
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3.2. BMM-FV: A Novel Efficient Approach for Encoding Binary Features

Table 3.9: Performance evaluation of various aggregation methods applied on ORB binary features. K
indicates the number of centroids (visual words) used in BoW and VLAD and the number of mixture
components of GMM or BMM used in FV representations; Dims is the number of components of
each vector representation. Bold numbers denote maxima in the respective column.

Method Local Learning K Dims mAP (%)

Feature Method Holidays Oxford5k

BoW ORB k-means 20,000 20,000 44.9 22.2
BoW ORB k-majority 20,000 20,000 44.2 22.8
BoW ORB k-medoids 20,000 20,000 37.9 18.8

VLAD ORB k-means 64 16,384 47.8 23.6
VLAD ORB k-means 64 PCA→ 1,024 46.0 23.2
VLAD ORB k-means 64 PCA→ 128 30.9 19.3
VLAD ORB k-majority 64 16,384 32.4 16.6
VLAD ORB k-medoids 64 16,384 30.6 15.6

FV ORB GMM 64 16,384 42.0 20.4
FV ORB GMM 64 PCA→ 1,024 42.6 20.3
FV ORB GMM 64 PCA→ 128 35.5 19.6

FV ORB BMM 64 16,384 49.6 24.3
FV ORB BMM 64 PCA→ 1,024 51.3 23.4
FV ORB BMM 64 PCA→ 128 44.6 19.1

Direct matching ORB 38.1 31.7

Table 3.10: Retrieval performance of our BMM-FV on INRIA Holidays and Oxford5k. K is the number
of BMM mixtures. Dims is the number of components of the final vector representation. Bold numbers
denote maxima in the respective column.

(a) Performance evaluation for increasing
number K of Bernullian mixture

components

K Dims mAP (%)

Holidays Oxford5k

4 1,024 32.0 14.3
8 2,048 38.2 17.4

16 4,096 41.9 19.4
32 8,192 45.9 21.3
64 16,384 49.6 24.3

128 32,768 52.3 26.4
256 65,536 53.0 27.3
512 131,072 54.7 27.4

(b) Results after dimensionality reduction when
K = 64 Bernoulli are used

K Dims mAP (%)

Holidays Oxford5k

64 16,384 49.6 24.3
64 PCA→ 4,096 52.6 25.1
64 PCA→ 2,048 51.8 24.3
64 PCA→ 1,024 51.3 23.4
64 PCA→ 512 48.2 21.7
64 PCA→ 256 45.9 20.3
64 PCA→ 128 44.6 19.1
64 PCA→ 64 42.9 17.2
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Table 3.11: Baseline aggregation methods on non-binary local features. Results are reported from
[143, 144] for reference.

Method Local Learning K Dims mAP (%)

Feature Method Holidays Oxford5k

BoW SIFT k-means 20,000 20,000 40.4 -
BoW SIFT PCA 64 k-means 20,000 20,000 43.7 35.4

VLAD SIFT k-means 64 8,192 52.6 -
VLAD SIFT k-means 64 PCA→ 128 51.0 -
VLAD SIFT PCA 64 k-means 64 4,096 55.6 37.8
VLAD SIFT PCA 64 k-means 64 PCA→ 128 55.7 28.7

FV SIFT GMM 64 8,192 49.5 -
FV SIFT GMM 64 PCA→ 128 49.2 -
FV SIFT PCA 64 GMM 64 4,096 59.5 41.8
FV SIFT PCA 64 GMM 64 PCA→ 128 56.5 30.1

Among the various baseline aggregation methods (i.e. without using PCA), the BMM-FV approach
achieves the best retrieval performance, that is a mAP of 49.6% on Holidays and 24.3% on Oxford. PCA
dimensionality reduction from 16, 384 to 1, 024 components, applied on BMM-FV, marginally reduces
the mAP on Oxford5k, while on Holiday allows us to get 51.3% that is, for this dataset, the best result
achieved between all the other aggregation techniques tested on ORB binary features.

Good results are also achieved using VLAD in conjunction with k-means, which obtains a mAP of
47.8% on Holidays and 23.6% on Oxford5k.

The BOW representation allows to get a mAP of 44.9%, 44.2%, 37.9% on Holidays and 22.2%,
22.8%, 18.8% on Oxford5k using respectively k-means, k-majority, and k-medoids for the learning of a
visual vocabulary of 20, 000 visual words.

The GMM-FV method gives results slight worse than BoW: 42.0% of mAP on Holidays and 20.4%
of mAP on Oxford5k. The use of PCA to reduce dimensions from 16, 384 to 1, 024 lefts the results of
GMM-FV on Oxford5k substantially unchanged while slightly improved the mAP on Holidays (42.6%).

Finally, the worst performance is that of VLAD in combination with vocabularies learned by k-
majority (32.4% on Holidays and 16.6% on Oxford) and k-medoids (30.6% on Holidays and 15.6% on
Oxford).

It is generally interesting to note that on INRIA Holidays, the VLAD with k-means, the BoW with
k-means/k-majority, and the FVs are better than direct match. In fact, mAP of direct matching of ORB
descriptors is 38.1% while on Oxford5k the direct matching reached a mAP of 31.7%.

In Table 3.10 we also report the performance of our derivation of the BMM-FV varying the number
K of Bernoulli mixture components and investigating the impact of the PCA dimensionality reduction
in the case of K = 64. In Table (3.10a) we can see that on the Holidays dataset, the mAP grows from
32.0% when using only 4 mixtures to 54.7% when using K = 512. On Oxford5k, mAP varies from
14.3% to 27.4%, respectively, for K = 4 and K = 512. Table (3.10b) shows that the best results for
K = 64 are achieved when reducing the full size BMM-FV to 4, 096 with a mAP of 52.6% for Holidays
and 25.1% for Oxfrod5k.

For completeness, in Table 3.11, we also report the results of the same baseline encodings approaches
applied to non-binary features (both full-size SIFT and PCA-reduced to 64 components) taken from liter-
ature [143,144]. As expected, aggregation methods in general exhibit better performance in combination
with SIFT/SIFTPCA then with ORB, especially for the Oxford5k dataset. However, it is worth noting
that on the INRIA Holidays the BMM-FV outperforms the BoW on SIFT/SIFTPCA and reach a similar
performance of the FV built upon SIFTs.

Summing up, the results show that in the context of binary local features the BMM-FV outperforms
the compared aggregation methods, namely the BoW, the VLAD and the GMM-FV. The performance
of the BMM-FV is an increasing function of the numberK of Bernoulli mixtures. However, for largeK,
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3.2. BMM-FV: A Novel Efficient Approach for Encoding Binary Features

Table 3.12: Average time costs for computing various image representations, using a CPU implemen-
tation, on an Intel i7 3.5 GHz. The cost of computing the CNN feature of an image was estimated
using a pretrained AlexNet-like model and the Caffe framework [146]. The values related to the FV
refers only to the cost of aggregating the local descriptors of an image into a single vector and do
not encompass the cost of extracting the local features, neither the learning of the Gaussian or the
Bernoulli Mixture Model which is calculated off-line. The cost of computing FV varies proportion-
ally with the quantity TKD, where T is the number of local features extracted from an image, K is
the number of mixtures of Gaussian/Bernoulli, and D is the dimensionality of each local feature; we
reported the approximate cost for T = 2, 000 and KD = 64 ∗ 64 and KD = 64 ∗ 256. The cost
of SIFT/ORB local feature extraction was estimated according to [126] by considering about 2, 000
features per image.

CNN FV Encoding SIFT ORB

Computing time
per image ∼300 ms

∼40 ms [KD = 64 ∗ 64] ∼1200 ms ∼26 ms
∼160 ms [KD = 256 ∗ 64]

the improvement tends to be smaller and the dimensionality of the FV becomes very large (e.g. 65, 536
dimensions using K = 256). Hence, for high values of K, the benefit of the improved accuracy is not
worth the computational overhead (both for the BMM estimation and for the cost of storage/comparison
of FVs).

The PCA reduction of BMM-FV is effective since it can provide a very compact image signature
with just a slight loss in accuracy, as shown in the case of K = 64 (Table 3.10b). Dimension reduction
does not necessarily reduce the accuracy. Conversely, limited reduction tends to improve the retrieval
performance of the FV representations.

For the computation of VLAD, the k-means results are more effective than k-majority/k-medoids
clustering, since the use of non-binary centroids gives more discriminant information during the compu-
tation of the residual vectors used in VLAD.

For the BoW approach, k-means and k-majority performs equally better than k-medoids. However,
the k-majority is preferable in this case because the cost of the quantization process is significantly
reduced by using the Hamming distance, rather than Euclidean one, when comparing centroids and
binary local features.

Both BMM-FV and VLAD, with only K = 64, outperform BoW. However, as happens for non-
binary features (see Table 3.11), the loss in accuracy of BoW representation is comparatively lower when
the variability of the images is limited, as for the Oxford5k dataset. As expected, BMM-FV outperforms
GMM-FV, since the probability distribution of binary local features is better described using mixtures
of Bernoulli rather than mixtures of Gaussian. The results of our experiments also show that the use
of BMM-FV is still effective even if compared with the direct matching strategy. In fact, the retrieval
performance of BMM-FV on Oxford5k is just slightly worse than the traditional direct matching of local
features, while on INRIA Holidays the BMM-FV even outperforms the direct matching result.

In conclusion, it is important to point out that there are several applications where binary features
need to be used to improve efficiency, at the cost of some effectiveness reduction [126]. We showed that
in this case, the use of the encodings techniques is a valid alternative to the direct matching.

3.2.3.3 Combination of CNNs and Aggregations of Binary Local Feature

In Section 3.1 we experimentally have shown that the information provided by the FV built upon SIFT
helps to further improve the retrieval performance of the CNN features and thus a combination of FV
and CNN features can be profitably used for instance retrieval tasks, as also done in [63]. However,
the benefits of such combinations are clouded by the cost of extracting SIFTs that can be considered
too high with respect to the cost of computing the CNN features, especially for systems that need to
process images in real time. For example, according to [126] and as showed in the table 3.12, the SIFTs
extraction (about 2, 000 features per image), the PCA-reduction to D = 64 dimensions, and the FV
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GMM-FV (16,368 dim)
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(4,096 dim)
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BMM-FV  K=64, HybridNet fc6

BoW (K-majority) K=20,000 , HybridNet fc6

VLAD (K-means) K=64, HybridNet fc6

GMM-FV  K=64, HybridNet fc6

Figure 3.8: Retrieval performance on the INRIA Holidays dataset of the combination of HybridNet fc6
and various aggregations of ORB binary feature (BMM-FV, VLAD, BoW, and GMM-FV). Only the
full-sized descriptors are considered (i.e., no PCA) and for each aggregation technique we selected
the corresponding best setting (e.g learning method) according with results reported in Table 3.13. α
is the parameter used in the combination: α = 0 corresponds to use only the aggregated descriptor,
while α = 1 correspond to use only the HybridNet feature.

aggregation with K = 256 compressively requires more than 1.3 seconds per image, while the CNN
feature extraction is 4 times faster (i.e., about 300 ms per image). On the other hand, extracting ORB
binary features (about 2, 000 features per image, each of dimension D = 256) and aggregating them
using a BMM-FV with K = 64 requires less than 190 ms that is in line with the cost of CNN extraction
on CPU (300 ms).

Since the extraction of binary local features is up to two orders faster than SIFT, in the following
we investigate the combination of CNN features with aggregations of binary local features, including
BMM-FV. The combination was computed as described in the Section 3.1.1. Please note that in this
case both the FV and the CNN features are `2 normalized so the distance function between the CNN
descriptors has the same range value of the distance function between the BMM-FV descriptors. In our
tests, the cost of integrating the already extracted BMM-FV and the CNN features was negligible in the
search phase, using a sequential scan to search a dataset, also thanks to the fact that both BMM-FV and
CNN features are compared using the not too costly Euclidean distance. For reference, combinations
between CNN features and other image descriptors, such as GMM-FV, VLAD, and BoW are considered
as well by using the convex combination of the respective distances. Whenever the range of the two used
distances was not the same, the distances were rescaled before the convex combination.

For this set of experiments, we considered the INRIA Holidays dataset and we used the the output
of the first fully-connected layer (fc6) of the HybridNet [276] model as CNN feature. In fact, in [63]
several experimental results have shown that on the INRIA Holidays the HybridNet fc6 achieves better
mAP than other outputs (i.e. pool5, fc6, fc7, and fc8) of several pre-trained CNN models (OxfordNet,
AlexNet, PlacesNet, and HybridNet).

Figure 3.8 shows the mAP obtained by combining HybridNet fc6 with different aggregations of ORB
binary features, namely the BMM-FV, the GMM-FV, the VLAD, and the BoW. Interestingly, with the
exception of the GMM-FV, the retrieval performance obtained after the combination is very similar
for the various aggregation techniques. This, on the one hand, confirms that the GMM-FV is not the
best choice for encoding binary features; on the other hand, since each aggregation technique computes
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Table 3.13: Retrieval performance of various combinations of BMM-FV and HybridNet CNN feature.
The BMM-FV representations were computed for three different binary local features (ORB, LATCH,
and A-KAZE) using K = 64 mixtures of Bernoulli. The CNN feature was computed as the output the
HybriNet fc6 layer after applying the ReLU activation function. Dims is the number of components
of each vector representation. α is the parameter used in the combination of FV and CNN: α = 0
corresponds to use only FV, while α = 1 correspond to use only the HybridNet feature. Bold numbers
denote maxima in the respective column.

Method Dims α mAP (%)

ORB LATCH A-KAZE ORB LATCH A-KAZE

BMM-FV (K=64) 16,384 16,384 32,768 0 49.6 46.3 43.7

Combination of
BMM-FV (K=64)

and
HybridNet fc6

20,480 20,480 36,864

0.1 66.4 64.7 59.2
0.2 74.8 73.8 68.7
0.3 77.4 76.8 74.3
0.4 79.1 77.5 77.3
0.5 79.2 78.3 78.0
0.6 79.0 78.5 79.2
0.7 78.7 77.7 78.7
0.8 77.8 76.7 77.5
0.9 76.4 76.3 76.2

HybridNet fc6 4,096 1 75.5

BMM-FV, K=128

BMM-FV, K=64

HybridNet fc6 

BMM-FV, K=32
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Figure 3.9: Retrieval performance of the combinations of BMM-FV and HybridNet fc6 for various
number K of Bernoulli mixtures. The BMM-FVs were computed using ORB binary features. α is the
parameter used in the combination: α = 0 corresponds to use only FV, while α = 1 correspond to
use only the HybridNet feature.
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Table 3.14: Comparison of the results obtained combining HybridNet fc6 feature with the full-sized
and the PCA-reduced versions of the BMM-FV. The BMM-FV was computed on ORB binary feature
usingK = 64 mixtures of Bernoulli. Dim is the number of components of each vector representation.
α is the parameter used in the combination of FV and CNN. Bold numbers denote maxima in the
respective column.

Method Dims α mAP (%)

FV full dim FV PCA-reduced FV full dim FV PCA-reduced

BMM-FV (K=64) 16,384 4,096 0 49.6 52.6

Combination of
BMM-FV (K=64)

and
HybridNet fc6

20,480 8,192

0.1 66.4 66.3
0.2 74.8 73.9
0.3 77.4 77.3
0.4 79.1 78.5
0.5 79.2 78.4
0.6 79.0 78.5
0.7 78.7 78.1
0.8 77.8 77.7
0.9 76.4 76.4

HybridNet fc6 4,096 1 75.5

statistical summaries of the same set of the local descriptors, our results suggest that the additional
information provided by the various aggregated descriptors helps almost equally to improve the retrieval
performance of the CNN feature.

In the following we further investigate combinations of CNNs and the BMM-FV that, even for a shot,
reaches the best performance for all the tested parameter α. In Table 3.13 we report the mAP obtained
combining the HybridNet fc6 feature with the BMM-FV computed for three different kind of binary
local features: ORB, LATCH and A-KAZE. It is worth noting that all the three BMM-FVs give a similar
improvement when combined with the HybridNet fc6, although they have rather different mAP results
(see the first row of Table 3.13) which are substantially lower than that of CNN (last row of Table 3.13).
The intuition is that the additional information provided by using a specific BMM-FV rather than using
the CNN feature alone, do not depend very much on the used binary feature.

For each tested BMM-FV seems that exist an optimal α to be used in the convex combination. When
ORB binary features were used, the optimal α was obtained around 0.5, which correspond to give the
same importance to both FV and CNN feature. For the less effective BMM-FVs built upon LATCH
and A-KAZE, the optimal α was 0.6, which means that the CNN feature is used with slightly more
importance than BMM-FV during the convex combination.

The use of ORB or A-KAZE led to obtain the best performance that was 79.2% of mAP. This results
in a relative improvement of 4.9% respect to the single use of the CNN feature, that in our case was
75.5%. So we obtain the same relative improvement of [63] but using a less expensive FV representation.
Indeed, in [63] the fusion of HybridNet fc6 and a FV computed on 64-dimensional PCA-reduced SIFTs,
using K = 256 mixtures of Gaussian, have led to a relative improvement of 4.9% respect to the use of
the CNN feature alone.

Since as observed in [17, 166] the ORB extraction is faster than LATCH and A-KAZE, in the fol-
lowing we focus only on ORB binary feature. In figure 3.9 we show the results obtained by combining
HybridNet fc6 with the BMM-FVs obtained using K = 32, 64, 128. We observed that the performance
of the CNN feature is improved also when it is combined with the less effective BMM-FV built using
K = 32 Bernoulli. The BMM-FV with K = 128 achieve the best effectiveness (mAP of 79.5%) for
α = 0.4. However, the improvement obtained using K = 128 respect to that of K = 64 does not worth
the extra cost of using a bigger value of K.

The BMM-FV with K = 64 is still high dimensional, so to reduce the cost of storing and comparing
FV, we also evaluated the combination after the PCA dimensionality reduction. As already observed,
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Table 3.15: Relative mAP improvement obtained after combining FV with HybridNet fc6. Each
relative improvements was computed respect to the use of the CNN feature alone, that is:
(mAPafter combination − mAPHybridNet fc6) /mAPHybridNet fc6. The relative improvement obtained using the
FV encoding of the SIFTPCA64 features was computed according to the results reported in [63].

FV method Local K Dims Relative
method Feature improvement

BMM-FV ORB 128 32,768 5.2
BMM-FV ORB 64 16,384 4.9
BMM-FV A-KAZE 64 32,768 4.9
BMM-FV LATCH 64 16,384 4.0
BMM-FV+ PCA ORB 64 4,096 3.9
BMM-FV ORB 32 8,192 3.5

FV [63] SIFTPCA64 256 32,768 4.9

limited dimensionality reduction tends to improve the accuracy of the single FV representation. How-
ever, as shown in Table 3.14 and Table 3.15, when the PCA-reduced version of the BMM-FV was
combined with HybriNet fc6, the overall relative improvement in mAP was 3.9%, which is less than that
obtained using the full-sized BMM-FV. This result is not surprising given that after the dimensionality
reduction we may have a loss of the additional information provided by the FV representation during the
combination with the CNN feature.

Finally, in Table 3.15 we summarize the relative improvement achieved by combining BMM-FV
and HybriNet fc6, and we compare the obtained results with the relative improvement achieved in [63],
where the more expensive FV built upon SIFTs was used. We observed that BMM-FV led to achieve
similar or even better relative improvements with an evident advantage from the computational point of
view, thanks to the use of binary local features.

3.2.3.4 Large-Scale Experiments

In order to evaluate the behaviour of feature combinations on a large scale, we have used a set of up to one
million images. More precisely, as in [139], we merged the INRIA Holidays dataset with a public large-
scale dataset (MIRFlickr-1M [135]) used as distraction set; the mAP was measured using the Holidays
ground-truth.

Table 3.16 shows the results obtained using both the BMM-FV alone and the combinations with
the HybridNet fc6 CNN feature. Given the results reported in the previous sub-sections we focus on
the BMM-FV encoding of ORB binary features. All the feature combinations show an improvement
with respect to the single use of the CNN feature (mAP of 59.1%) or BMM-FV (mAP of 31.0%/34.9%
respectively using the full length/PCA-reduced descriptor). This reflects the very good behaviour of
feature combinations also in the large-scale case.

The mAP reaches a maximum using α between 0.4 and 0.5, that is giving (quite) the same weight to
BMM-FV and CNN feature during the combination. The results obtained using the full-length BMM-FV
and the PCA-reduced version are similar. Surprisingly, the latter performs slightly better and achieved
a maximum of 67.2% of mAP that correspond to 13.7% of relative mAP improvement respect to use
the CNN feature alone. It is worth noting that the relative mAP improvement obtained in the large-scale
setting is much greater than that obtained without the distraction set. This suggests that the information
provided by the local features during the combination helps in discerning the visual content of images
particularly in presence of distractor or noisy images.

Since the computational time of extracting binary features is much faster than others, the computa-
tional gain of combining CNN features with BMM-FV encodings of ORB over traditional FV encodings
of SIFT is especially notable in the large-scale scenario. For example, the process for extracting SIFTs
from the INRIA Holidays+ MIRFlickr dataset (1,001,491 images) would have required more than 13
days (about 1,200 ms per image) while ORB extraction took less than 8 hours (about 26 ms per image).
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Chapter 3. Efficient and Effective Image Features

Table 3.16: Comparison of the results obtained combining HybridNet fc6 feature and BMM-FV on the
INRIA Holidays dataset with the distractor dataset MIRFlickr-1M. The results related to the INRIA
Holidays alone are reported from Table 3.14 for reference. The BMM-FV was computed on ORB
binary feature using K = 64 mixtures of Bernoulli; both full-sized and the PCA-reduced features are
considered. Dim is the number of components of each vector representation. α is the parameter used
in the combination of FV and CNN. Bold numbers denote maxima in the respective column. The last
row reports the maximum relative mAP improvement obtained after combining HybridNet fc6 with
FVs.

Method Dims α mAP (%)

FV full
dim

FV PCA-
reduced

FV full dim FV PCA-reduced

Holidays Holidays+
MIRFlickr

Holidays Holidays+
MIRFlickr

BMM-FV (K=64) 16,384 4,096 0 49.6 31.0 52.6 34.9

Combination of
BMM-FV (K=64)

and
HybridNet fc6

20,480 8,192 0.1 66.4 47.0 66.3 50.7
0.2 74.8 59.3 73.9 61.9
0.3 77.4 64.0 77.3 65.6
0.4 79.1 67.1 78.5 67.2
0.5 79.2 66.5 78.4 66.9
0.6 79.0 65.7 78.5 65.7
0.7 78.7 64.4 78.1 64.4
0.8 77.8 62.5 77.7 62.8
0.9 76.4 60.7 76.4 60.8

HybridNet fc6 4,096 1 75.5 59.1 75.5 59.1

Maximum relative mAP improvement→ 4.9% 13.4% 4.0% 13.7%

3.2.4 Summary
Motivated by recent results obtained on one hand with the use of aggregation methods applied to local
descriptors, and on the other with the definition of binary local features, in this section we performed
an extensive comparison of techniques that combine the two approaches by using aggregation methods
on binary local features. The use of aggregation methods on binary local features meets the need to
increase the efficiency and reduce the computing resources for image matching, at the expense of some
degradation in the accuracy of retrieval algorithms. Mixing the two approaches lead to execute image
retrieval on a large scale and reduce the cost for feature extraction and representation. Therefore we
expect that the results of our study are useful for people that for efficiency issues work with binary local
descriptors.

Moreover, we investigated how aggregations of binary local features work in conjunction with the
CNN features in order to improve the latter retrieval performance. We showed that our BMM-FV built
upon ORB binary features can be profitable use to this scope, even if a relatively small number of
Bernoulli is used. In fact, the relative improvement in the retrieval performance obtained combining CNN
features with the BMM-FV is similar to that previously obtained in the literature using a combination
of the CNN features with the more expensive FV built on SIFT. Experimental evaluation on large-scale
confirms the effectiveness and scalability of our proposal.

It is also worth mentioning that our BMM-FV approach is very general and could be applied to
encode any set of binary vectors, also not related to the image search scenario.

82



“main” — 2018/5/6 — 19:17 — page 83 — #109i
i

i
i

i
i

i
i

CHAPTER4
Features Processing for Efficient Indexing

In order to perform image retrieval on large scale database, the descriptors extracted from images need
to be indexed. Many mechanisms are suitable for this scope, notably including metric indexes [36,
65, 198, 200]. The high extensibility of the metric search framework allows handling features of any
nature, supposing that there exists a metric on the feature domain. However, it is sometimes the case
that structural or semantic peculiarities of the image features can be further exploited to “specialize”
metric approaches in order to improve the performance on a specific task or even to use off-the-shelf
indexing/searching mechanisms with a little implementation effort. For example, the Surrogate Text
Representation (STR) [109] technique (introduced in Section 2.4.9.3) transforms a global descriptor into
a textual form in order to use conventional text search engine. Following this research direction, the
present Chapter proposes two promising approaches for processing some state-of-the-art image features,
like VLAD and CNN features.

In Section 4.1 we extend STR approach to address a specific class of features that have a block
vector representation, such as VLADs and FVs. In fact, VLAD and FV descriptors, are obtained by con-
catenating sub-vectors, each capturing a different statistic of the image local descriptors. The proposed
Blockwise Surrogate Text Representation (BSTR) transforms each sub-vector into a textual form by using
a local codebook for each block instead of using a global codebook for the full vector. This is equivalent
to represent the individual sub-vectors with the STR in order to provide a finer representation of the full
vector. We tested this technique on VLAD descriptors extracted from a benchmark. Our experiments
show that the BSTR outperforms the baseline STR achieving performance near to the one obtained using
exact search on the original VLAD vectors. Moreover BSTR encodings of VLADs enabling us to get rid
of the reordering phase, which was needed by STR to achieve satisfactory performance.

In Section 4.2 we focus on the emerging deep CNN features, which have been successfully used in
generic recognition and visual search tasks. CNN features typically are of high dimensionality. This
represents a major obstacle to their use on large scale, due to the well-known curse of dimensional-
ity. A promising approach to tackle this problem is using approximate access methods, as for instance
permutation-based approaches [36, 64, 96, 200] (see Section 2.4.9.2). PBI methods represent metric ob-
jects as sequences (permutations) of pivots, chosen from a predefined set of objects. Each permutation is
traditionally generated by sorting the entire set of reference objects according to their distances from the
object to be represented. The optimal number of reference objects depends on characteristics (e.g. size
and intrinsic dimensionality) of the dataset to be indexed as well as on the used indexing approach. For
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example, in the MI-File [36] it can amount to tens of thousands. In such case, both indexing and search-
ing times are highly affected by the cost of generating permutations. To address this issue we propose
an approach to generate permutations for deep features at a very low computational cost. The advantage
of our method, called Deep Permutations, is twofold: 1) it does not require the distance calculations be-
tween the reference objects and the objects to be represented, 2) the obtained “deep” permutations results
more effective than those obtained using pivot selection criteria specifically developed for permutation-
based methods.

Main results presented in this Chapter were published in [20, 29]. Table 4.1 summarizes the used
notation.

4.1 BSTR: Blockwise Surrogate Text Representation

The STR is a useful solution to perform similarity search by exploiting text search engine. It encodes a
descriptor with a text document by using a permutation-based representation as intermediate step. The
text document is then indexed using a text search engine. The distance between the text documents is
a coarse approximation of the actual distance between objects. Therefore, as recommended for many
other approximate methods, the result set obtained using STR need to be reordered according to the
actual distance to achieve high accuracy.

In this section, we extend the STR approach to deal with descriptors that have a block vector repre-
sentation, such as VLADs. The underline idea is to use a permutation-representation for each block of
the vector in order to have a finer representation that allows us to get rid of the reordering phase. We first
prove the equivalence of the baseline STR with the permutation representation (Section 4.1.1). Then,
we present our BSTR technique and shows its equivalence with a blockwise-permutation representation
(Section 4.1.2). Later, we discuss how use the BSTR encoding to index VLAD vectors (Section 4.1.3).
Finally we show experimental results (Section 4.1.4).

4.1.1 STR and Permutation-based Approach
We recall that given metric space (D, d) and a set of pivots {p1, . . . , pn} we can represents any object
o ∈ D as a vector Π−1

o of rank positions of the pivots, ordered on the basis of their distance from o.
Typically a top-l list is considered, which contains rankings for only a subsets of pivots (the closest
ones). In such case, a location parameter l is considered and an inverted truncated permutation Π−1

o,l is
used to represents data objects. Several top-l distances [97] can be used for the comparison. Here we
focus on that based on Spearman rho distance for two main reasons: 1) it showed good performance in
several metric spaces [64], 2) (as explained later) the Spearman rho is tied to the way standard search
engines process the similarity between documents and queries. In particular, the Spearman rho with
location parameter l compares two top-l ranked lists by assigning a rank l+ 1 for all items of the list that
have rank greater than l. Similarly, given two objects o and q, and the associated top-l lists, we consider
the approximate distance d̃(o, q) as follows:

d̃(o, q) = `2

(
Π−1
o,lo

,Π−1
q,lq

)
, (4.1)

where lq is used for queries and lo for indexing, with lq < lo. The reason for using two different location
parameter relies on the fact that the performance of the inverted files (used to index the texts) is optimal
when the size of the queries are much smaller than the size of documents. Note that the only differences
between d̃ and the traditional Spearman’s rho with location parameter is the domain of definition (data
objects instead of permutations) and the use of two different location parameters. Actually, d̃ is not a
metric on D but it is a dissimilarity function.

The STR representation tx,l of an object x ∈ D is obtained as space-separated concatenation of some
alphanumeric keywords. The latter are selected from a dictionary {τ1, . . . , τn}, where each keyword is
uniquely associated with a pivot. Formally,

tx,l =

n⋃
i=1

l+1−Π−1
x,l(i)⋃

j=1

τi, (4.2)
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Table 4.1: Notation used throughout this Chapter

Symbol Definition

(D, d) metric space

S finite search space, S ⊆ D

N number of objects in S

{p1, . . . , pn} set of pivots, pi ∈ D

n number of pivots

o data objects, o ∈ S

q query, q ∈ D

l generic location parameter (permutation prefix)

lo location parameter used for the data objects

lq location parameter used for the query object

Πx pivot permutation: Πx(i) is the pivot identifier at position i in the ranked
list of the nearest pivots to the object x ∈ D

Π−1
x inverted permutation: Π−1

x (i) is the position of the pivot pi in the ranked
list of the nearest pivots to the object x ∈ D

Π−1
x,l inverted truncated permutation (values of Π−1

x bigger than l are replaced
with the constant value l + 1)

{τ1, . . . , τn} codebook, τi is an alphanumeric keyword associated with the pivot pi

tx text encoding (document) associated to the object x

tx,l text encoding (document) associated to the object x if using a location
parameter l

px vector of occurrences of the keywords τi in the document tx

px,l vector of occurrences of the keywords τi in the document tx,l

simcos(o, q) approximation of the actual similarity between the object o and q by
means of the cosine similarity between the documents to,lo and tq,lq

d̃(o, q) approximation of the actual distance d(o, q) by means of the Spearman’s
rho distance between the corresponding permutation-representations

`2 Euclidean distance

e = [1, . . . , 1] constant vector

V = [v1, . . . , vK ] blockwise object, vi ∈ D

Q = [q1, . . . , qK ] blockwise query,qi ∈ D

BX = [Π−1
x1,lx

, . . . ,Π−1
xK ,lx

] blockwise inverted permutation associated to a blockwise vector
X = [x1, . . . , xK ], x1 ∈ D

d̂(V,Q) = `2(BV,BQ) approximation of the actual distance d(V,Q) by means of the Euclidean
distance between the blockwise inverted permutations

Π̃v = [Π̃v(1), . . . , Π̃v(n)] deep permutation associated to a vector v ∈ Rn
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Codebook:     τ1 = “A”,    τ 2 = “B”,     τ 3 = “C”,     τ 4 = “D”,    τ 5 = “E”

Π𝑜1 = 5,2,1,3,4 Π𝑜2 = 4,3,5,1,2 Π𝑞 = 5,1,2,3,4

𝑝1, 𝑝2,𝑝3, 𝑝4, 𝑝5

Π𝑜1
−1 = 3,2,4,5,1

𝑝1, 𝑝2,𝑝3, 𝑝4, 𝑝5

Π𝑜2
−1 = 4,5,2,1,3

𝑝1, 𝑝2,𝑝3, 𝑝4, 𝑝5

Π𝑞
−1 = 2,3,4,5,1

𝑙𝑜 = 3 𝑙𝑞 = 2

Π𝑜1,𝑙𝑜
−1 = 3,2,4,4,1 Π𝑜2,𝑙𝑜

−1 = 4,4,2,1,3 Π𝑞,𝑙𝑞
−1 = 2,3,3,3,1

τ1, τ2,τ3, τ4, τ5

𝐩𝑜1,𝑙𝑜 = 1,2,0,0,3
τ1, τ2,τ3, τ4, τ5

𝐩𝑜2,𝑙𝑜 = [0,0,2,3,1]
τ1, τ2,τ3, τ4, τ5

𝐩𝑞,𝑙𝑞 = [1,0,0,0,2]

t𝑜1,𝑙𝑜 = "E E E B B A" t𝑜2,𝑙𝑜= "D D D C C E" t𝑞,𝑙𝑞 = "E E A"

q

o2

o1
p5

p1

p2

p4
p3

Figure 4.1: Example of perspective-based space transformation. Black points are reference objects;
white points are data objects; the red point is a query. From the top to the bottom line: chosen
codebook, permutation representations, inverted permutations, location parameter values, inverted
truncated permutations, term frequencies vectors, textual encodings (STRs).

where we denote the space-separated concatenation of keywords with the union operator ∪. Therefore,
the vector of the term frequencies associated to the document tx,l is

px,l = (l + 1)e−Π−1
o,l (4.3)

where e = [1, . . . , 1] is the constant m-dimensional vector.
Figure 4.1 exemplifies the transformation process. On the left, it sketches a number of pivots (black

points), data objects (white points), and a query object (red point). On the right, it shows the encodings
of the objects both as permutations and text documents. In the case showed in Figure, the STRs of o1,
o2, and q are

to1,lo = “E E E B B A”
to2,lo = “D D D C C E ”
tq,lq = “E E A”.

It can be notice that the strings corresponding to o1 and q are intuitively more similar to those corre-
sponding to o2 end q. This reflects the behaviour of the distance d̃, for which o1 is closer to q than
o2.

Actually, the built-in cosine similarity measure of standard text-based search engines (based on the
vector space model) exactly corresponds to d̃. In facts, a text based search engine will generate a vector
representation of STRs that contains the number of occurrences of words in texts. In the case of the
simple term-frequency weighting scheme, the vector is px,l. This means that, if the keyword τi appears
k times in the text, the i-th element of the vector p will assume the value k, and whenever τi does
not appear, it will be 0. It is worth noting that since px,l is a permutation of the n-dimensional vector
[1, 2, . . . , l, 0, . . . , 0], its euclidean norm is constant and equals to

√
l(l + 1)(2l + 1)/6. Thus, for fixed

lo and lq , the norms of vectors po,lo and pq,lq are constants too, which can be neglected during the cosine
evaluation (they do not affect the final ranking of the search result). The cosine similarity, typically
adopted to determine the similarity of the query vector and a vector in the database of the search engine,
in this specific case will be proportional to the dot product of the term frequencies vectors:

simcos (o, q) =
po,lo · pq,lq
‖po,lo‖

∥∥pq,lq∥∥ ∝ po,lo · pq,lq . (4.4)

What we are going to show is that simcos can be used as a function for evaluating a similarity of
two objects in place of the dissimilarity function d̃ and that the first one is an order reversing monotonic
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4.1. BSTR: Blockwise Surrogate Text Representation

transformation of the second one (they are equivalent for practical aspects). This means that if we use
d̃(o, q) and we take the first k nearest objects from a dataset S ⊂ D (i.e, from the shortest distance
to the highest) we obtain exactly the same objects in the same order of the result list obtained using
simcos (o, q) and taking the first k similar objects (i.e., from the greater values to the smaller ones).
By substituting Eq. (4.3) into Eq. (4.4), we obtain:

simcos(o, q) ∝ ((lo + 1)e−Π−1
o,lo

) · ((lq + 1)e−Π−1
q,lq

) = (4.5)

= (lo + 1)(lq + 1)e · e− (lo + 1)e ·Π−1
q,lq
− (lq + 1)e ·Π−1

o,lo
+ Π−1

o,lo
·Π−1

q,lq
. (4.6)

Since the generic permutation Π−1
x,l includes all integers numbers from 1 to l and the remaining assumes

l+1, the scalar product Π−1
x,l ·e is a constant for a fixed value of l. 1 Therefore, we can substitute the first

three member in Eq. (4.6) with a constant c(n, lo, lq), which depends only on n, lo, and lq as follows:

simcos(o, q) ∝ c(n, lo, lq) + Π−1
o,lo
·Π−1

q,lq
. (4.7)

By notice that

d̃(o, q)2 =
n∑
i=1

(
Π−1
o,lo

(i)−Π−1
q,lq

(i)
)2

= ||Π−1
o,lo
||2

2
+ ||Π−1

q,lq
||2

2
− 2 Π−1

o,lo
·Π−1

q,lq
(4.8)

we finally obtain

simcos(o, q) ∝ c(n, lo, lq) +
1

2
||Π−1

o,lo
||2

2
+

1

2
||Π−1

q,lq
||2

2
− 1

2
d̃(o, q)2. (4.9)

Since also ||Π−1
o,lo
||

2
and ||Π−1

q,lq
||

2
depend only on the constants n, lo, and lq , the Eq. (4.9) proves that

simcos (o, q) is a monotonic transformation of d̃(o, q)
2

in the form simcos = α − βd̃2, with α ∈ R and
β ∈ R+.

In summary, we can consider an approximate distance function d̃ of a given a metric d by exploiting
the permutation-based representation, as done by many PBI approaches. We are able to transform such
distance into a similarity measure between text representations (the STRs), such that the two measures
are equivalent from the point of view of the ranking results.

Given the proved equivalence between text and permutation representations, the main motivation for
using the STR representation rather than classic PBI approaches is, on one hand, to exploit off-the-shelf
software library with minimal implementation efforts and, on the other hand, to benefit from advanced
functionality and optimization procedure available for text retrieval.

4.1.2 BSTR and Blockwise Permutation-Based Approach

The idea described so far uses a textual/permutation representation of an object as a whole and can be
applied in every metric space. We now focus on a simple consequence: when dealing with objects that
are compound of other metric objects, we can apply the permutation representation to each compound,
independently. We call this approach Blockwise Permutation-based representation.

We defined and tested this approach in the case of blockwise vectors, such as the VLAD descriptors
that are the result of the concatenation of sub-vectors. The proposed BSTR is less general than STR,
but when applicable it provides a finer representation of the data in terms of text/permutation. The main
objective here is improving the quality of the search result in order to avoid the reordering phase.

Let’s assume that each data vector V is the concatenation of K object, i.e. V = [v1, . . . , vK ], where
vi ∈ D. For each block vj , 1 ≤ j ≤ K, we consider a set of pivots Pj = {p1j , . . . , pnj} to build the
corresponding permutation representation. In this way we can represent each vector V as a concatenation
of permutation vectors: BV = [Π−1

v1,lo
, . . . ,Π−1

vK ,lo
].

1Π−1
x,l · e =

∑l
i=1 i+

∑n
l+1(l + 1) = l(l + 1)/2 + (l + 1)(n− l)
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So, given two blockwise vector V = [v1, . . . , vK ] and Q = [q1, . . . , qK ], we define the dissimilarity
function

d̂(V,Q)2 =

K∑
j=1

d̃(vj , qj)
2 =

K∑
j=1

`2(Π−1
vj ,lo

,Π−1
qj ,lq

)2 = `2 (BV,BQ)
2 (4.10)

This “generalization” of the Spearman rho can be efficiently computed as the Euclidean distance of the
concatenated permutation vectors.

In order to generate a surrogate text representation that correctly matches the transformed blockwise
vectors, we need to extend the reference dictionary to distinguish the key produced from each block.
So for the j-th block we consider the codebook {τ1j , . . . , τnj}. In total we have a dictionary of n ×K
keywords. For example, we associate, say, the set of keys A1, B1,... to the first block, A2, B2,... to the
second block, and so on.

The text associated to a data vector is the space-separated concatenation of the text associated to each
block. Since we used a different codebook for each block, the term frequency vectors pV and pV equals
[pv1 , . . . ,pvK ] and [pq1 , . . . ,pqK ] respectively, where

pvi,lo = (lo + 1)e−Π−1
vj ,lo

pqi,lq = (lq + 1)e−Π−1
qj ,lq

.
(4.11)

By a similar procedure shown above, it is immediate to prove that also in this case the relation

simcos(V,Q) = α− β d̂2(V,Q) (4.12)

holds for some constant α ∈ R and β ∈ R+ depending on lo, lq,K, n.

4.1.3 BSTR for VLAD Vectors

Here we consider the application of the BSTR encodings to VLAD descriptors. First of all, we observe
that in this case each block a VLAD descriptor is a vector itself. In order to decrease the complexity of
the approach and since VLAD sub-vectors vi are homogeneous we use the same set of reference objects
{p1, . . . , pn} to represent them as permutations. We select the pivots at random from the dataset of all
VLAD sub-vectors.

We recall that given a codebook {µ1, . . . ,µK}, the VLAD sub-vector vi encodes the accumulated
difference between the visual codeword µi and the associated local descriptors. So, one of the well-
known problems of VLAD happens when no local descriptor is assigned to a visual codeword [204].
A simple approach to this problem is producing a sub-vector of all zeros (vi = 0) but this has the
disadvantage to be ambiguous since it is identical to the case in which the mean of the local descriptors
assigned to a codeword is equal to the codeword itself.

Moreover, as pointed out by [238], given two images and the corresponding VLAD vectors V =
[v1, . . . ,vK] and Q = [q1, . . . ,qK], vi,qi ∈ RD, and assuming that vi = 0, the contribution of
codeword µi to the cosine similarity of V and W will be the same when either wi = 0 or wi 6= 0.
Therefore, this under-estimates the importance of jointly zero components, which gives some limited
yet important evidence on visual similarity [138]. In [138], this problem was treated by measuring the
cosine between vectors V and W at different point from the origin. This technique, however, did not
lead to significant improvement on our experiments. To tackle this problem, we simply get rid of the
sub-vectors vi = 0 and omit to transform them into text. Mathematically, this means that we assume
p0,lo = 0.

4.1.4 Experiments

This section reports the experimental evaluation of BSTR encoding of VLAD descriptors, comparing the
effectiveness of the sequential scan and the state-of-the-art STR approach.
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4.1.4.1 Experimental Setup

The experimentation was carried out on the INRIA Holidays [139] benchmark. To evaluate the ap-
proaches on a large scale, we merged the Holidays dataset with the MIRFlickr dataset [135], as done in
Section 3.2.3.1 and many other articles [140, 141, 144].

In this set of experiments, we used the traditional VLAD, i.e. the VLAD aggregation of SIFT feature.
We used the publicly available SIFTs extracted by Jegou et al. for both the Holidays and the MIRFlickr
datasets2. The VLAD descriptors were computed using VIR [98]. The codebook {µ1, . . . ,µk} was
computed using k-means, with K = 64, over a subset of the 1 million MIRFlickr dataset. So at the end
each VLAD has 8, 192 dimensions.

The observation that VLAD descriptors are relatively sparse and very structured suggests performing
a principal component analysis to reduce the dimensionality of the descriptors. In this experiments, we
decide not to use dimensionality reduction techniques because our space transformation approach is
independent of the original dimensionality of the description.

The text representations were indexed and searched using Apache Lucene 3 that is an open-source
information retrieval library. It delivers high-performance search features and it is suitable for nearly any
application requiring full-text search abilities. All experiments were conducted on an Intel Core i7 CPU,
2.67 GHz with 12.0 GB of RAM a 2TB 7200 RPM HD for the Lucene index. We used Lucene v4.7
running on Java 6 64 bit.

The quality of the retrieved images was evaluated by means of mAP.

4.1.4.2 Results

In a first experimental analysis, we compared the retrieval performance of the BSTR approach to the STR
approach that threats the VLAD vectors as whole-objects. The STR encoding of VLADs was previously
studied by Amato et al. [23, 27]. As pointed in [27], since the retrieval performance of the baseline STR
is low, we need to reorder the best results obtained from the text search engine using the actual distance
between the VLAD descriptors. With this experiments, we want to show that the reordering phase is no
longer necessary if using the blockwise approach and thus, the search results can be directly provided by
the text-search engine Lucene.

In the following, we refer to baseline approach as STR, the baseline approach with reordering as
rSTR, and the blockwise approach as BSTR. For the STR/rSTR approaches we used n =4,000 reference
objects while for blockwise a total of n =20,000. For the rSTR approach, we reordered the first 1,000
objects of the results set. In all the cases, we set lo = 50, which, we recall, is the number of closest
pivots used during indexing.

Figure 4.2 shows the comparison in terms of mAP. The red horizontal line reports the performance
(mAP of 55%) obtained by comparing the original VLAD descriptors by performing a sequential scan
of the dataset (Exact search). Below this, the graph shows the mAP of our approach (BSTR) versus the
STR approaches (with and without reordering) varying the location parameter lq from 10 to 50 (number
of closest pivots used for the query). An interesting by-product of the experiment is that the BSTR
approach shows a local optimum for the mAP when the number of reference objects used for the query
is 20. Figure 4.2 also reports result for an approach that we name “BSTR tf-idf ”. This exploits the
knowledge of the tf-idf (i.e., term frequency-inverse document frequency) statistic of the BSTR textual
representation in order to further reduce the size of the query. So, instead of simply reducing the lq of the
query, i.e., the top-lq element nearest to the query, we can retain the elements that exhibit greater values
of tf-idf and eliminate the others. Therefore, we take, for instance, the first 40 elements that have best tf-
idf, the first 30 elements, and so on. Figure 4.2 shows the performance of this approach first considering
a BSTR encoding with a location parameter equal to 50 and then selecting the lq elements that have best
tf-idf. It is interesting to note that with the tf-idf reduction we had not only an important improvement of
the mAP for increasing reduction of the queries but also that this approach outperforms the performance
of the exact search on the original VLAD dataset.

In order to ascertain the soundness of the proposed approach, we tested it on a larger and challenger
dataset obtained by merging INRIA Holidays with the MIRFlickr dataset for a total of more than 1M

2http://lear.inrialpes.fr/~jegou/data.php
3http://lucene.apache.org
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Figure 4.2: Effectiveness (mAP) of the various approaches for the INRIA Holidays dataset, using lo = 50
for STR, rSTR, BSTR, and BSTR tfidf (higher values mean better results).
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Figure 4.4: Average time per query in seconds of the various approaches for the INRIA Holidays +
MIRFlickr dataset, using lo = 50 for rSTR, BSTR, and BSTR tf-idf. While for BSTR tf-idf2, we set
lo = lq (higher values mean worse performance).

images. The results are shown in Figure 4.3. We can see that BSTR tf-idf is still the winner in terms
of mAP. However, in this case, all the techniques exhibit lower performance with respect the inner
product on the original VLAD dataset. The latter test, performed as a sequential scan of the entire
dataset, obtained a mAP of 0.34. The results presented in this figure also show the performance of
the approach called “BSTR tf-idf 2”, which consists in applying the reduction of the blockwise textual
representation using tf-idf also for the indexed document (in addition to the queries), setting lo = lq for
all the experiments. The mAPs values, in this case, are slightly lower than BSTR tf-idf, however, as we
are going to see in the next experiment there is a great advance in terms of space occupation.

In order to assess which approach is most promising, we have evaluated the efficiency in terms of
space and time overhead. Figure 4.4 shows the average time for a query for the proposed approaches.
Results for the rSTR approach includes also the time for reordering the result set. However, note that
this average time was obtained using a solid state disk (SSD) disk in which the original VLAD vectors
were available for the reordering. The SSD is necessary to guarantee fast random I/O, while if using a
standard disk the seek time would affect the query time of more than one order of magnitude.

Figure 4.5 presents the index occupation expressed in GB. The rSTR approach occupies 16.8 GB
on the disk, including the overhead for the storage of the VLAD vectors used for the reordering of the
results. This last figure show how the tf-idf reduction of both queries and the indexed documents has
a great impact on the space occupation: just for a reduction of the 20% of the documents (i.e., from
lo = 50 to lo = 40) we get a reduction of the 80% for the inverted file (see BSTR tf-idf 2 results).

Considering all the alternatives seen so far in this applicative scenario, the BSTR tf-idf 2 with lo =
lq = 20 can be considered a trade-off between efficiency and effectiveness.

4.1.5 Summary

In this section, we proposed a blockwise permutation/text representation for compound metric objects.
We tested the proposed BSTR approach for indexing VLAD vectors that, by definition, are obtained
by concatenating some sub-vectors. The use of a textual encoding of the permutations allow us to use
off-the-shelf text search engine and exploits popular Information Retrieval approaches, such as the tf-
idf weighting scheme. In fact, the experimental evaluation on a benchmark dataset revealed a very
promising performance of BSTR in terms of mAP and response time. However, the drawback of the
proposed approach resides in the space occupation since it requires the expansion of the number of terms
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Figure 4.5: Space occupation of the index for the different type of solutions, using the same value of
lo = 50 for BSTR and rSTR, and varying lo for BSTR tf-idf2. Note that for the rSTR, we consider
also the overhead for the storage of the VLAD vectors used for the reordering of the results (higher
values mean greater occupations).

in the textual representation of the VLADs. This produces an inverted index that, using Lucene, is one
order of magnitude greater than the baseline STR. To alleviate this problem, we propose to shrink the
index by eliminating the terms associated with a low value of tf*idf (i.e. the BSTR tf-idf 2 strategy). The
last approach is efficient in term of both time and space overheads and still maintains good effectiveness.
However, it requires a double indexing phase or at least a pre-analysis of the dataset in order to calculate
the tf-idf weight of the terms. This analysis can be computed off-line and does not affect the cost at
query time.

4.2 Deep Permutations

This section presents a novel approach to transform a deep feature into a permutation to be used in con-
junction with a permutation-based index. As observed in Section 2.3, components of deep features are
computed from neuron activations of a specific layer (usually one of the last layers) of a deep neural
network. Typically they are sparse vectors with high dimensionality. For example, on INRIA Holidays
dataset, the output of the sixth layer (fc6 ) of the well-known AlexNet [155] is a vector of 4,096 dimen-
sions in which, on average, 75% of components have zero value after the ReLU activation function. In
such cases, the exact search cannot deal with large collections of deep features while a more suitable
choice is using approximate access methods. For example, PBI has been used in [28, 199] to index
large volumes of these complex features so that similarity queries can be evaluated efficiently: Novak
et al. [199] used PPP-Codes to index a collection of 20 million images processed by a CNN; Amato et
al. [28] indexed 97M deep features using the MI-File [36]. In both cases, no special technique was used
to generate permutations for deep features, which means that the permutations were computed on the
basis of the proximity between a set of pivots and the data to be represented.

Notice that, the relevant aspect, when building permutations for PBI, is the capability of generat-
ing sequences of identifiers (permutations) in such a way that similar objects have similar permutations.
Sorting a set of pivots, according to their distance to the object to be represented is just one, yet effective,
approach. Here we propose to exploit the nature of the deep features in order to efficiently compute
permutations directly from the feature components. Specifically, we propose to use the neurons as per-
mutants and sort them according to their activation values. We named this technique Deep Permutations.
The intuition behind our approach is that features in the high levels of the neural network carry-out
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Deep Permutation  П𝐯 s.t. 𝐯  П𝐯 𝑖 ≥ 𝐯  П𝐯 𝑖 + 1
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−1 s.t.  П𝐯

−1 𝑖 <  П𝐯
−1 𝑗 then 𝑣𝑖 ≥ 𝑣𝑗

Figure 4.6: Example of a Deep Permutation. The standard approach to generate a permutation is
sorting pre-selected pivots according to their distance from the object to be represented. In the Deep
Permutations, instead, the permutants are the neurons of the chosen layer (i.e. the dimension index
of the deep feature), sorted according to their activation values.

some high-level information.For example in the cases of a CNN feature extracted from an image, we
can imagine that each neuron represents some sort of visual concept and its activation the importance
of that visual concept in the image. Since each individual dimension of a deep feature corresponds to
a neuron and the value of that dimension is the neuron activation, we have that similar images contain
similar visual concepts and thus we expect they have similar Deep Permutations as well.

In the next sub-section, we discuss more in the details the process to compute the Deep Permutations.
We then present experimental results, showing the effectiveness of our approach for both similarity
search and retrieval tasks.

4.2.1 Computing the Deep Permutations

Given a deep feature v = [v1, . . . , vn], we define the Deep Permutation Π̃v = [Π̃v(1), . . . , Π̃v(n)] as
the ordering of the dimension indexes {1, . . . , n} such that

∀i = 1, · · · , n− 1, v(Π̃v(i)) ≥ v(Π̃v(i+ 1)), (4.13)

where we use the notation v(j) to indicates the j-th element of v, that is vj . In other words, permutants
are the dimension indexes of the deep feature vector, which are sorted in descending order with respect
to the values of the corresponding elements. So if the index i of the vector appears before index j in the
permutation Π̃v, then the value vi is greater than or equal to vj .

Using the inverted representation Π̃−1
v = [Π̃−1

v (1), . . . , Π̃−1
v (n)], we have that if Π̃−1

v (i) < Π̃−1
v (j)

then vi ≥ vj .
Figure 4.6 illustrates an example starting from the vector v = [0.1, 0.3, 0.4, 0, 0.2] 4. The permutation-

based representation of v is Π̃v = [3, 2, 5, 1, 4], that is permutant (index) 3 is in position 1, permutant 2
is in position 2, permutant 5 is in position 3, etc. The inverted representation is Π̃−1

v = [4, 2, 1, 5, 3], that
is permutant (index) 1 is in position 4, permutant 2 is in position 2, permutant 3 is in position 1, etc.

Note that when two elements of a deep feature have the same value, their positions in the permutation
cannot be uniquely assigned. This is very rare for the non-zero elements since we are working with real
values. However, the problem remains with the zero values, that are very frequent when using ReLU
activation function. This means that we cannot assign a unique ordering of the zero elements of the deep
features.

In order to face this problem, we define and compare two different strategies:

4In reality, the number of dimensions is 4,096 or more.
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• The first strategy, which we call zeros-to-l, assigns all elements having a value equal to zero to
position l + 1, where l is a location parameter and then use the top-l truncated permutation.

• The second strategy, which we call no-ReLU, does not use the ReLU activation function during
the feature extraction so that negative values are not flattened to 0 and vector components with the
same activation values occur very rarely.

If we restrict to the case of Euclidean distance it easy to see that our strategy of generating permuta-
tions is equivalent to the following permutation generation strategy:

• Create a set of n pivots such that the i-th reference object has 1 in dimension i and 0 in all other
elements of the vectors, i.e.

p1 = [1, 0 . . . , 0]

p2 = [0, 1 . . . , 0]

:

pn = [0, 0 . . . , 1]

(4.14)

• Given an object v compute the traditional permutation Πv that sorts all pivots in ascending order
to their `2 distance from v.

In facts, whenever vi 6= vj we have that Π−1
v (i) < Π−1

v (j) if, and only if, Π̃−1
v (i) < Π̃−1

v (j). This is a
direct consequence of the use of the Euclidean distance for the feature comparison, since `2(v,pi)

2 =
‖v‖22 + 1− 2vi and thus `2(v,pi) < `2(v,pj) if, and only if, vi > vj .

Please note that in the Deep Permutations the number of permutants is the same of the dimension of
the deep feature. A question that might arise is what is the benefit of using the Deep Permutation instead
of the original vector given that they have the same dimensionality. The advantage of the proposed
approach is that permutation vectors can be easily indexed, for example by encoding into an inverted
index, which exhibits high efficiency as shown by Amato et al. [28, 36].

4.2.2 Experiments
As happens with the traditional permutation-based approach, searching using the Deep Permutations
provides a result set that approximates the result of the exact similarity search. The desired situation is
one in which we have a good approximation of the exact results as well as providing results that satisfy
the user retrieval requirements. The latter means that the user does not notice the degradation of accuracy,
given that also the exact similarity search algorithm is an approximation of his/her intuition of similarity.

In this respect, we performed two type of experiments. We first evaluated the performance of the
proposed technique in a pure similarity search task, where we use an exact similarity search ground-
truth to assess the quality of the approximate similarity search (Section 4.2.2.1). Then, we evaluated the
performance in a multimedia information retrieval task (Section 4.2.2.2). Here, we used a ground-truth
that was manually generated by associating each query with a set of results pertinent to the query. In
this way, we were able to evaluate both the approximation introduced with respect to the exact similarity
search algorithm and the impact of this approximation with respect to the user perception of the retrieval
task.

4.2.2.1 Evaluation in a Similarity Search Task

In this first set of experiments, we evaluate how well the similarity between Deep Permutations reflects
the similarity between the original feature vectors.

We used the HybridNet fc6 features5 extracted by Amato et al. [28] from the Yahoo Flickr Cre-
ative Commons 100 Million dataset (YFCC100M) [243]. The used feature are publicly available at
http://www.deepfeatures.org/. Amato et al. also provide a ground-truth built selecting 1,000
different queries and executing an exact similarity search on these queries using the Euclidean distance
to compare deep features. As previously noted, the activations at the fc6 layer form a vector of 4,096

5We recall that the HybridNet [276] has the same architecture of the AlexNet but was trained on more images, as described in
Section 3.1.2.3
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Figure 4.7: Deep Permutations: comparison between the no-ReLU and the zeros-to-l techniques, vary-
ing the location parameter l (length of the truncated permutations).

floats. Generally, the ReLU is used to bring to zero all negative activation values. In this way, feature
vectors contain only values greater or equal to zero. The resulting feature vectors are quite sparse.

In order to assess the quality of search results, we use the recall@k (Eq (2.63), Section 2.4.9.1) that
is the ratio between the number of correct results in the approximate result set and the number of correct
results that should have been retrieved. In this context, we also compare the Deep Permutations with the
traditional permutation representation.

no-ReLU vs zeros-to-l We first discuss the comparison of the two approaches that we defined for
handling elements of the vectors having zero value, namely no-ReLU and the zeros-to-l. These tests were
executed on a subset of the YFCC100M dataset of size 1M and the results are shown in Figure 4.7. In
experiments, we evaluated the recall@10 varying the location parameter l of the truncated permutations
(compared with the Spearman’s rho with location parameter).

Note that the plots corresponding to the two strategies are overlapped until l = 700. Then, the zeros-
to-l performance degrades with respect to the other. At l = 900 also the no-ReLU starts degrading,
remaining always higher than the other. This behaviour is due to the presence of elements with a value
equal to zero. In facts, for this dataset, we observed that on average the 75% of elements of fc6 vectors
are zeros, which cannot be uniquely sorted when computing the Deep Permutations. This means that
when l approaches to 1,000, there are no more elements with non-zero values, which up to now were
correctly sorted, and we encounter elements having a value equal to zero. The permutants (dimensional
indexes) related to the zero value are assigned to position l+1 when using the zeros-to-l approach, while
all the zero values are replaced by the negative activation values, seen before applying the ReLU, in the
no-ReLU approach. Our results show that using a negative value for sorting these elements helps, until a
certain degree. It is worth mentioning that the features were extracted using a pretrained model and that
the ReLU was used when the neural network was originally trained, so the negative values were always
treated as zeros during the training. This means that the negative values were not subject of fine-tuning
during the learning phase. This is the reason why we see a degradation also using the negative values
in the no-ReLU strategy. It would be interesting comparing with a network trained using an activation
function different from ReLU, as for instance the Exponential Linear Units (ELU) [70], that does not

95



“main” — 2018/5/6 — 19:17 — page 96 — #122i
i

i
i

i
i

i
i

Chapter 4. Features Processing for Efficient Indexing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1,000

R
ec

al
l@

1
0

l

Deep Permutations

FFT Pivots

Random Pivots

Figure 4.8: Comparisons of the proposed Deep Permutation approach with standard permutation-based
methods using random and Farthest-First Traversal (FFT) pivot selection strategies.

flat the negative values. However, this was out of the scope of our investigation, where we wanted to use
features extracted by standard CNNs by leveraging on transfer learning, as done in many other research
work and applications.

Deep Permutations vs Standard Permutations Figure 4.8 compares the proposed Deep Permutations
(using the no-ReLU strategy), with a standard permutation-based representation, which relies on distance
calculations between a set of pivots and the data objects. For the latter approach, we considered two pivot
selection techniques: random selection and FFT [83, 111]. In fact, while the random selection is one of
the simplest and most used approaches, in [24] the FFT was identified as the best pivot selection method
for permutation-based searching. Specifically, Amato et al. [24] compared the performance of several
pivot selection strategies and the FFT provided a set of pivots such that the object ranking obtained using
the similarity computed among the permutations was the most correlated to the ranking obtained using
the original distance.

We notice that for values of l up to 200 the standard approach, both using Random selection and FFT
offers better performance than Deep Permutations in terms of recall@10. Then, for values bigger than
200, the Deep Permutation approach performs much better, reaching a recall of 80%. The FFT approach
is always lower than 60% and the random approach reaches just 45% recall@10.

We also compared the three approaches computing the recall@k for various value of k ranging from
1 to 1,000. Results are showed in Figure 4.9. Also in this case, we can see that the new proposed
approach outperforms the others and remains practically stable for all k values.

Tests discussed above were executed on a subset of size 1M of the entire YFCC100M dataset. Figure
4.10 shows the performance of the Deep Permutations approach increasing the size of the indexed dataset
up to 100M. Here, we evaluated the recall for k equal to 10, 100, and 1,000. Also in this case we do not
see significant differences for different values of k, and the recall remains also stable around 80% for the
various tested sizes of the dataset.
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Figure 4.9: Recall@k varying k for our approach with l=800 and 4,096 random and FFT pivots.
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Figure 4.11: mAP obtained on INRIA Holidays varying the location parameter l.

4.2.2.2 Evaluation in a Multimedia Information Retrieval Task

Since deep features are widely used for image retrieval, we run a set of experiments to evaluate the
performance of the proposed Deep Permutations in a multimedia information retrieval task. In this
context, we need a manually-generated ground-truth to assess the various methods, so we used the INRIA
Holidays [139] benchmark for which the ground-truth is publicly available. For large scale tests, we
merged the Holidays dataset with the distraction dataset MIRFlickr [135] that contains 1M images. For
both the datasets, the deep features were exacted taking the activation of the neurons in the fc6 layer of
the HybridNet. The retrieval performance is measured by means of mAP.

In these experiments, we only test the no-ReLU strategy since it provided us with the best results in
the similarity search scenario.

Figure 4.11 shows the mean average precision on INRIA Holidays varying the length l of the trun-
cated permutation. We can see that the mAP improves rapidly until l is 100, then remains stable slightly
below 80%. The maximum is reached when l = 800, where the mAP is 77%. These values of mAP are
rather surprising and competing with state-of-the-art methods tested on the INRIA Holidays dataset. To
further investigate this we have compared the Deep Permutation with the direct use of the deep features,
using the Euclidean distance, and with the recently proposed LuQ method [23]. The LuQ [23] uses a
quantization process that allows one to use a text retrieval engine to perform image similarity search.
Specifically, each real-valued vector component vi of a deep feature is transformed in a natural numbers
fi given by bQvic; where bc denotes the floor function and Q is a multiplication factor > 1 that works
as a quantization factor. The integer fi are then used as term frequencies for the “term-components” of
the text documents representing the feature vectors.

The comparison was performed on the INRIA Holidays dataset alone and together with the MIR-
Flickr dataset. Results are reported in Table 4.2. The direct use of the deep features on the INRIA
Holidays dataset exhibits a mAP of 75% with ReLU, and 76% without ReLU. On the INRIA Holidays
dataset with the MIRFlickr distraction set, it exhibits a mAP of 69% with ReLU, and 62% without ReLU.
Our Deep Permutation on the INRIA Holidays dataset, achieves a mAP of 75% with full permutations,
and 77% with l = 800. On the INRIA Holidays dataset with MIRFlickr distraction set, we obtain a mAP
of 60% with full permutations, 62% with l = 800. The results obtained using l = 800 are always greater
or equal to the one obtained directly using the deep features, and equal to the results obtained by LuQ.

Looking at these results we can make an additional observation. Deep features are generally com-
pared using the `2 distance. However, results above suggest that possibly this is not the best distance
function to be used. In fact, transforming deep features into permutations and comparing them using
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Table 4.2: Comparison of the mAP obtained on INRIA Holidays (with and without the MIRFlickr dis-
traction set) using the following approaches: a) the direct use of the deep features compared with
the Euclidean distance; b) our approach based on the use of the Deep Permutations compared with
the Spearman rho distance; c) the LuQ method [23] which use the cosine similarity between text
representations. For the first approach, we reported the results obtained with and without applying
the ReLU during the extraction of the feature. For the Deep Permutations approach we reported
the results obtained using the full length permutation and the truncated permutation with location
parameter l=800

Deep features Deep Permutations LuQ [23]
ReLu no-ReLu full l = 800

Holidays 0.75 0.76 0.75 0.77 0.77
Holidays+MIRFlickr 0.60 0.62 0.60 0.62 0.62

the Spearman rho distance has slightly better performance than the exact search. Thus, investigations on
better distance functions to be used with deep features can be further considered. We performed some
preliminary tests in this direction, using various vector transformations (ReLU, no-ReLU, `1 and `2 nor-
malization, or even transforming the vector into a vector of probabilities) and testing various distances
(`1, `2, Triangular Distance, Jensen-Shannon Distance, Bhattacharyya distance, Matusita distance and
Pearson Distance) 6. Surprisingly, for each used distance we observed that there exists at least one vector
transformation for which the mAP on INRIA Holidays reaches a value between 0.75 and 0.76. However,
we have not found yet a distance that works much better than the others.

4.2.3 Summary
This section presented the Deep Permutations approach that transforms deep features into permutations
at very low computational cost.

Compared to the classical approach for computing the permutation-representation of an object, our
technique does not need computing distances between pivots and the data object. Moreover, the pro-
posed technique when evaluated in a pure similarity search task offered a recall much higher than other
permutation-based representations. Furthermore, the Deep Permutations approach showed excellent per-
formance also in a multimedia information retrieval context, where it reached a mean average precision
slightly higher than the direct use of the deep features with the `2 distance.

At the time of writing, we notice that Hadjeres and Nielsen [119], inspired by our work, used Deep
Permutations of features exacted from a RNN to encode symbolic musical sequences. In addition, Amato
et al. [22] successfully used the deep permutations in conjunction with the R-MAC [113, 247] features
and presently they are investigating novel activation functions to handle the negative values before com-
puting the permutations.

6See [90] for definitions of Bhattacharyya, Matusita and Pearson distances
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CHAPTER5
Improving Supermetric Search through Finite

Isometric Embeddings

In the previous Chapters, we have focused on efficient and effective approaches to extract and process
image features. The next step to efficiently search a database of features is adopting appropriate indexing
and searching algorithms. With this in mind, we have decided to focus on the metric search framework
(introduced in Section 2.4) that thanks to its extensibility is used in many applications [66, 271], also
including CBIR. In this context, the general interest is in searching a finite set of objects S that is a subset
of a (infinite) domain D on which a metric function d is defined. Specifically, we want to efficiently find
objects of S that are close to an arbitrary query object q ∈ D, where the distance function is the only way
by which two objects can be compared (the lower the distance the closer the objects). There are many
query paradigms that can be employed, like “find the k closest objects to the query” (k-nearest neighbour
query), or “find all the data objects within distance t of the query” (range query). The range query is
perhaps the simplest one; moreover, it can be used as building block in the evaluation of more complex
queries. For example, Hjaltason and Samet [132] proposed an algorithm to incrementally perform the
k-nearest neighbour search by range queries with proper radius thresholds that can be found without
computing additional distances.

In this Chapter, we examine a fundamental schema of metric search that is the exact search for range
queries. Our choice may appear outmoded given that this topic was thoroughly inspected in past research
literature. However, we have found out that some foundations of the metric search framework can be
“reread” in the light of another consolidated theory that regards finite isometric embeddings in Euclidean
spaces (introduced in Section 2.4.8.1). We have started our study from the following observations:

• Most of the existing partition-based indexes use the triangle inequality of the metric governing the
space in order to estimate upper and lower bounds of the distances between the query and the data
objects. The distance bounds are used to include or exclude partitions of the space from the search
in order to avoid unnecessary distance calculations (space pruning, Section 2.4.6).

• The triangle inequality is equivalent to a discrete geometry condition, in facts, a semimetric space
meets the triangle inequality (so it is a metric space) if, and only if, for any three points of the space
there exists an embedding in a two-dimensional Euclidean space that preserves all the three inter-
point distances. In other words, the space is isometrically 3-embeddable in `22 (Section 2.4.8.1).
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Metric spaces

Supermetric Spaces
V

e
ct

o
r 

sp
ac

e
s

Field: ℝ

Normed Vector spaces

Hilbert spaces

Inner product spaces

Figure 5.1: Relations betweens metric spaces, supermetric spaces, and real vector spaces.

• There exists a large class of metric spaces that have a stronger property, which is the isometric
4-embeddability in `32, i.e. for any four points of the space there exists an embedding into a three-
dimensional Euclidean space that preserves all the

(
4
2

)
= 6 interpoint distances. This property is

referred to as the four-point property.

• Many metric spaces that have the four-point property also meet the n-point property, that is for
any n points of the space there exists an embedding into an (n− 1)-dimensional Euclidean space
that preserves all the

(
n
2

)
interpoint distances.

These observations raise intriguing questions: is it possible to use the four (or n) point property to derive
bounds on the distance that are tighter than those obtained using the triangle inequality? Is it possible to
further exploit these geometric guaranties to speed up similarity queries?

We show that the answers to the above questions are affirmative whenever we work on spaces meeting
the four- or n-points properties and we propose techniques that allow improving searching these spaces.
Our approaches lose the universality of the metric search framework but still maintain a certain degree of
his extensiveness: many of the metric spaces commonly used in applications meet the desired properties.
In [76] we coined the term supermetric 1 space to refer to spaces with the four-point property as, in terms
of metric search, they are significantly more tractable. Figure 5.1 illustrates the relations between the
classes of supermetric spaces, metric spaces, and vector spaces; the former class is less universal than
the metric one but is more general than the class of metric vector spaces.

By leveraging on the four-point property we derive a novel exclusion condition, named Hilbert ex-
clusion, which results to prune more than the hyperbolic exclusion (Equation 2.54, Section 2.4.6), which
is typically used in partition-based indexes, like hyperplane-based trees. This implies that a number of
state-of-the-art indexing mechanisms over supermetric spaces can be easily refined to give a significant
increase in performance. We further exploit the use of the n-point property to build a projection of the
whole space into a n-dimensional Euclidean space, called n-simplex projection. We show how this pro-
jection can be exploited for indexing and dimensionality reduction on metric space satisfying the n-point
property.

1This term has previously been used in the domains of particle physics and evolutionary biology as a pseudonym for the
mathematical term ultra-metric, a concept of less interest in metric search; we believe our concept is of sufficient importance to
the domain to justify its reuse with a different meaning.
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5.1. Hilbert Exclusion: a Novel Pruning Rule for Supermetric Spaces

This Chapter consists of four main sections. Section 5.1 gives a formal definition of our new ex-
clusion condition and proves its applicability to any supermetric space. It also gives an analysis of the
improvement of Hilbert exclusion over the hyperbolic exclusion, including relative performance mea-
surements for some metric indexes that use hyperplane partitioning. Section 5.2 shows the four and
n-point properties for important metric spaces, including spaces governed by Euclidean, Cosine, Jensen-
Shannon and Triangular distances. Section 5.3 shows some stronger geometric guarantees deriving from
the four-point property, which can be used to index the space. It also proposes a novel indexing struc-
ture (the Linear Regression tree) which is only possible to use in a supermetric space, as an example
of the new area of investigation opened up by our research. Section 5.4 proves that the n-point prop-
erty gives arbitrarily tight lower and upper bounds on distances between metric objects. Specifically, it
presents a novel technique, called n-simplex projection, for embedding a large class of metric spaces into
finite-dimensional Euclidean spaces. It also shows how this technique can be used to “compress” metric
objects, similarly to other dimensionality reduction techniques, and to index and search the space.

The work presented in this Chapter has been jointly developed with the Prof. Richard Connor of
the University of Strathclyde. Major results and findings were originally published in [74, 76–78]. The
contributions of the author of this thesis has been in all the theoretical aspects, including, but not limited
to, (i) setting the mathematical framework to prove the correctness of the Hilbert exclusion (ii) proving
the applicability of our exclusion condition to a large set of metric spaces, (iii) proposing the Linear
Regression tree, (iv) proving the correctness of the n-simplex projection and the related upper and lower
bounds on the distances. Most of the experiments presented later were performed using codes originally
implemented by Prof. Connor and publicly available at the Metric Space Framework [6].

Symbols and notation used throughout this Chapter are summarized in Table 5.1.

5.1 Hilbert Exclusion: a Novel Pruning Rule for Supermetric Spaces

Let D a domain and d : D × D → R a semi-metric on it, that is a function satisfying all the metric
postulates except the triangle inequality. The semi-metric d also satisfies the triangle inequality if, and
only if, the space (D, d) is isometrically 3-embeddable in `22 = (R2, `2). Since most of the techniques
used for metric indexing and space pruning are defined using the triangle inequality, it is interesting to
express those properties in terms of the geometric guarantees afforded according to the 3-embeddability
property in `22.

For example, let’s consider a hyperplane-based partition of a finite search space S ⊂ D according to
two distinct pivots p1 and p2 (Section 2.4.5.3). We recall that this partitioning principle divides the space
into two subsets according to which of the pivots is closer:

Sp1 = {o ∈ S | d(o, p1) ≤ d(o, p2)}
Sp2 = {o ∈ S | d(o, p1) > d(o, p2)}.

The boundary between Sp1 and Sp2 is the hyperplane Hp1,p2 = {o ∈ D| d(o, p1) = d(o, p2)}. To
evaluate a range query R(q, t), the distances d(q, p1) and d(q, p2) are first calculated. If

|d(q, p1)− d(q, p2)| > 2t (5.1)

then the subset associated with the point further from q does not intersect with the solution set of the query
and so it can be excluded from the search. The condition in Eq.(5.1) is the hyperbolic exclusion, which
is a direct consequence of the double-pivot distance constraint (see Section 2.4.6.4). This exclusion
condition is straightforward to derive algebraically from the triangle inequality property, but our main
observation here is that it can also be shown in terms of 3-embeddability within `22. We have four actors:
two pivots (p1 and p2), a query object q, and an arbitrary solution s (i.e. a point such that d(s, q) ≤ t). If
we consider an isometric embedding of p1, q, and s in `22 that maps those objects into the 2D points vp1 ,
vq , and vs (Figure 5.2a), we find out that the point vs corresponding to the the solution s must lie in the
region

{x ∈ R2 | d(p1, q)− t ≤ `2(vp1 ,x) ≤ d(p1, q) + t}.
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Chapter 5. Improving Supermetric Search through Finite Isometric Embeddings

Table 5.1: Notation and definitions used throughout this Chapter

Notion Definition

(D, d) Metric space: the data domain D and a metric distance d

S Finite set of data objects, S ⊆ D

m Number of objects in S

s, o, si, oi Generic data objects in S

q Query object q ∈ D

t, ti Threshold distances used in the range search, t, ti ∈ R

R(q, t) Solution set for a range query: R(q, t) = {o ∈ S | d(o, q) ≤ t}

{p1, . . . , pn} Set of n pivots, pi ∈ D

S = Sp1 ∪ Sp2 Hyperplane partitioning of the space given two pivots p1 and p2:
Sp1 = {o ∈ S | d(o, p1) ≤ d(o, p2)}
Sp2 = {o ∈ S | d(o, p1) ≥ d(o, p2)}

Hp1,p2 Hyperplane separating Sp1 and Sp2
Hyperbolic exclusion |d(q, p1)− d(q, p2)| > 2t

Hilbert exclusion d(q,p1)2−d(q,p2)2

2 d(p1,p2) > t (introduced in Section 5.1)

`2 Euclidean distance: `2(x, y) =
√∑n

i=1(xi − yi)2, x, y ∈ Rn

`n2 n-dimensional Euclidean space: `n2 = (Rn, `2).
For example, `22 = (R2, `2), `32 = (R3, `2)

Isometric n-embedding in `n−1
2 A metric space (D, d) is isometrically n-embeddable in `n−1

2 if
for any n points o1, . . . , on ∈ D there exists a mapping function
f : D → `n−1

2 such that `2(f(oi), f(oj)) = d(oi, oj) for i, j =
1, . . . , n

Four-point property A metric space has the four-point property if it is isometrically
4-embeddable in `32

n-point property A metric space has the n-point property if it is isometrically n-
embeddable in `n−1

2

Supermetric space A metric space meeting the four-point property

vo Point in a Euclidean space corresponding to a data object o ∈ D

vw Edge between two point v,w ∈ Rn
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5.1. Hilbert Exclusion: a Novel Pruning Rule for Supermetric Spaces

(a) isometric embedding of p1, s, q in `22 (b) isometric embedding of p2, s, q in `22

(c) isometric embedding of p1, p2, s in `22

Figure 5.2: Hyperbolic exclusion in the light of isometric 3-embedding in `22. Assume to have a gener-
alized hyperplane partitioning of a metric space (D, d) given two pivots p1 and p2. The hyperplane
Hp1,p2 = {x ∈ D| d(x, p1) = d(x, p2)} divided the space into two subsets according to which of the
two pivots is closer. The pivot p1, the query q, and any solution s can be isometrically projected in
two-dimensional Euclidean space (Fig.(a)). Similarly, we can isometrically project p2, q and s in `22
(Fig.(b)). Finally, we can consider an isometric embedding of the two pivots and the solution s in `22
(Fig. (c)). Regarding the last embedding, the query point cannot be drawn in the same diagram, but
given its distance from p1 and p2, we have that any solution in the original metric space must lie in
the region bounded by the four arcs. If the whole of this region lies to the right (left) of the hyperplane
Hp1,p2 in `22, there is therefore no requirement to search to the left (right) of the hyperplane in the
original space.
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Chapter 5. Improving Supermetric Search through Finite Isometric Embeddings

vp1 vp2

vq1

Hp1,p2

t
vp1 vp2

vq2

Hp1,p2

t

Figure 5.3: Two queries, q1 and q2, each with threshold t, on the left side of the boundary Hp1,p2 . Each
object o ∈ D is represented by the 2D point vo obtained using an isometric 3-embedding in `22 (in
the depicted example, vp1 = (−5, 0), vp2 = (5, 0), vq1 = (−1.1, 1.2), vq2 = (−1.1, 4), t = 1).
The hyperbola curve represents the embedding of all possible points o ∈ Sp1 such that d(o, p2) −
d(o, p1) = 2t, i.e. the boundary of the hyperbolic exclusion condition. The minimum distance of this
hyperbola from the line Hp1,p2 is t, but this occurs only on the line passing through vp1 and vp2 .
Since vq1 lies on the left of the hyperbola - that is d(q1, p2)− d(q1, p1) > 2t) - the partition Sp2 can
be excluded from the search on q1. The query q2, instead, is such that d(q2, p2)− d(q2, p1) < 2t and
so does not allow excluding half of the space. The circles of radius t plotted around the queries are
meaningless with respect to the original metric space; we plotted them to visually perceive that in `22
the queries seems to have the same distance from the boundary line Hp1,p2 , which gives the intuition
that maybe also the solution set for the query q2 is all contained in Sp1 . However, we have to inspect
Sp2 to found it out.

Similarly, if we consider the isometric embedding of p2, q, and s in `22 (Figure 5.2b) we obtain that vs
lies in

{x ∈ R2 | d(p2, q)− t ≤ `2(vp2 ,x) ≤ d(p2, q) + t}.

Finally, let’s consider the isometric embedding of p1, p2, and s in `22 (Figure 5.2c). In general, the point q
cannot be isometrically embedded in the same plane as the two pivot points p1, p2, and the solution s, and
therefore cannot be drawn in the same diagram. However, we know that for any isometric 3-embedding
in a Euclidean plane that involves p1, p2, and s we must have

1. d(p1, q)− t ≤ `2(vp1 ,vs) ≤ d(p1, q) + t

2. d(p2, q)− t ≤ `2(vp2 ,vs) ≤ d(p2, q) + t.

This means that any solution s in the original metric space must lie in the region bounded by the four
arcs shown in Figure 5.2c. Since the considered projection involves both p1 ans p2 we can also depict
the hyperplane Hp1,p2 in the same diagram, which corresponds to the line {x ∈ R2| `2(x,vp1) =
`2(x,vp2)}. In fact, we observe that for any two isometric 3-embeddings where two of the points are
the same (in this case p1 and p2), then embedding functions can be chosen that map those two points to
the same two points in `22, thus preserving the semantics of the line Hp1,p2 (see also Section 5.1.2). The
line corresponding to Hp1,p2 divides the space into two subsets according to which of the two pivots is
closer. Therefore if the whole of the region bounded by the four arcs lies to one side of this line, there is
no requirement to search in the opposing side of the space. It can be seen from the diagram, that if q is
closest to p2, this occurs when d(q, p1)− t > d(q, p2) + t, that is d(q, p1)− d(q, p2) > 2t.

Figure 5.3 shows another example taken from a metric space that is 3-embedded in `22. It depicts
the isometric embedding of three points (two pivots and a query) for two query alternatives. Of the two
considered queries, only q1 allows the partition on the far side of the hyperplane to be excluded, as for q2

the exclusion condition is not met, even although the solution space “appears” geometrically separated
from the right-hand side. This appearance, however, is an illusion: When considering this diagram in
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5.1. Hilbert Exclusion: a Novel Pruning Rule for Supermetric Spaces

Figure 5.4: Four points (vp1 , vp2 , vq , and vs) in `32,isometrically corresponding to four objects p1, p2, q
and s, s.t. d(q, s) ≤ t. For fixed p1, p2 and q, any solution to the query lies within the sphere centred
around vq in `32 and cannot belong to Sp1 , even although d(q, p1)− d(q, p2) < 2t. Note that Hp1,p2

in the figure still represents the hyperplane that divides the space into two subspaces: objects nearer
to p1 belonging to the left subspace and objects nearer to p2 to the right.

two dimensions, the relative distances among vp1 ,vp2 and any individual vqi are significant, but as a
general metric space guarantees only isometric 3-embeddability, the circles drawn around the 2D points
corresponding to the queries are meaningless with respect to the original space.

Now we show that a tighter exclusion condition is possible if we consider spaces that are isometri-
cally 4-embeddable in three-dimensional Euclidean space, that is spaces meeting the four-point property.
Figure 5.4, shows the same situation of Figure 5.2c but relying on a 4-embeddability in `32. Here, the
relative distances among any four points can be safely considered: in this case p1, p2, q, and any solution
to q can be all drawn in `32. As before, we indicate with vo the Euclidean point corresponding to the
object o ∈ D. The plane on which the diagram is drawn is that containing vp1 ,vp2 and vq , and therefore
the locus of any solution to q consists of a sphere in `32, radius t, centred around vq . It is clear from this
diagram, in comparison with Figure 5.2c, that a more useful exclusion condition can be used: whenever
the distance between vq and Hp1,p2 is greater than t, Sp1 does not require to be searched.

In the next subsection, we algebraically proves that this occurs when

d(q, p1)2 − d(q, p2)2

2 d(p1, p2)
> t. (5.2)

We refer to this new exclusion condition to as Hilbert exclusion.

5.1.1 The Hilbert Exclusion Condition
Now we provide a formal definition and proof of correctness of Hilbert exclusion. We first consider the
3D Euclidean case, we then extend the proof for supermetric spaces.

Theorem 5.1.1. Consider any three distinct points p1,p2, q ∈ `32 with `2(q,p1) > `2(q,p2). Then the
condition

`2(q,p1)2 − `2(q,p2)2

2 `2(p1,p2)
> t (5.3)
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Chapter 5. Improving Supermetric Search through Finite Isometric Embeddings

implies that `2(s,p1) > `2(s,p2) for all s such that `2(q, s) ≤ t.

Proof. It is sufficient to prove that the distance between the point q and the plane Hp1,p2
= {x ∈

`32 | `2(x,p1)− `2(x,p2) = 0} is greater than t. In this case, the ball with centre in q and radius t does
not intersect the plane.

The equation of the planeHp1,p2
can be rewritten as the scalar product (p2−p1)·(x− (p2+p1)

2 ) = 0,
and so its distance from q is given by

dist(q, Hp1,p2
) =

∣∣∣∣(q − (p2 + p1)

2

)
· (p2 − p1)

‖p2 − p1‖2

∣∣∣∣
=

∣∣∣∣‖p1‖22 − ‖p2‖22 + 2q · p2 − 2q · p1

2‖(p2 − p1)‖2

∣∣∣∣
=

∣∣∣∣`2(q,p1)2 − `2(q,p2)2

2 `2(p1,p2)

∣∣∣∣
Therefore, given that `2(q,p1) > `2(q,p2), if dist(q, Hp1,p2

) > t, any point within distance t of q is
closer to p2 than to p1

Theorem 5.1.2 (Hilbert Exclusion Condition). Let (D, d) a supermetric space and S ⊆ D. Given a
range query R(q, t) and two pivots p1, p2 ∈ D, let S1 = {o ∈ S| d(o, p1) ≤ d(o, p2)}, and S2 = {o ∈
S| d(o, p1) ≥ d(o, p2)}.

Assuming d(q, p2) < d(q, p1), then

d(q, p1)2 − d(q, p2)2

2 d(p1, p2)
> t ⇒ S1 can be excluded from the search. (5.4)

By symmetry, if d(q, p1) < d(q, p2)

d(q, p2)2 − d(q, p1)2

2 d(p1, p2)
> t ⇒ S2 can be excluded from the search. (5.5)

Proof. Without loss of generality suppose that q is closer to p2 than p1. For any s ∈ S such that
d(q, s) ≤ t we want to prove that d(s, p2) < d(s, p1), that is any solution to the range query lie in the
partition S2. Since (D, d) is isometrically 4-embeddable in `32, there exists a function f : (D, d) → `32
which preserves all the six distances:

`2 (f(p1), f(p2)) = d(p1, p2) (5.6)
`2 (f(q), f(p1)) = d(q, p1) (5.7)
`2 (f(q), f(p2)) = d(q, p2) (5.8)
`2 (f(s), f(q)) = d(s, q) ≤ t (5.9)
`2 (f(s), f(p1)) = d(s, p1) (5.10)
`2 (f(s), f(p2)) = d(s, p2) (5.11)

Equations (5.6)-(5.9) together with the condition in Equation (5.4) imply that points {f(p1), f(p2),
f(q), f(s)} ⊆ `32 satisfy the condition of the Theorem 5.1.1. It follows that f(s) is closer to f(p2) than
to f(p1):

`2 (f(s), f(p1)) > `2 (f(s), f(p2)) .

This proves also that s is closer to p2 than to p1, in fact

d(s, p1) = `2 (f(s), f(p1)) > `2 (f(s), f(p2)) = d(s, p2).
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5.1. Hilbert Exclusion: a Novel Pruning Rule for Supermetric Spaces

Figure 5.5: Illustration of the Hilbert exclusion and hyperbolic exclusion in `32. Here pivots are placed
at (−1, 0, 0) and (1, 0, 0), the threshold selected is 0.5. The planes and hyperboloids shown in the
3D space represent the boundaries of the Hilbert exclusion condition and of the hyperbolic exclusion
condition respectively.

Note that, for any solution s in S, a different mapping function f may be required, however there is
no requirement to identify it; the only importance of this function is that, for any four points, it exists.

The practical application of this theorem is in search indexes which partition the search space using
two or more pivots: whenever the space has the four-point property, the Hilbert exclusion condition can
be used in place of the hyperbolic exclusion condition. The important point in our context is that the first
condition is weaker than the second, and is therefore a more useful exclusion condition.

Lemma 5.1.1. The Hilbert exclusion condition is weaker than the hyperbolic exclusion condition.

Proof. We require to prove that

d(q, p1)− d(q, p2)

2
> t ⇒ d(q, p1)2 − d(q, p2)2

2 d(p1, p2)
> t

for which it is sufficient to show that

d(q, p1)2 − d(q, p2)2

2 d(p1, p2)
≥ d(q, p1)− d(q, p2)

2
.

The last inequality directly follows from the triangle inequality:

d(q, p1)2 − d(q, p2)2

2 d(p1, p2)
=

(d(q, p1)− d(q, p2))(d(q, p1) + d(q, p2))

2 d(p1, p2)
≥ d(q, p1)− d(q, p2)

2
.

The proof of the previous Lemma also shows that the two conditions are the same only for a query
point that is collinear with p1 and p2 in the isometric 4-embedding in `32; in all other cases the Hilbert
exclusion is strictly weaker. In this context weaker implies better, as it allows more queries to exclude
the opposing semispace from the search. Therefore, for the supermetric spaces more exclusion are
always possible using the Hilbert exclusion rather than the hyperbolic one, and so in theory any indexing
mechanism that uses the last one can be made more efficient 2. Figure 5.5 gives an illustration of the two
boundary conditions in a three-dimensional Euclidean space.

2The Hilbert exclusion uses the distance d(p1, p2) other than d(q, p1) and d(q, p2). However, the distance d(p1, p2) can be
evaluated as the index is built, not during the query evaluation.
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Chapter 5. Improving Supermetric Search through Finite Isometric Embeddings

Figure 5.6: Projection of two metric objects in 2D Euclidean space whilst preserving the distances
between each point and two pivots.

At the time of writing we notice that a formula equivalent to the left side of Equation (5.4) was
used in the context of metric search also in [183, 214] to calculate the distance between the point q and
the hyperplane equidistant from p1 and p2. This formula was derived using the cosine law on metric
space with the “semidefinite positive property" [214, 229], since this property allows defining a notion
of “angle" in a generic metric space. To provide a bridge to our work, we observe that the semidefinite
positive property is equivalent to the n-point property for a finite semimetric space (see Chapter IV,
Section 43 of [51]). Now we observe that this formula can be safely used in any space that satisfies the
four-point property. While it is always true that the n-point property implies the four-point property,
we cannot assert the vice versa. However, apart from pathological examples, we have not yet found a
practical example of supermetric space that does not meet also the n-point property.

In the Section 5.2 we will prove that the n-point property is satisfied by a number of important metric
spaces, notable including Euclidean spaces of any dimension, as well as probability spaces with the
Jenson-Shannon and Triangular distances. Before giving a formal proof of the applicability of the Hilbert
exclusion on these metric spaces, we would show the impact of using Hilbert rather than hyperbolic
exclusion as well as present a first set of results obtained using our exclusion condition.

5.1.2 Exclusion conditions: 2D Visualization
The impact of a given exclusion condition over a set of queries can be easily visualized using 2D scatter
plots, as described below.

Suppose to have a set of m object {o1, . . . , om} and two pivots p1, p2 in a generic metric space
(D, d). We know that for each triple (p1, p2, oj) there exists an isometric embedding fj : (D, d) → `22
that preserves all the three interpoint distances. Without loss of generality, we can assume that all the
fj maps the pivots p1 and p2 to the X axis, either side of the origin, separated by the distance between
them in the original space (i.e. p1 7→ (−δ/2, 0) and p2 7→ (δ/2, 0), where δ = d(p1, p2))3. Each point
oi (oj 6= p1, p2) is mapped to a point fj(oj) ∈ R2 that preserves the distances d(p1, oj) and d(p2, oj). It
is easy to verify that the coordinates of fj(oj) are either (xj , yj) or (xj ,−yj), where

xj =
d(oj , p1)2 − d(oj , p2)2

2d(p1, p2)
(5.12)

yj =

√
d(oj , p1)2 + d(oj , p2)2

2
− x2

j − d(p1, p2)2/4 (5.13)

For the sake of simplicity, let’s consider only the case where all the points are projected in the upper half
of the plane. Figure 5.6 exemplifies the projection for two objects.

Using this procedure we are able to “visualize” all the points in a 2D scatter plot, such that all the
distances d(pi, oj) are preserved for i = 1, 2 and j = 1, . . . ,m, as well as d(p1, p2). However, the

3Another simple choice that we use later is p1 7→ (0, 0) and p2 7→ (δ, 0).
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distances `2(fj(oj), fh(oh)) are of no significance at priori since each point is obtained using a different
isometric embedding function.

It is worth noting that the proposed visualization preserve the semantic of any locus of points whose
conditions are defined in terms of the distance between a point and the pivots. So for example, the
hyperplane Hp1,p2 = {o ∈ D | d(o, p1) = d(o, p2)} will corresponds to the Y-axis, the boundary of the
hyperbolic condition {o ∈ D | d(o, p1)2 − d(o, p2)2 = 2t} will correspond to the hyperbola {(x, y) ∈
R2 | (x+ δ/2)2 − (y − δ/2)2 = 2t}, etc.

The mapping described above can be used to visualize the difference in pruning capability of Hilbert
and hyperbolic exclusion conditions. Figure 5.7 shows an example in 10-dimensional Euclidean space.
Each scatter plot shows the same set of 500 randomly generated points within the unit hypercube. A
further two points p1, p2 are also generated to act as pivots and a query threshold t is chosen to return
around one point per million from a large set. In the cases shown in Figure 5.7a and Figure 5.7b the
objects are divided into two subsets according to which side of the Y-axis they lie (which correspond
on a hyperplane partitioning of the original space). The solidly-coloured point are points that were they
queries, would allow the semispace on the opposing side to be excluded from the search. We refer to
these points as “exclusive queries”. The other points are referred to as “non-exclusive queries”. Figure
5.7a highlights the points that are exclusive queries according to the hyperbolic exclusion; Figure 5.7b
highlights the points that are exclusive queries according to the Hilbert exclusion. To give reference
diagram for single pivot-based exclusion, in Figure 5.7c we also consider a ball-partitioning defined
according to the median distance to the left-hand pivot point. In this case, the exclusive queries are those
that allow half of the space to be excluded according to the range-pivot pruning rule (Section 2.4.6.2). In
this example, the number of exclusive queries is substantially greater for Hilbert exclusion (219 against
94 for hyperbolic exclusion and 137 for range-pivot exclusion). It is also instructive to note that this
scatter plots clearly show the shape of the boundary conditions: hyperbola with foci at the reference
points and semi-major axis equal to t for the hyperbolic exclusion, parallel lines at distance t from the
separating hyperplane (the Y-axis) for the Hilbert exclusion, and concentric circles for the range-pivot
case.

5.1.2.1 The Effect of the Reference Point Separation

An important observation is that the Hilbert condition, unlike the hyperbolic exclusion, is not affected by
the separation of the reference points. In fact, the lines that bound the “exclusive queries” for the Hilbert
exclusion are defined only by the query threshold t, since they are always parallel and at distance t from
the hyperplane used to partition the space. The hyperbola which bounds the “exclusive queries” for the
hyperbolic exclusion is defined by the query radius and the distance between the reference points, where
the larger the separation of the reference points, the better the exclusion. If the reference points are too
close each other, the hyperbola has very high curvature. In the extreme case where the separation is no
larger than twice the query radius, which can readily occur in high-dimensional space, it is impossible
for any exclusions to be made. This effect can be ameliorated by choosing widely separated reference
points since in this case the hyperbola curvature is low and the query is more likely to be “exclusive”.
However, having more exclusive queries, in this case, does not guarantee more exclusion with respect to
a less wide choice of the reference points. For example, in an unevenly distributed dataset if one of the
reference point chosen is an outlier, then the point cloud will lie close to the other point, and again no
exclusions will be made. Finding two reference points which are well separated, and where the rest of
the points is evenly distributed between them, is an intractable task in general.

Figures 5.8 and 5.9 show the effect of the separation of the reference points. We consider a set
of 500 randomly generated points in 8-dimensional Euclidean space. In these diagrams, the reference
points have been selected as the furthest, and nearest, respectively out of 1,000 sample pairs of points
drawn from the space. It can be seen that, when the exclusion is based on the four-point property (Hilbert
exclusion), the exclusive power remains fairly constant. However, when the hyperbolic condition is used,
the exclusive power is hugely affected; in this case, the query threshold is only slightly less than half the
separation of the reference points, and the resulting hyperbola diverges so rapidly from the separating
hyperplane that no exclusions are made from the sample queries. From Figure 5.8 it should also be noted
that, no matter how far the reference points are separated, the four-point property always gives a higher
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Chapter 5. Improving Supermetric Search through Finite Isometric Embeddings

(a) Hyperplane partitioning + hyperbolic exclusion

(b) Hyperplane partitioning + Hilbert exclusion

(c) Ball partitioning + Range-Pivot exclusion

Figure 5.7: Exclusion capability: Comparison between hyperbolic exclusion, Hilbert exclusion and
range-pivot exclusion for 500 randomly generated points in 10-dimensional Euclidean space. The
points are partitioned in the original space using Hyperplane partitioning ((a) and (b)), or using
Ball partitioning according to the median distance from the left-hand pivot (c). For the hyperplane
partitioning cases, the points coloured solidly are those which, were they queries, would allow the
opposing semispace to be excluded from a search. For the ball partitioning case, the points coloured
solidly indicate those whose distance from the pivot point is more than the query threshold away from
its median. 112



“main” — 2018/5/6 — 19:17 — page 113 — #139i
i

i
i

i
i

i
i

5.1. Hilbert Exclusion: a Novel Pruning Rule for Supermetric Spaces

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

Hilbert Exclusion, 8 dimensions

X

al
ti

tu
d

e 
fr

o
m

 li
n

e 
(p

1, p
2)

 

 

non−exclusive queries
exclusive queries, n = 330

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

Hyperbolic Exclusion, 8 dimensions

X

al
ti

tu
d

e 
fr

o
m

 li
n

e 
(p

1, p
2)

 

 

non−exclusive queries
exclusive queries, n = 278

Figure 5.8: Scatter diagram for 8-dimensional Euclidean space with widely separated reference points.
(The distance between reference points is such that the reference points themselves do not appear on
the plot).
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Figure 5.9: Scatter diagram for 8-dimensional Euclidean space with close reference points. Note from
the comparison of the left-hand graphs of this figure with Figure 5.8 that the separation of the refer-
ence points has no apparent effect on the power of the Hilbert exclusion, whereas normal hyperbolic
exclusion becomes completely useless.

probability of exclusions; in this case, although the separating lines do not appear visually to be very
different, the implied probability of exclusion in for the Hilbert condition is 0.66, against 0.56 for the
hyperbolic condition.

5.1.3 Experimental Evaluation

Given that the Hilbert exclusion condition is strictly weaker than the hyperbolic one (Lemma 5.1.1),
we expect that any partition-based indexing mechanism will always perform better if using the former
condition. Both the conditions require the evaluation of the distance between the query and each pivot.
The Hilbert exclusion also requires the distance between the two pivot points, however, this may always
be calculated during the building of any indexing structure. The minor increase in arithmetic cost and
the extra space required to store the distance between pivots would not normally make a significant
difference to the query cost given that this cost is totally dominated by the number of dynamic distance
calculations required and the use of memory where the objects are large.

We are aware that is not possible to give a simple measure of “performance improvement" of our
exclusion condition in general terms, since performance is highly dependent on many factors (e.g., the
cost of the distance calculations, the size of the objects, the intrinsic dimensionality of the space, the used
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index mechanism, etc.). We, therefore, give an analysis of the improvement of our exclusion condition
over the hyperbolic exclusion in two fundamental scenarios as follows.

Tests on synthetic data (Section 5.1.3.1) We consider several synthetic datasets generated for various
dimensions and metrics. For each space, we first measure the ability of both Hilbert and hyperbolic
mechanisms to avoid searching either half of the space without using any specific index structure.
We then measure the improvement in term of distance calculations obtained using our exclusion
condition in conjunction with data structures relying primarily on hyperplane partitioning (hyper-
plane and bisector trees).

Tests on “real-world” data (Section 5.1.3.2) The “Similarity Search and Applications” (SISAP) fo-
rum4 publishes a number of large datasets drawn from real-world contexts which are commonly
used as benchmarks for metric indexing approaches. Results over these have been reported for
many different indexing mechanisms. We focus on exact search and take the best of these mech-
anisms at the time of writing that is DiSAT. DiSAT uses both radius and hyperplane exclusion
mechanisms. We compare the results obtained with DiSAT using either Hilbert or hyperbolic
condition to perform the hyperplane-based exclusion.

All of our measurements are expressed in terms of the number of distances calculation, and we do
not give any measured execution times. The reason is that our focus here is to compare two exclusion
mechanisms, so the number of distance calculations is the more important outcome in this context. In
fact, our measured times for experiments we perform are approximately proportional, as the search
structures are built over relatively small datasets which fit wholly within main memory and the cost of
distance calculations is dominant.

5.1.3.1 Tests on Synthetic Data

We start our analysis by testing Hilbert and hyperbolic exclusion on a variety of spaces and search
thresholds. We use pseudo-random datasets of one million elements within the unit hypercube, uniformly
distributed in each dimension, within RD for D ∈ {6, 8, 10, 12, 14}. We considered three different
metrics over these spaces: Euclidean, Jensen-Shannon and Triangular distances. For Jensen-Shannon
and Triangular distances, each point was normalized so that the sum of all entries is 1.

We evaluate the performance of the two hyperplane-based exclusion mechanisms in term of

• Exclusion power: for a given finite space, we randomly select pairs of reference points that parti-
tion a space into two halves (balanced hyperplane partitioning). We then measure the “exclusion
power” of each exclusion mechanism as the probability of a randomly-selected query being able
to avoid searching either half of the space based only on its distance from the two points.

• Improvement over hyperplane-based tree: for a given metric space, we build simple data structures
relying primarily on hyperplane partitioning, namely Generalized Hyperplane Tree (GHT), Bisec-
tor Tree (BST) and Monotonous Bisector Tree (MBT). The same index structures can be used with
either Hilbert or hyperbolic exclusion; improvement is measured as a simple multiplicative factor
between the number of distance calculations for the two exclusion mechanisms.

In the results presented we name the spaces used based on the metric and the number of Cartesian
dimensions, e.g. euc_8 for Euclidean distance over R8, jsd_10 for Jensen-Shannon distance over R10

etc. Search thresholds were derived by experiment, for each space, as those which would return around
k results per million data, for k ∈ {1, 4, 16}. For each space, we also report the Intrinsic Dimensionality
(IDim) [66] generally believed to give a reasonably good estimate of the tractability of a space to metric
indexing techniques (see Section 2.4.2). A common observation is that spaces with an IDim of greater
than around 6 are challenging, and those with an IDim of greater than about 10 are usually intractable
with exact search. We estimate the IDim as in [66], which is defined over a sample of distances calculated
over randomly selected points from within the space, as µ2/(2σ2) where µ is the mean and σ is the
standard deviation of these distances. Table 5.2 gives values of IDim and search thresholds calculated
for each space.

4http://www.sisap.org
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5.1. Hilbert Exclusion: a Novel Pruning Rule for Supermetric Spaces

Dataset IDim
Thresholds

t1 t4 t16

euc_6 7.64 0.076 0.095 0.120

euc_8 10.5 0.149 0.177 0.211

euc_10 13.3 0.228 0.262 0.301

euc_12 16.1 0.308 0.346 0.388

euc_14 19.0 0.386 0.426 0.471

jsd_6 5.15 0.022 0.030 0.040

jsd_8 7.26 0.045 0.057 0.071

jsd_10 9.39 0.067 0.079 0.094

jsd_12 11.4 0.084 0.099 0.114

jsd_14 13.7 0.103 0.118 0.133

tri_6 5.76 0.025 0.035 0.047

tri_8 8.25 0.053 0.068 0.083

tri_10 10.6 0.078 0.093 0.110

tri_12 13.0 0.098 0.116 0.133

tri_14 15.5 0.120 0.137 0.155

Table 5.2: Synthetic datasets for various metrics (Euclidean, Jensen-Shannon and Triangular distances),
and number D of Cartesian components (D ∈ {6, 8, 10, 12, 14}). For each metric space, threshold
tk was experimentally derived as that which would return around k results per million data.

All results presented in the following are independent of the computer upon which they are per-
formed, and all figures presented represent mean values where experiments were repeated until the stan-
dard error of the mean was less than 1% of the value given.

Exclusion Power Test Here we compared the exclusion power of Hilbert and hyperbolic conditions
in the most basic scenario that is without using any index structure. For reference we also considered
the results related to range-pivot exclusion; however, the fair comparison in this context is between the
Hilbert and the hyperbolic exclusion since they are based on the same partitioning principle and they are
mutually exclusive. The range-pivot exclusion, instead, is normally used to effect in conjunction with
hyperplane-based exclusion and so it can be used with either Hilbert or hyperbolic condition. Moreover,
the range-pivot condition requires one distance calculation, while hyperplane-based exclusion, in the-
ory, requires two distance calculations. In practice, many indexes (like monotone trees) have ways of
amortising this extra cost.

Results are reported in Figure 5.10. In each test, we partitioned the space in two halves with re-
spect to some pivots and we measure the probability of a randomly-selected query being able to avoid
searching either half of the space based only on its distance from the pivot(s). The left-hand figures show
the exclusion percentage obtained at various dimensions and thresholds for Euclidean, Jenson-Shannon
and Triangular distances. In all spaces that we have measured the single range-pivot method has more
exclusion power than hyperbolic exclusion, but less power than Hilbert exclusion. The results have sim-
ilar trends for all the tested metrics. So the efficiency of Hilbert exclusion does not seem to be affected
by the choice of the metric. Moreover, it can be seen that Hilbert exclusion performs much better than
hyperbolic exclusion, and is much more tolerant to increases in both dimensionality and query threshold;
that is, it performs relatively better as the space becomes less tractable.

The right-hand graphs illustrate this in terms of improvement of Hilbert over hyperbolic exclusion,
which again can be seen to increase sharply as space becomes less tractable.
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Figure 5.10: Exclusion Power tests: Each figure shows five different dimensionalities, and three different
search thresholds, for Euclidean distance (top row), Jensen Shannon distance (middle row), and
Triangular Distance (bottom row). Left figures are percentage exclusion, right figures are the relative
improvement of Hilbert over hyperbolic.
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Improvement tested over hyperplane-based trees To give a more practical measurement of perfor-
mance improvement of Hilbert over hyperbolic, we tested the two exclusion mechanisms using metric
indexes over the previously described synthetic datasets. The indexes used are the Generalized Hyper-
plane Tree (GHT) and the Bisector Tree (BST) which are in a sense the most “pure" (and certainly
the simplest) hyperplane indexing structures. We also tested the monotone version of the bisector tree,
namely the Monotonous Bisector Tree (MBT) 5. We remind that GHT and BST share the quite same
construction algorithms: the only difference is that the “bisector” tree stores the covering radius of each
sub-partition so that both pivot-based exclusion and hyperplane exclusion are used at query time. The
monotone version of the bisector tree, i.e. MBT, re-uses pivots of the internal nodes so that fewer dis-
tance computations are needed to build the index and execute a query. In our experiments, we used both
cover radius and hyperplane exclusion mechanisms when evaluating bisector trees, as would be normal
in practice, and compared the use of hyperbolic exclusion with Hilbert exclusion. At each node we
used the “Far” pivot selection strategy, that is: the first pivot is chosen either randomly or handed down
from an ancestor node for the monotone case, the second pivot is selected within the data subset used to
construct that node so that it is at the furthest distance from the first pivot.

Table 5.4 reports the results for Euclidean, Jensen-Shannon and Triangular distances for five different
dimensions (6, 8, 10, 12, 14). Figure 5.11 shows the results for the Euclidean case in graphical form.
Results for Jensen-Shannon and Triangular metrics have similar trends.

It can be seen that, for all spaces, Hilbert condition always gives better performance than hyperbolic
condition; this is expected, as the former exclusion condition is strictly weaker. The bisector trees (BST,
MBT) always give improved performance over the GHT, also thanks to the joint use of pivot-based
and hyperplane-based exclusions. The improvement given by using Hilbert exclusion with the GHT is
impressive (up to six times fewer distance calculations in 10D Euclidean space). It can also be seen
that the GHT under Hilbert exclusion gives similar performance than the BST under both hyperbolic
exclusion and range-query exclusion. Interestingly, the improvement given by using Hilbert exclusion
with the MBT is better than the improvement given over the BST. This is better shown in Figure 5.12,
where results for Euclidean spaces are interpreted as improvement ratio. We also observed that for all
search thresholds, the improvement ratio reaches a maximum at around 10 dimensions and then decreases
again. This can be explained by the fact that, for very tractable spaces, both mechanisms function very
well; there is not, therefore, a great improvement. For intractable spaces, neither mechanism can do well
and so again the relative improvement becomes less. So, it can be seen that the gap in the exclusion
power of the two mechanisms is greatest at around the same range of dimensions.

5.1.3.2 Tests on “Real-World” data

As regards experiments over real-word data we used the Nasa [8, 101] and Colors [101] SISAP bench-
marks (see also Section 2.5). In each case, ten percent of the data is used as queries over remaining 90
percent of the set, at threshold values which return 0.01%, 0.1% and 1% of the datasets respectively.
Table 5.3 summarises characteristics of these two datasets as well as reporting search thresholds.

Table 5.3: SISAP datasets. Experimental threshold values that return the 0.01%, 0.1% and 1% of the
datasets, respectively.

Dataset # elements feature dim Used
metric

Experimental Thresholds
t0.01% t0.1% t1%

Nasa 40,150 PCA-reduced Color Histograms 20 `2 0.120 0.285 0.530
Colors 112,682 Color Histograms 112 `2 0.052 0.083 0.131

There are many different contexts for metric search, and no mechanism is generally believed to be
best for all purposes. For our experiment, we considered the Distal Spatial Approximation Tree (DiSAT)
[65] which has been shown to perform better than a large range of other mechanisms. In [65], Chávez et

5See Sections 2.4.7.2, and 2.4.7.3 for the definitions of GHT, BST, and MBT.
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Figure 5.11: Performance of three hyperplane-based metric index structures (GHT, BST and MBT)
with the different exclusion strategies at various dimensionality and thresholds. The performance is
measured as the mean number of distance calculations per query as percentage of the dataset size
(1 million). In each graph, lines of the same pattern represent the same data, and the same index
structures, only the query exclusion mechanism is different. Results are related to Euclidean metric
spaces.
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Figure 5.12: Improvement ratio for Hilbert exclusion with generalized hyperplane tree (left) and bi-
sector trees (right) on Euclidean space of various dimensions. The improvement is computed as the
ratio of the number of distances calculated using Hilbert or hyperbolic at various dimensionality of
Euclidean space. Jensen-Shannon and Triangular metrics give similar results.
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Table 5.4: Cost for Generalized Hyperplane Tree (GHT), Bisector Tree (BST), and Monotonous Bisector Tree (MBT): Mean number of distance calculations per
query as percentage of data size (n = 106). For each metric space, threshold tk was experimentally derived as that which return around k results per million
data.

Space
GHT BST MBT

Hyperbolic Hilbert Hyperbolic Hilbert Hyperbolic Hilbert
t1 t4 t16 t1 t4 t16 t1 t4 t16 t1 t4 t16 t1 t4 t16 t1 t4 t16

euc_6 0.20 0.48 1.23 0.07 0.13 0.29 0.06 0.11 0.20 0.04 0.08 0.14 0.05 0.08 0.15 0.03 0.05 0.10

euc_8 1.82 3.80 8.32 0.39 0.73 1.43 0.31 0.51 0.88 0.19 0.33 0.58 0.26 0.42 0.71 0.13 0.22 0.41

euc_10 9.58 18.12 30.53 1.56 2.77 5.19 1.16 1.86 2.87 0.67 1.08 1.84 1.00 1.55 2.33 0.48 0.78 1.34

euc_12 33.34 48.01 64.88 6.08 9.90 16.41 3.96 5.77 8.25 2.30 3.55 5.61 3.25 4.56 6.49 1.68 2.60 4.03

euc_14 64.50 75.36 85.55 16.57 24.86 35.41 9.82 12.97 17.20 6.09 8.96 12.88 7.67 10.07 13.23 4.37 6.37 9.35

jsd_6 0.19 0.54 1.59 0.06 0.14 0.30 0.05 0.11 0.21 0.04 0.08 0.15 0.04 0.08 0.16 0.03 0.05 0.11

jsd_8 1.84 5.01 10.96 0.36 0.86 1.80 0.29 0.58 1.05 0.18 0.37 0.71 0.24 0.46 0.84 0.13 0.27 0.52

jsd_10 13.16 25.47 42.15 2.34 4.63 8.93 1.58 2.72 4.51 0.96 1.75 3.14 1.45 2.40 3.84 0.73 1.37 2.47

jsd_12 37.63 58.97 75.67 7.60 14.81 24.49 4.69 7.73 11.63 2.88 5.31 8.74 4.20 6.74 9.91 2.24 4.18 7.01

jsd_14 72.97 85.51 92.36 24.16 37.05 50.98 13.17 18.78 25.23 9.27 14.62 21.43 11.35 16.05 21.68 7.35 11.77 17.67

tri_6 0.19 0.62 1.91 0.06 0.13 0.31 0.05 0.11 0.22 0.04 0.07 0.15 0.04 0.08 0.16 0.03 0.05 0.11

tri_8 2.93 8.59 19.46 0.50 1.19 2.63 0.41 0.81 1.48 0.24 0.49 0.96 0.33 0.64 1.15 0.17 0.36 0.72

tri_10 19.88 34.07 53.11 2.78 5.70 10.66 1.86 3.05 4.99 1.05 1.94 3.42 1.53 2.50 4.00 0.76 1.43 2.60

tri_12 50.75 68.91 82.09 10.66 20.09 32.30 6.14 9.71 14.26 3.80 6.95 11.26 5.28 8.25 11.92 2.92 5.45 9.11

tri_14 82.90 91.16 96.08 30.77 45.56 60.05 16.24 22.43 29.68 11.94 18.25 25.90 13.71 19.00 25.42 9.63 14.81 21.79
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Figure 5.13: Comparing hyperbolic and Hilbert exclusion Conditions for the DiSAT. The two graphs
represent benchmark applications of the state-of-the-art DiSAT index over SISAP datasets, with sig-
nificant improvements achieved through changing only the exclusion condition.

al. assert: “Our data structure has no parameters to tune-up and a small memory footprint. In addition,
it can be constructed quickly. Our approach is among the most competitive, those outperforming DiSAT
achieve this at the expense of larger memory usage or an impractical construction time."

We therefore considered DiSAT as the state-of-the-art hyperplane-based indexing mechanism and we
tested the effect of applying Hilbert exclusion against the hyperbolic exclusion with which DiSAT has
been defined. Figure 5.13 shows the outcome of these experiments. Also in this case, we observe that
Hilbert exclusion greatly improves the performance.

In [77] we have provided a full evaluation of the performance of the Hilbert exclusion within a
variety of different hyperplane partition indexing structures, including a number of variants of DiSAT
and bisector trees. One outcome of this evaluation is that the results obtained for different hyperplane
partition trees vary a lot if using hyperbolic exclusion, while they are quite similar if using the Hilbert
Exclusion. Moreover, the simple bisector tree with logarithmic arity (i.e. using a dynamic branching
factor that does not exceed the natural logarithm of the data size) achieved the best performance over the
SISAP benchmark datasets; to put this result in perspective, it required only around 40% of the number
of distance calculations per query of the previous state of the art given in [65].

5.2 Metric Spaces and n-Point Property

In the previous section, we proposed the Hilbert exclusion, which shown promising improvement over
the hyperbolic exclusion condition. However, we observed that our novel exclusion condition is ap-
plicable only when the metric space has the four-point property. The principal family of spaces that
meet such property is the Hilbert-embeddable one. Actually, if a space is isometrically embeddable in a
Hilbert space it also meets the more restrictive n-point property for any finite value of n. In the next sub-
sections, we show the n-embeddability property for some important metrics as well as provide examples
of non-embeddable spaces.

5.2.1 Isometrically n-Embeddable Spaces
This section uses various results gathered from mathematical literature to show that any metric space
which is isometrically embeddable in a Hilbert space can be used with our exclusion condition.

The importance of Hilbert spaces is the generalisation of the notion of Euclidean space by extending
the methods of vector algebra and calculus to spaces with any finite or infinite number of dimensions. A
Hilbert space is an abstract vector space possessing the structure of an inner product that allows length
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and angle to be measured, which gives certain geometric properties. These properties extend to abstract
metric spaces which can be isometrically embedded in a Hilbert space. The key property of interest here
is in n-point isometric embedding in `n−1

2 .

Lemma 5.2.1 (Schoenberg’s Theorem [229, 249]). Let (D, φ) a semi-metric space and φ such that, for
all finite sets {ci}i≤n of real numbers and all finite sets {xi}i≤n of points in D, the implication

n∑
i=1

ci = 0⇒
n∑

i,j=1

cicjφ(xi, xj) ≤ 0 (5.14)

holds (that is, φ is conditionally negative semidefinite function). Then (D,
√
φ) is a metric space which

can be embedded isometrically as a subspace of a real Hilbert space.

Lemma 5.2.2 (Blumenthal Lemma 53.1 [51]). A numerable semimetric space is isometrically embed-
dable in a Hilbert space if and only if it is isometrically n-embeddable in `n−1

2 for every positive integer
n.

The main importance from our perspective is that, given a metric space (D,
√
φ), it is sufficient for

φ to be a conditionally negative semidefinite function in order to have isometric embeddability into a
Hilbert Space. Moreover the Hilbert embeddability guarantees the n-point property for all n.

5.2.1.1 Rk with Euclidean and Cosine Distances

From the above lemmata, directly follows that Euclidean spaces meet the n-point property since they are
finite subspaces of a Hilbert space.

Proposition 5.2.1. The Euclidean spaces of any dimension have the n-point property for any n, and can
therefore use the Hilbert exclusion condition.

A constructive proof can be provided showing that the function φ(v,w) =
∑n
i=1(vi − wi)

2 is
conditionally negative definite which is straightforward to demonstrate.

Moreover, it follows that Rn with the Cosine Distance dCos (Equation 2.32) meets the n-point prop-
erty as well.

Corollary. (Rk, dCos) has the n-point property for any n and k, and so the Hilbert exclusion Condition
is valid over it.

In facts, since ‖v − w‖2 = ‖v‖2 + ‖w‖2 − 2v · w, the distance dCos(v,w) is equivalent to the
Euclidean distance computed on the normalized vector v/‖v‖ and w/‖w‖:

dCos(v,w) = dCos

(
v

‖v‖
,

w

‖w‖

)
=

1√
2
`2

(
v

‖v‖
,

w

‖w‖

)
.

5.2.1.2 Rk with the Quadratic Form Distance

The class of spaces with the costly Quadratic Form Distance (QFD) (Section 2.4.1.1) has the n-point
property:

Proposition 5.2.2. Rk with the Quadratic Form Distance have the n-point property for any n and k,
and can therefore use the Hilbert exclusion condition.

This is a direct consequence of the Schoenberg’s Theorem, since the (QFD) is the square root of the
semi-metric

φ(v,w) = (v −w)>M(v −w), (5.15)
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where M is a semidefinite positive matrix (i.e. z>Mz ≥ 0, for any z) . Clearly if {ci}i≤n is a sequence
of real number that sum to zero, and {xi}i≤n is a sequence of data points we have

n∑
i,j=1

cicj(xi − xj)
>M(xi − xj) =

n∑
i,j=1

cicjx
>
i Mxi +

n∑
i,j=1

cicjx
>
j Mxj − 2

n∑
i,j=1

cicjx
>
i Mxj

(5.16)

= −2

n∑
i=1

n∑
j=1

cicjx
>
i Mxj (5.17)

= −2

(
n∑
h=1

chxh

)>
M

(
n∑
h=1

chxh

)
≤ 0. (5.18)

5.2.1.3 Probability Distribution Space with Jensen-Shannon Distance

It is already known that the square root of the Jenson-Shannon divergence is a proper metric on the space
of probability distributions [95, 104, 201] (see also Section 2.4.1.1)). Here we bring attention to the fact
that it has the n-point property.

Lemma 5.2.3 (Topsøe [104]). The space (M1
+(A), dJSD) is isometrically isomorphic to a subset in

Hilbert Space.

Topsøe uses Schoenberg’s conjecture to prove this property by showing that Jenson-Shannon diver-
gence is itself a negative semidefinite mapping with the semi-metric properties. Thus it follows

Proposition 5.2.3. The space (M1
+(A), dJSD) is has the n-point property for any n, and can therefore

use the Hilbert exclusion condition.

5.2.1.4 Probability Distribution Space with Triangular Distance

To establish the generality of our results, we give one more example of a proper metric which is also
Hilbert space embeddable and can, therefore, be searched using the Hilbert exclusion. In particular, we
consider the Triangular Distance (Equation (2.34), Section 2.4.1.1). We report the mathematical proof in
order to give an example of how to explicitly prove that a function is conditionally negative semidefinite.

Proposition 5.2.4. The space (M1
+(A), d∆) has the n-point property for any n, and can therefore use

the Hilbert exclusion condition.

Proof. For the Schoenberg’s Theorem it is sufficient to prove that the Triangular Discrimination, defined
as

∆(v,w) =
∑
i

(vi − wi)2

vi + wi
∀v,w ∈ Rn,

∑
i

vi =
∑
i

wi = 1,

is a conditionally negative semidefinite function. Moreover, as ∆ is a summation it is sufficient to

prove that f(x, y) =
(x− y)2

x+ y
, where x, y ∈ R, is conditionally negative semidefinite.

Recalling the definition of negative semidefinite (Equation 5.19) we require∑
i,j

(xi − xj)2

xi + xj
cicj ≤ 0

for any finite set of real numbers {ci}i≤m such that
∑
i ci = 0 and for any finite set {xi}i≤n of points

in R.
Observing that (xi − xj)2 = (xi + xj)

2 − 4xixj we obtain

m∑
i,j

cicj
(xi − xj)2

xi + xj
=

m∑
i,j

cicjxi +

m∑
i,j

cicjxj − 4

m∑
i,j

cicj
xixj
xi + xj

= −4

m∑
i,j

cicj
xixj
xi + xj
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as the first two terms sum to zero. Thus it is sufficient to prove that
m∑
i,j

cicj
xixj
xi + xj

≥ 0

As the index i, j such xi = 0 or xj = 0 do not contribute to the summation, we can assume that all
the xi, xj are positive.

m∑
i,j

cicj
xixj
xi + xj

=

m∑
i,j

cicjxixj

∫ ∞
0

e−t(xi+xj)dt

=

∫ ∞
0

m∑
i,j

cicjxixje
−t(xi+xj)dt

=

∫ ∞
0

(
m∑
i

cixie
−txi

) m∑
j

cjxje
−txj

 dt

=

∫ ∞
0

(
m∑
i

cixie
−txi

)2

dt ≥ 0

This therefore gives us that the Triangular Distance d∆(v, w) =
√

∆(v, w) is a proper metric such
that (M1

+(A), d∆) is isometrically embeddable in Hilbert space.

5.2.2 Supermetrics: Isometrically 4-Embeddable Spaces
Since our new exclusion condition requires just the four-point property, we are interested also in spaces
that satisfy conditions less restrictive than the Hilbert-embeddability.

In [51] a weaker version of the Schoenberg’s theorem is used to characterize any metric space which
has the four-point property :

Lemma 5.2.4 ( [51]). A metric space (D, d) is isometrically 4-embeddable in `32 if and only if for all set
{c1, c2, c3, c4} of real numbers and all finite sets {x1, x2, x3, x4} of points in D, the implication

4∑
i=1

ci = 0⇒
4∑

i,j=1

cicjd(xi, xj)
2 ≤ 0 (5.19)

holds.

In general, any inner product space meets this property:

Lemma 5.2.5 (Scholtes Proposition 1.3 [230]). Let (V, ‖ · ‖) be a normed vector space. Then the
following statements are equivalent:

• (V, ‖ · ‖) is an inner product space, i.e., there exists an inner product < ·, · > on V which induces
the norm: ∀x ∈ V, ‖x‖ =

√
< x,x >

• there exists an inner product space (W, ‖ · ‖W) such that (V, ‖ · ‖) is isometrically embeddable in
(W, ‖ · ‖W)

• all subsets {u,v,w,x} ⊂ V are isometrically embeddable in `32.

Interestingly, in [51], it is shown that

Lemma 5.2.6. If (D, d) is a metric space then (D, dα), with 0 ≤ α ≤ 1/2, is isometrically 4-embeddable
in `32.

This implies, for example, that for any proper metric, a new metric with the four-point property can
be formed by taking its square root, and thus used in a metric search structure with Hilbert exclusion.
However, for practical purposes, this result is unlikely to be useful. In facts, raising a metric to a small
power may cause an increase in its intrinsic dimensionality and thus a higher probability of no exclusion
being made.
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Figure 5.14: Showing that `1 does not have the four-point property. On the left, we plot four points in
(R2, `1) that are not embeddable in (R3, `2). On the right, we show the `1 distances between the
points. Any isometric embedding in `32 maps A, B, C to collinear points, meaning that the point D
cannot be embedded whilst preserving the distances.
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Figure 5.15: The `∞ distance also does not have the four-point property. On the left, we plot four points
in (R2, `∞) which are not embeddable in (R3, `2). On the right, we report the `∞ distances between
the points. Once again, any isometric embedding must map A,B,C to collinear points in `32 making
D impossible to embed.

5.2.3 Non-Embeddable Spaces

To complete the picture, it is worth mentioning that not all metric spaces are four-embeddable in `32; it is
therefore necessary to make a proper assessment of the space in question before using Hilbert exclusion.

Manhattan (`1), Chebyshev (`∞), Hamming and Edit distances are notable examples of metrics that
do not meet the four-point property. In fact, it is easy to provide a counterexample for each of these
metrics.

Let’s first consider the Manhattan distance. Figure 5.14 shows, on the left, a four points in the 2D
Cartesian plane and, on the right, the `1 distances between those points. Since `1(A,C) = `1(A,B) +
`1(B,C), for any isometric embedding of A, B, C in `32 the three points are collinear. However, this is
also true for A, D and C, and the distances are the same. Therefore, the four points A, B, C, D cannot
be isometrically embedded in `32, as this would require that `1(B,D) = 0.

Similarly in Figure 5.15, `∞(A,C) = `∞(A,B) + `∞(B,C) and so the points are collinear for any
isometric embedding in `32; again, D shares the same distances (`∞(A,C) = `∞(A,D) + `∞(D,C)),
and so a four-point embedding again cannot be achieved as this would require `∞(B,D) = 0.

To show that Hamming distance does not have the four-point property, it can simply be noted that the
same distance table as that in Figure 5.14 is generated by the values A = 00, B = 10, C = 11, D = 01.
In fact, this counterexample gives the same distances also for Edit distance, which therefore does not
have the four-point property.
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5.3 Tetrahedral projection onto a plane

As discussed previously, there exists a large class of metric space that meet the four-point property.
This property has allowed us to define a novel exclusion mechanism which can be used to improve
standard hyperplane partitioning. In this section, we continue our investigation on the four-point prop-
erty. Specifically, we show how to use the isometric 4-embeddability in 3D Euclidean space to compute
a lower-bound of the actual distance which allows us to define novel partitioning approaches that are
possible only on supermetric spaces.

We start from the observation that in the same manner with the triangle inequality allows us to draw
any three metric objects as the vertices of a triangle in a 2D Euclidean space (Section 5.1.2), the four-
point property allows drawing any four objects as the vertices of a tetrahedron in 3D. However, the
practical case is that we know only five out of the sixth edge lengths of the tetrahedron because only five
of the six possible distances have been measured in the original metric space. This corresponds to the
situation of an indexing structure based on two reference objects, p1 and p2, which were used to partition
a dataset S ⊂ D according to relative distances from these objects. The third object s represents an
arbitrary element of S which has been stored, and the fourth and final object q represents a query over
the data. For all possible data objects, we wish to identify those which may be within a threshold dis-
tance t of q, based on some partition of the space constructed before q was available. The three distance
d(p1, p2), d(s, p1) and d(s, p2) are calculated during the index build process and used to guide the struc-
turing of the data. At query time, for a query q, the two distances d(q, p1) and d(q, p2) are calculated and
may be used to make some deduction relating to this structure. This situation gives knowledge of two
adjacent faces of the tetrahedron which can be formed in `32, whose common base is the edge vp1vp2 ,
where for each object a the notation va is used to denote the corresponding point in `32:

Neither the edge vqvs nor the angle between these two triangles are known without explicitly computing
the distance d(s, q) in the original space. Since the triangle inequality gives us upper and lower bounds
on this distance (Double-Pivot distance constrain, Section 2.4.6.4), we question whether the tetrahedral
embedding can provide distance bounds as well. It is immediate to show that no matter what the angle
between the two triangles is, if we rotate the triangle vp1vp2vs around the line vp1vp2 until it is coinci-
dent with the plane where vp1vp2vq lies we obtain two possible projections, each providing us a distance
bound. Figure 5.16 shows the described rotation procedure. The two possible orientations give the upper
and lower bounds, corresponding to the distances between vs and the two apexes v−q and v+

q of the two
possible planar tetrahedra. Therefore if `2(v+

q ,vs) > t then also `2(vq,vs) = d(s, q) > t, which means
that s is not a solution. Similarly if `2(v−q ,vs) ≤ t than d(s, q) ≤ t.

The coordinates of the vertices in the planar plane can be easily computed as done in Section 5.1.2
(see also Figure 5.6). Many such coplanar triangles can be depicted, representing many points of a
space, in a single scatter plot. For example, Figure 5.17 shows a set of 500 points, drawn from randomly
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Figure 5.16: Projection of two adjacent triangles onto the same plane by rotating one of the two around
the common basis.

Figure 5.17: Scatter diagram for 8-dimensional Euclidean Space. The distance δ between two selected
reference points p1 and p2 is measured, and an embedding function is chosen which maps these to
(0,−δ/2) and (0, δ/2) respectively. Other points si in the space are then plotted to preserve the
distances d(si, p1) and d(si, p2). For metric spaces with the four-point property, the `2 distance
between the corresponding points in this diagram is a lower bound on d(si, sj) in the original space.
Hence, any point within t of a point s in the original space cannot lie outside the circle of radius t
centered around s in the scatter plot.

126



“main” — 2018/5/6 — 19:17 — page 127 — #153i
i

i
i

i
i

i
i

5.3. Tetrahedral projection onto a plane

generated 8-dimensional Euclidean space, and plotted with respect to their distances from two fixed
reference points p1 and p2. The distance between the reference points is measured, and the reference
points are plotted on the X-axis symmetrically either side of the origin. For each point in the rest of the
set, the distances d(s, p1) and d(s, p2) are calculated and used to plot the unique corresponding point in
a triangle above the X-axis, according to these edge lengths.

It is important to be aware, in this and the following figures, of the importance of the four-point
property. In Section 5.1.2, we saw that the same diagram can be plotted for a simple metric space
(thanks to triangle inequality), but in this case no spatial relationship is implied between any two points
plotted in the 2D plane: no matter how close two points are in the plot, there is no implication for the
distance between them in the original space. However, if the diagram is plotted for a supermetric space,
then the distance between any two points on the plane is a lower bound on their distance in the original
space; two points that are further than t on the plot cannot be within t of each other in the original space.
This observation leads to an arbitrarily large number of ways of partitioning the space and allowing these
partitions to be excluded on the basis of the query position in the 2D scatter plot and has many potential
uses in metric indexing.

5.3.1 Indexes Based on Planar Projection with the Four-Point Property

The planar projection of a subset of a supermetric space into a 2D Euclidean space allow exploiting novel
partitioning strategies that can be used to build an index of the data object.

Let us consider the case of a single level of partitioning of a space S ∈ D. Two reference objects
p1 and p2 are selected in the original space and used to project any object s ∈ S in a 2D plane, that
is s 7→ vs where the coordinate of vs ∈ R2 are determined only by the distances d(s, p1), d(s, p2),
and d(p1, p2). Now any rule based on the geometry of this Euclidean plane can be used to partition
the data in two or more subsets S1, . . . ,Sn. For example, we can use a Euclidean hyperplane to split
the data into two subsets, or a Voronoi-like partitioning of the 2D space. We assume that the rule used
to partition the 2D vector data is not pathological in the sense that objects that fall in a partition are
geometrically separated from the objects of the other partitions by a line, a curve or any well-defined
geometric boundary. At query time a query object q is projected in the same 2D plane used in the index
phase (i.e. using the same couple of reference points p1 and p2). The query will fall in one of the
partitions of the data, suppose vq ∈ Si. Since we are now working on 2D Euclidean space it will be
likely easy to compute the Euclidean distance between the query and the boundaries of the neighbouring
partitions. So if the Euclidean distance between vq and the boundary in 2D of the partition Sj is bigger
than the query threshold t then the lower bounding property ensures us that d(q, x) > t for all x ∈ Sj ,
and therefore the partition Sj can be excluded from the search.

The described general approached can be used recursively to construct an index. In theory, each level
of the data partitioning can use a different set of reference points and a different 2D partitioning rule.
Since, as it will be shown, different spaces give quite different distributions of points within the plane,
build-time partitions can be chosen according to this distribution, rather than as a fixed attribute of an
index mechanism.

For the sake of simplicity, we consider the case in which a set of data is divided into precisely
two partitions. The simplest such mechanism to consider is the application of this concept to normal
hyperplane partitioning with Hilbert exclusion. Let p1 and p2 two pivots used to project the data in
a 2D plane. We obtain a scatter plot similar to that used in Figure 5.17. Splitting the 2D data over
the Y-axis corresponds to divide the original data set according to which of the points p1 and p2 is the
closer. At query time, if the corresponding plot position for the query is further than t from the Y axis,
no solutions can exist in the subset closer to the opposing reference point (which corresponds to the
Hilbert Exclusion). Figure 5.18 shows this situation in a scatter diagram built from an 8-dimensional
Euclidean space. The points that are drawn in solid, either side of the Y-axis, are distant more than the
query threshold from the Y-axis; therefore, if they were query points, the opposing semi-space would not
require being searched.

For randomly generated, evenly distributed points there seems to be little to choose. However, it is
often the case that “real world" datasets do not show the same properties as uniform sets; in particular,
they tend to be much less evenly distributed, with significant numbers of clusters and outliers. These
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Figure 5.18: Scatter diagram for 8-dimensional Euclidean Space. The data is divided into two subsets
according to which side of Y-axis they lie. The solidly-coloured points are points that, were they
queries, would allow the semispace on the opposing side to be excluded from the search since that
semispace cannot contain a solution.

factors can significantly affect the performance of indexing mechanisms. Here we underline the fact that
we can choose arbitrary geometric partitions of the 2D plane to structure the original data.

Figures 5.19, 5.20, and 5.21 show a sample taken from the SISAP Colors dataset with Euclidean
distance applied, showing six different partition of the 2D plane each dividing the space in exact halves,
thus allowing a balanced search structure, as follows:

• Figure 5.19a.The data is partitioning according to a vertical line (parallel to the Y-axis) passing
through the median of the point cloud, which corresponds to partition the data according to its
X-coordinate, with reference to the median X-coordinate. A query whose projection has an X-
coordinate greater than t from the this does not require to search the opposing half.

• Figure 5.19b. The data is partitioning according to a horizontal line (parallel to the X-axis) passing
through the median point in the scatter plot, which corresponds to partition the data according to
its Y-coordinate. A query whose projection has a Y-coordinate greater than t from the median
Y-coordinate does not require to search the opposing half.

• Figure 5.20a. The data is partitioned according to the median distance dm from the mid-point vc
of the point cloud. If the projected query vq is such that

(`2(vq,vc) < dm − t) ∨ (`2(vq,vc) > dm + t)

then half of the space can be excluded.

• Figure 5.20b. The data is partitioned according to the median distance dm from the top-left point
of the point cloud. Exclusion conditions are defined similarly to the previous case.

• Figure 5.21a. The data is split using the best-fit line through the point cloud, that is computed
using a least square minimization approach. The exclusion condition is defined on the basis of the
distance of the projected query to this line.

• Figure 5.21a. Similarly to the previous case the data is partitioned by using a line orthogonal to
the best-fit line through the point cloud.

The query threshold illustrated is 0.052 corresponding to a query returning 0.001% of the data.
In Figure 5.19 it can be seen that, for this sample data, partitioning the plane according to the Y-

coordinate is the more effective then partitioning plane according to the X-coordinate. The disadvantage
with this is that a little more calculation is required to plot the height of the point, rather than its offset
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Figure 5.19: Scatter diagrams dividing the plane equally in X and Y dimension, either can be used for
partitioning a hyperplane tree structure; in this case, the horizontal partition would be more effective.
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Figure 5.20: Two more binary partitions, based now on median distance from arbitrary points in the
plane (centre and top-left respectively).
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Figure 5.21: Hyperplane partitioning based on a hyperplane orthogonal (left) or parallel (right) to the
best-fit line through data.
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from the Y-axis; however, this is a minor effect when significantly more distance calculations can be
avoided.

Partitions in Figure 5.20 are considered just to make the point that any partition of the plane can
be used for this purpose. We have not found a compelling use for either partition, however, this would
depend on the nature of an individual non-uniform dataset.

Figures 5.21 illustrate more technical analyses of the point cloud, using the Linear Regression (LR),
that is discussed in more detail in the next section. This technique can be used along one of two axes in
a two-dimensional space as illustrated in the Figure.

5.3.2 The Linear Regression Tree
In this section, we aim to stress the fact that the planar projection of a supermetric space can be used
to define innovative partitioning and indexing schemas. To this scope, we present a completely novel
indexing structure which is only possible to use in a supermetric space, where the hyperplane partition
and consequent exclusion mechanism are dynamically chosen according to the distribution of data within
each individual node of the tree.

Figure 5.21 shown a scatter plot resulting from an arbitrary choice of reference points for the SISAP
colors dataset. Although the pattern is not atypical, observation shows that the individual distribution
shape is significantly affected by the choice of reference points and, more subtly, by the subset of data
points that is to be stored at a given tree node. The partitions shown within the figure are based on the
best-fit straight line which can be plotted through the points in two dimensions. This is parallel to the
lines drawn in the right-hand figure. As this is calculated using the least-mean-squares algorithm, it is
reasonable to assume that the perpendicular partition, shown in the left-hand diagram, will in general
improve the spread of the data points and thus form a better partition for indexing.

To test this strategy, we define the Linear Regression Tree (LRT), which is a binary monotone tree
built recursively over a dataset S as follows. We select two reference points p1, p2 at each node. Each
child node of the tree shares one reference points with its parents, as done in Monotonous Bisector Tree
(MBT). We used the tetrahedral projection based on p1 and p2 to embed the data points onto a 2D plane,
and we compute the best-fit line l through the projected points (or a subset of them) using a least squares
minimization. Then, we rotate the 2D data points around the X-intercept of the line l, so that the new
X-axis coincides with the line l, and we split the data at a certain value of the X coordinate of the rotated
space.

Algorithm 1 and 3 give the simplest algorithms for constructing, and querying a balanced version of
the LRT, where the data split is at the median X coordinate of the rotated space.

We compute the best fitting line l through the points {(xi, yi)}mi=1 as the line y = cx + h that
best fits the sample in the sense that the sum of the squared errors between the yi and the line values
cxi + h is minimized. The fitting line is easily computed as y − ȳ = c(x− x̄) where x̄ =

∑m
i=1 xi/m,

ȳ =
∑m
i=1 yi/m, and

c =

∑m
i=1(xi − x̄)(yi − ȳ)∑m

i=1(xi − x̄)2
. (5.20)

Then, we rotate the data points by angle θ = arctan(c) around the X-intercept (h, 0), where h =
x̄− ȳ/c:

rx = (x− h) cos(θ)− y sin(θ) (5.21)
ry = (x− h) sin(θ) + y cos(θ). (5.22)

Each node of the tree can also store minimum and maximum distances to either reference points to
allow range-pivot exclusion as done in the MBT.

Experimental evaluation of the resulting search index was performed on SISAP benchmarks us-
ing exactly the same settings as described in Section 5.1.3.2. Figures 5.22 and 5.23 give results for
the SISAP Colors and Nasa datasets respectively. For each dataset, six different indexing structures
were tested. A balanced monotone bisector tree (MBT-balanced), an unbalanced monotone bisector tree
(MBT-balanced), a balanced Linear Regression Tree (LRT-balanced), and a naive unbalanced version of
the LRT where we split the data using the value λ = h+ d(p1, p2)/2, which corresponds to modify only

130



“main” — 2018/5/6 — 19:17 — page 131 — #157i
i

i
i

i
i

i
i

5.3. Tetrahedral projection onto a plane

Algorithm 1: CreateNode (LRT balanced)
Input : A ⊂ S, p1 ∈ S
Output: Node: N =

〈
p1, p2, λ, θ, h, Nleft, Nright, cr

+
left, cr

+
right, cr

−
left, cr

−
right

〉
where

{p1, p2} ⊂ U, λ ∈ R, θ ∈ [0, 2π), h ∈ R, {Nleft, Nright} ⊂ Node, cr±∗ ≥ 0
1 Select p2 from A;
2 if |A| > 2 then
3 A← Ar {p1, p2} ;
4 Ã←2Dproject(A, p1, p2);
5 (θ, h)←GetRotationAngle(Ã); // Calculate the rotation angle θ, and the

X-intercepts (h, 0), that minimize the squared errors of the

Y -coordinates following the rotation transformation. If Ã is too
large the linear regression is performed on a subset of it

6 RotatedPoints← ∅;
7 foreach s̃j in Ãi do
8 rj ← Rotate(s̃j , θ, h) ; // rj = (rj .x, rj .y) ∈ R2

9 RotatedPoints← RotatedPoints ∪ {rj}
10 end
11 λ← median{rj .x| rj ∈ RotatedPoints} ; // Find the median value of the

X-coordinate of the rotated points, e.g bt using QuickMedianSort
algorithm

12 Aleft ← {sj ∈ A| rj .x,≤ λ};
13 Aright ← {sj ∈ A| rj .x,≥ λ};
14 cr+left ← maxs∈Aleft d(s, p1);
15 cr−left ← mins∈Aleft d(s, p1);
16 cr+right ← maxs∈Aright d(s, p1);
17 cr−right ← mins∈Aright d(s, p1);
18 Nleft ← CreateNode(Aleft, p1);
19 Nright ← CreateNode(Aright, p2);

20 N ←
〈
p1, p2, λ, θ, h, Nleft, Nright, cr

+
left, cr

+
right, cr

−
left, cr

−
right

〉
;

21 end

Algorithm 2: 2Dproject (2D projection of A based on p1, p2)
Input : A ⊂ S, p1, p2 ∈ S
Output: Set Ã ⊂ R2

1 Ã← ∅;
2 δ ← d(p1, p2);
3 foreach sj in A do

/* Calculate the 2D embedded point s̃j as the apex of the triangle
defined by baseline (0,−d(p1, p2)/2)− (0, d(p1, p2)/2), with left side
length d(sj , p1) and right side d(sj , p2) */

4 δ1 ← d(sj , p1);
5 δ2 ← d(sj , p2);
6 s̃j .x← (δ21 − δ22)/2δ;

7 s̃j .y ← sqrt
(
δ21+δ

2
2

2
− sj .x2 − δ2/4

)
;

8 Ã← Ã ∪ {s̃j};
9 end
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Algorithm 3: Query

Input : q ∈ U, t ∈ R, N =
〈
p1, p2, λ, θ, h, Nleft, Nright, cr

+
left, cr

+
right, cr

−
left, cr

−
right

〉
∈ Node

Output: Result set R = {s ∈ S| d(s, q) ≤ t}
1 R← ∅;
2 if d(q, p1) ≤ t then
3 R← R ∪ {p1};
4 end
5 if d(q, p2) ≤ t then
6 R← R ∪ {p2};
7 end
8 if

(
d(q, p1) + t < cr−left

)
∨
(
d(q, p1)− t > cr+left

)
then

9 R← R ∪Query(q,Nright);
10 else
11 if

(
d(q, p2) + t < cr−right

)
∨
(
d(q, p2)− t > cr+right

)
then

12 R← R ∪Query(q,Nleft);
13 else
14 q̃ ← 2Dproject({q}, p1, p2);
15 rq = Rotate(q̃, θ, h);
16 if rq.x < λ− t then
17 R← R ∪Query(q,Nleft);
18 else
19 if rq.x > λ+ t then
20 R← R ∪Query(q,Nright);
21 else
22 R← R ∪Query(q,Nleft);
23 R← R ∪Query(q,Nright);
24 end
25 end
26 end
27 end
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Figure 5.22: SISAP Colors- Number of distance calculations for benchmark search thresholds using
Monotonous Bisector Tree (MBT) and Linear Regression Tree (LRT) with two different reference
point selection strategies, namely "Far" (on the left) and "Rand" (on the right). In the "Far" case the
unbalanced MBT and Linear Regression Tree (LRT) have practically the same performance.
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Figure 5.23: SISAP Nasa- Number of distance calculations for benchmark search thresholds using
Monotonous Bisector Tree (MBT) and Linear Regression Tree (LRT) with two different reference
point selection strategies, namely "Far" (on the left) and "Rand" (on the right). In the "Far" case the
MBT and LRT show quite the same performance.
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Figure 5.24: SISAP Datasets - Number of distance calculations for benchmark search thresholds using
Linear Regression Tree (LRT) and Distal Spatial Approximation Tree (DiSAT).

the line 11 in the Algorithm 1. Each index was tested with two different reference point selection strate-
gies. These are “Rand” and “Far”: at each node one reference point is handed down from an ancestor,
and the second pivot is selected either randomly (“Rand" approach) or selecting the object at furthest
distance from the first pivot within the data subset used to construct that node (“Far" approach). To a
fair comparison, the MBT trees were tested using the Hilbert exclusion condition instead of the original
hyperbolic exclusion.

It can be seen that among the balanced trees, the Linear Regression Tree always achieve better results
than the Monotone Bisector Tree. The unbalanced versions have very similar performance and both
outperform the balanced trees. However, it is worth noting that balanced structures are often slower than
unbalanced ones for relatively small datasets, but they become rapidly more desirable as the size of the
data increases, and again more so if it is too large to fit in main memory and requires to be stored in
backing store pages.

Although the performance of LRT on the SISAP datasets does not differ much from that of MBT
we believe that this data structure is an interesting example of how the distribution of the data can be
iteratively exploited by means of the four-point property. We observe that the unbalanced LRT save more
than the 30% of the number of the distance calculations per query of the previous state-of-the-art results
given in [65] using DiSAT (see figure 5.24). Interestingly, our improved version of DiSAT that uses
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Figure 5.25: Examples of n-simplex embedding. The left-hand figure shows the case n = 2, where the
points (2 pivots and 2 data object) are first isometrically embedded in 3D Euclidean space and then
projected in a 2D plane. The right-hand figure shows the case n = 3, where the points (3 pivots and
2 data objects) are first isometrically embedded in 4D Euclidean space and then projected in a 3D
subspace (only the projected tetrahedrons are depicted in this case).

Hilbert exclusion shows similar results to that of balanced LRT.
We finally observe that [76] reports experiments on large scale using 80-dimensional vector descrip-

tors extracted from the CoPhIR [54] image dataset. In these experiments increasingly large subsets of
the data, ranging from one million to sixteen million images, was queried to test the scalability of various
search mechanisms, including unbalanced BST, log-sized monotone hyperplane tree, balanced VPT, and
our balanced LRT that achieved the best overall performance. 6

5.4 n-Simplex Projection

This section generalizes the tetrahedral/planar embedding introduced in the Section 5.3 in more dimen-
sions. The motivation is that most of the supermetric spaces also satisfy the n-point property, as we
observed in Section 5.2.1. This is the case of Hilbert-embeddable spaces, notable including those gov-
erned by Euclidean, Jenson-Shannon, Triangular and Quadratic Form distances.

The core observation here is that the n-point property guarantees that for any (n+1) objects sampled
from the original space, there exists an n-dimensional simplex in Euclidean space whose edge length
correspond to the actual distance between the objects. A simplex is a generalisation of a triangle or a
tetrahedron in arbitrary dimensions. In one dimension, the simplex is a line segment; in two it is the
convex hull of a triangle, while in three it is the convex hull of a tetrahedron. In general, the n-simplex
of vertices v1, . . . ,vn+1 equals the union of all the line segments joining vn+1 to points of the (n− 1)-
simplex of vertices v1, . . . ,vn.

In next sub-sections, we show how to construct these simplexes for metric spaces with the n-point
property and how they can be used to derive arbitrarily tight upper and lower bounds on distances within
the original space. We also show how to use this novel approach for similarity search and dimensionality
reduction. Now we give an informal outline of our approach starting from the previously introduced
tetrahedral/planar projection.

The left-hand diagram in Figure 5.25 repeat the earlier Figure 5.16, and shows the basic idea of the
tetrahedral/planar projection: given two pivot p1 and p2 and two objects q and s of a supermetric space,

6The paper [76] presents several experiments that investigate extending the use of the supermetric property to larger and
higher-dimensional data sets. The achieved results are very promising; however, we do not include them in this thesis as that set
of experiments was performed principally by Prof. Richard Connor and our contribution was minimal.
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5.4. n-Simplex Projection

it is always possible to isometrically embed them in 3D Euclidean space (`32); the projected points,
indicated with vp1 , vp2 , vs, and vq , respectively, are the vertices of a tetrahedron (3-simplex). However,
in a realistic case we do not know the distance d(q, s) without explicitly compute it, and so we do not
know the length of one edge of the tetrahedron. We showed that it is possible to use the knowledge of
all the other edge length to provide upper and lower bound on the distance d(q, s). Those bounds are
obtained by rotating the triangle (2-simplex) of vertices vp1 ,vp2 ,vq around the edge vp1vp2 (1-simplex)
until it is coplanar with the other triangle. The two possible orientations give the upper and lower bounds,
corresponding to the distances between vs and the two apexes vq− and vq+ of the two possible planar
tetrahedra. The right-hand diagram in Figure 5.25 shows the same situation but starting from space that
has the 5-point property. In this case we consider three pivots, p1, p2 and p3, as well as two objects
s and q. Also in this case we assume to know all the inter-object distances except for d(q, s). As an
outcome of the 5-point property, we can isometrically embed all the five points in 4D Euclidean space
(`42). In this case, we know all the edge lengths of the two tetrahedra in 4D of vertices {vp1 ,vp2 ,vp3 ,vq}
and {vp1 ,vp2 ,vp3 ,vs}, respectively. These two tetrahedra (3-simplex) share a common base that is the
triangle vp1vp2vp3 (2-simplex). We now observe that we can rotate one of the two tetrahedra, around
the common base, until it is coincident with the 3D subspace in which the other tetrahedron lies. So we
obtain a projection of the five points in a 3D Euclidean space, where all the inter-object distances are
preserved except for the one between q and s for which we obtain either an upper and a lower bound.

The same intuition generalises into many dimensions. Assume a space with the (n+ 2)-point prop-
erty, or better an Hilbert-embeddable space that has the n-point property for any n. We consider a set of
n reference objects {p1, . . . , pn}, and two object q and s. We isometrically embed all the (n + 2)
points into `n+1

2 . Then we consider the (n − 1)-simplex σ0 formed by the vertex {vp1 , . . . ,vpn}.
We call it base simplex (it correspond to the line vp1vp2 in the left-hand figure, and to the triangle
vp1vp2vp3 in the right-hand figure). As done in the previous cases we rotate the n-simplex σq of ver-
tices {vp1 , . . . ,vpn ,vq} around the base simplex until it is coincident with the n-dimensional subspace
in which the n-simplex σs of vertices {vp1 , . . . ,vpn ,vs} lies. Equivalently, we can rotate both σq and
σs around σo until they are coincident with an arbitrary fixed n-dimensional subspace that contains σo.
This subspace can be regarded as a n-dimensional Euclidean space in its on right. Note that there are
two possible positions in `n2 for vq , one on either side of the hyperplane containing σ0; we denote these
as v+

q , and v−q respectively. Similarly, there are two possible positions in `n2 for vs, namely v+
s , and v−s .

As described in the next section, for a generic point a the vertices v+
a and v−a can be computed just using

the the distances between object a and all pi. What we are going to prove is that

`n2 (v+
s ,v

+
q ) ≤ d(s, q) ≤ `n2 (v+

s ,v
−
q ). (5.23)

Moreover, in Section 5.4.1 we present an algorithm to compute those vertices for which once v+
a =

[x1, . . . , xn] is calculated, the vertex v−q is obtained at no extra cost as [x1, . . . , xn−1,−xn].
In conclusion, we present a new embedding technique that, using properties of finite isometric em-

bedding, allows spaces with the n-point property to be translated in a smaller Euclidean space. In fact,
we propose a family of function φn which can be created by measuring the distances among n objects
sampled from the original space, and which can then be used to create a surrogate space:

φn : (D, d)→ (Rn, `2)

with the property
`2 (φn(o1), φn(o2)) ≤ d(o1, o2) ≤ g (φn(u1), φn(u2)) , (5.24)

where

g([x1, . . . , xn], [y1, . . . , yn]) =

√√√√n−1∑
i=1

(xi − yi)2 + (xn + yn)2.

Note that the cost of evaluating the upper and the lower bound together is almost exactly the same as the
cost of a `2 distance in Rn.

The advantages of the proposed technique are that (a) the `2 metric is very much cheaper than some
Hilbert-embeddable metrics; (b) the size of elements of Rn may be much smaller than elements of D
(dimensionality reduction), and (c) in many cases we can achieve both of these along with an increase in
the scalability of the resulting search space.
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Chapter 5. Improving Supermetric Search through Finite Isometric Embeddings

Figure 5.26: Examples of n-simplexes built starting from n = 2 objects p1, p2 (left-hand figure), and
n = 3 objects p1, p2, p3 (right-hand figure).

5.4.1 Constructing Simplexes from Edge Length
We recall that a n-simplex σ spanned by the points v1, . . . ,vn+1 ∈ `n2 is the set

{x =

n+1∑
i=1

tivi |
n+1∑
i=1

ti = 1, ti ≥ 0}.

The points vi are called vertices of σ; n is called the dimension of σ. Any simplex spanned by a subset
of {v1, . . . ,vn+1} is called a face of σ. The structure of a simplex in n-dimensional space is given as an
n + 1 by n matrix Σ representing the Cartesian coordinates of each vertex. For example, the following
matrix represents four coordinates which are the vertices of a tetrahedron in 3D space:

0 0 0

v2,1 0 0

v3,1 v3,2 0

v4,1 v4,2 v4,3


For all such matrices Σ, the invariant that vi,j = 0 whenever j ≥ i can be maintained without loss of

generality; for any simplex, this can be achieved by rotation and translation within the Euclidean space
while maintaining the distances among all the vertices. Furthermore, if we restrict vi,j ≥ 0 whenever
j = i− 1 then in each row this component represents the altitude of the ith point with respect to a base
face represented by the matrix cut down from Σ by selecting elements above and to the left of that entry.

In our context, we are interested in construct a (n − 1)-simplex in `n2 based only on the distances
measured among n reference points ofD. We then use it as a base simplex to construct new apexes above
it, which are the objects of our “surrogate space”. Figure 5.26 shows base cases of simplexes constructed
from two and three reference points, respectively.

5.4.1.1 Simplex and Apex Construction

In [78], we proposed an algorithm for determining Cartesian coordinates for the vertices of a simplex,
given only the distances between points. Our algorithm is inductive, at each stage allowing the apex of an
n-dimensional simplex to be determined given the coordinates of an (n − 1)-dimensional simplex, and
the distances from the new apex to each vertex in the existing simplex (Algorithm 4). This is important
because, given a fixed base simplex (with n vertices) over which many new apexes are to be constructed,
the time required to compute each one is O(n) distance computations. The total cost in term of distance
calculations to construct a simplex with (n+ 1) vertices in n dimensions is O(n2).
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5.4. n-Simplex Projection

Algorithm 4: nSimplexBuild
Input: n points p1, . . . , pn ∈ (D, d)
Output: (n− 1)-dimensional simplex in `n−1

2 represented by the matrix Σ ∈ Rn×(n−1)

1 Σ← 0 ∈ Rn×(n−1);
2 if n = 2 then
3 δ ← d(p1, p2);

4 Σ←
[
0

δ

]
;

5 return Σ;
6 end
7 ΣBase ← nSimplexBuild(p1, . . . , pn−1); // (n-2)-dimensional simplex
8 Distances← 0 ∈ Rn−1;
9 for i = 1 to n− 1 do

10 Distances[i]← d(pi, pn);
11 end
12 newApex← ApexAddition(ΣBase, Distances);
13 for 1 ≤ i ≤ n and 1 ≤ j ≤ i− 1 set Σ[i][j] to ΣBase[i][j];
14 for 1 ≤ j ≤ n set Σ[n+ 1][j] to newApex[j];
15 return Σ;

Algorithm 5: ApexAddition
Input: A (n− 1)-dimensional base simplex (ΣBase), and the distances of a new (unknown) apex

point (Distances) from the vertices of the base simplex:

ΣBase =



0

v2,1 0 0
v3,1 v3,2

. . .

:
. . . 0

vn,1 · · · vn,n−1


∈ Rn×(n−1)

Distances =
[
δ1 · · · δn

]
∈ Rn

Output: The cartesian coordinates of the new apex point

1 Output←
[
δ1 0 · · · 0

]
∈ Rn;

2 for i = 2 to n do
3 l← `2(ΣBase[i], Output);
4 δ ← Distances[i];
5 x← ΣBase[i][i− 1];
6 y ← Output[i− 1];
7 Output[i− 1]← y − (δ2 − l2)/2x;
8 Output[i]←

√
y2 − (Output[i− 1])2;

9 end
10 return Output
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Chapter 5. Improving Supermetric Search through Finite Isometric Embeddings

For n + 1 data points, where n > 1, an (n − 1)-dimensional simplex is first constructed using the
distances among the first n points. This simplex is used as a simplex base to which a new apex, the
(n+ 1)

th point, is added by the ApexAddition algorithm (Algorithm 5). In essence, the ApexAddition
algorithm is derived from exactly the same intuition as the lower-bound property explained earlier, at
each stage lifting the final dimension out of the same hyperplane into a new dimension to capture the
measured distances.

Lemma 5.4.1 (Correctness of the ApexAddition algorithm). Let ΣBase ∈ Rn×n−1 representing a (n−1)-
dimensional simplex of vertices ΣBase[i] ∈ `n−1

2 , with ΣBase[i][j] = 0 for all j ≥ i and ΣBase[n][n− 1] ≥
0. Let vi the corresponding vertices in `n2 (obtained from ΣBase[i] by adding a zero to the end of the
vector) and let δi the distance between an unknown apex point and the vertex vi. Let o =

[
o1 . . . on

]
the output of the ApexAddition Algorithm. Then o is a feasible apex, i.e. it is a point in Rn satisfying
`2(o,vi) = δi for all 1 ≤ i ≤ n. The last component on is non-negative and represents the altitude of o
with respect to the base face ΣBase.

Proof. It is sufficient to prove that the output o =
[
o1 . . . on

]
of the Algorithm 5 has distance δi

from the vertex vi,i.e. satisfies the following equations

o2
1 + · · ·+ o2

n = δ2
1 (5.25.1)

:∑i−1
j=1(vi,j − oj)2 +

∑n
j=i o

2
j = δ2

i (5.25.i)

:∑n−1
j=1 (vn,j − oj)2 + o2

n = δ2
n (5.25.n)

(5.25)

Note that the i-th component of the output o is updated only at the iteration i and i + 1 of the
ApexAddition Algorithm (lines 7-8). So, if we denote with o(i) the output at the end of iteration i we
have:

o(1) =
[
δ1 0 . . . 0

]
, o = o(n) (5.26)

oi = o
(h)
i , o

(i)
h = 0 1 ≤ i < h ≤ n (5.27)

o
(i)
i−1 = o

(i−1)
i−1 −

δ2
i − `2(vi, o

(i−1))

2vi,i−1
2 ≤ i ≤ n (5.28)

(o
(i)
i )2 = (o

(i−1)
i−1 )2 − (o

(i)
i−1)2 1 ≤ i ≤ n− 1 (5.29)

and thus

oi−1 = o
(i−1)
i−1 −

δ2
i −

∑i−2
j=1(vi,j − oj)2 − (vi,i−1 − o(i−1)

i−1 )2

2vi,i−1
2 ≤ i ≤ n (5.30)

(oi−1)2 = (o
(i−1)
i−1 )2 − (o

(i)
i )2 1 ≤ i ≤ n− 1 (5.31)

By combining Eq. (5.27) and (5.31) we obtain

n∑
j=i

o2
j = (o

(i)
i )2 1 ≤ i ≤ n− 2, (5.32)

and so Eq. (5.25.1) clearly holds. Moreover, from Eq. (5.32) and Eq. (5.30), it follows that o satisfies
Eq. (5.25.i) for all i = 2, . . . , n:

i−1∑
j=1

(vi,j − oj)2 +

n∑
j=i

o2
j

(5.32)
= v2

i,i−1 − 2vi,i−1 oi−1 +

i−2∑
j=1

(vi,i−1 − oj)2 + (o
(i−1)
i−1 )2 (5.30)

= δ2
i
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5.4. n-Simplex Projection

5.4.2 n-Simplex projection and Distances Bounds

Consider a metric space (D, d) which is isometrically n-embeddable in `n−1
2 , for any n > 1. It is

possible to pick any n reference points p1, . . . , pn and form a simplex Σn in `n−1
2 . For any two further

points q and s, two further simplexes based on Σn can be independently calculated in `n2 space, using
finite mappings q → q(n) and s → s(n), where q(n) and s(n) are computed using the ApexAddition
Algorithm. Let φn : (D, d)→ `n2 the projection that using the base simplex Σn associates the apex s(n)

to the object s. For an arbitrary set of objects si ∈ S, the apex φn(si) can be pre-calculated. Because of
the method we use to build simplexes, the final coordinate always represents the altitude of the new apex
above the hyperplane containing the base simplex. Given this, two apexes exist, according to whether a
positive or negative real number is inserted at the final step of the algorithm. We are going to prove that
given the apexes

φn(s) = [x1, x2, . . . , xn−1, xn]

φn(q) = [y1, y2, . . . , yn−1, yn]

then √√√√ n∑
i=1

(xi − yi)2 ≤ d(s, q) ≤

√√√√n−1∑
i=1

(xi − yi)2 + (xn + yn)2

From the structure of these calculations, it is apparent that they are likely to converge rapidly around the
true distance as the number of dimensions used becomes higher, as we show in following Lemma 5.4.2. It
can also be seen that the cost of calculating both of these values together, especially in higher dimensions,
is essentially the same as a simple `2 calculation. The main outcome is that the Euclidean distance `2
can be used as a filter function for d. When a query is performed, only n distances in the metric space
require to be calculated to discover the new apex φn(q) in `n2 . Whenever it may be deduced, via an
indexing structure or otherwise, that `n2 (φn(s), φn(q)) > t, then s cannot be a solution to the query. If
`n2 is substantially cheaper to calculate than d, there are various ways of using this property for efficient
query evaluation. Note that in the case where n = 1, the above gives the general property of pivoting
as used in metric spaces. When n = 2, then it corresponds to the tetrahedral/planar projection. In this
sense, our observations amount to a generalisation of these indexing properties into arbitrary dimensional
Euclidean space.

Finally, we note that the lower-bound function is a proper metric, but the upper-bound function is not
even a semi-metric: even although it is a Euclidean distance in the apex space, one of the domain points
is constructed by reflection across a hyperplane and thus the distance between a pair of identical points
is in general non-zero.

Lemma 5.4.2 (n-Simplex Distance Constraint). Let (D, d) a space isometrically (n+ 2)-embeddable in
`n+1
2 . Let p1, . . . , pn ∈ D and, for any k ≤ n, let σk the (k − 1)-dimensional simplex generated from
p1, . . . , pk by using the nSimplexBuild Algorithm. For any o ∈ D, let o(k) ∈ `k2 the apex point with
distance d(o, p1), . . . , d(o, pk) from the vertices of σk, computed using the ApexAddition Algorithm.
Then for all q, s ∈ U ,

1. `k−1
2 (s(k−1), q(k−1)) ≤ `k2(s(k), q(k)) for 2 ≤ k ≤ n

2. g(s(k−1), q(k−1)) ≥ g(s(k), q(k)) for 2 ≤ k ≤ n

3. `n2 (s(n), q(n)) ≤ d(s, q) ≤ g(s(n), q(n))

where, for any k ∈ N, g : `k2 → `k2 is defined as g(x,y) =
√∑k−1

i=1 (xi − yi)2 + (xk + yk)2.

Proof. By construction, for any k ≤ n and any object o we have

o
(k)
i = o

(k−1)
i i = 1, . . . , k − 2 (5.33)

o
(i)
i ≥ 0 i = 1, . . . , k (5.34)

(o
(k)
k−1)2 + (o

(k)
k )2 = (o

(k−1)
k−1 )2 (5.35)
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Chapter 5. Improving Supermetric Search through Finite Isometric Embeddings

Condition 1 directly follows from Eq. (5.33)-(5.35):

`k2(s(k), q(k))2 = `k−1
2 (s(k−1), q(k−1))2 − (s

(k−1)
k−1 − q

(k−1)
k−1 )2 +

k∑
i=k−1

(s
(k)
i − q

(k)
i )2

= `k−1
2 (s(k−1), q(k−1))2 + 2

[
− s(k)

k−1q
(k)
k−1 − s

(k)
k q

(k)
k

+

√
(s

(k)
k−1)2 + (s

(k)
k )2

√
(q

(k)
k−1)2 + (q

(k)
k )2

]
≥ `k−1

2 (s(k−1), q(k−1))2

where the last passage follows from the Cauchy–Schwarz inequality 7.
Similarly, Condition 2 also holds:

g(s(k), q(k))2 = g(s(k−1), q(k−1))2 + 2
[
− s(k)

k−1q
(k)
k−1 + s

(k)
k q

(k)
k

−
√

(s
(k)
k−1)2 + (s

(k)
k )2

√
(q

(k)
k−1)2 + (q

(k)
k )2

]
≤ g(s(k−1), q(k−1))2.

Now we prove that `n2 (s(n), q(n)) and g(s(n), q(n)) are, respectively, a lower bound and an upper
bound for the actual distance d(s, q). The main idea is using the simplex σn spanned by p1, . . . , pn as
a base face to build the simplex σn+1 spanned by p1, . . . , pn, s and then use the latter as base face to
build the simplex σn+2 spanned by p1, . . . , pn, s, q. In this way, we have an isometric embedding of
p1, . . . , pn, s, q into `n+1

2 that is the function that maps p1, . . . , pn, s, q into the vertices of σn+2. So,
given the base simplex σn (represented by the matrix Σn), and the apex s(n), q(n) ∈ `n2 we have that the
simplex σn+2 is represented by

Σn+2 =


Σn 0

s
(n)
1 · · · s

(n)
n−1 s

(n)
n 0

q
(n)
1 · · · q

(n)
n−1 q

(n+1)
n q

(n+1)
n+1

 ∈ R(n+2)×(n+1) (5.36)

where, by construction, (q
(n+1)
n+1 )2 = (q

(n)
n )2 − (q

(n+1)
n )2, s(n)

n , q
(n+1)
n+1 ≥ 0, and d(q, s) equals the

Euclidean distance between the two last rows of Σn+2.
It follows that

d(q, s)2 =

n−1∑
i=1

(s
(n)
i − q(n)

i )2 + (s(n)
n )2 + (q(n)

n )2 − 2s(n)
n q(n+1)

n ; (5.37)

and, since q(n)
n ≥ |q(n+1)

n |, we have

d(q, s)2 = `n2 (s(n), q(n))2 + 2s(n)
n (q(n)

n − q(n+1)
n ) ≥ `n2 (s(n), q(n))2,

and

d(q, s)2 = g(s(n), q(n))2 − 2s(n)
n (q(n)

n + q(n+1)
n ) ≤ g(s(n), q(n))2.

7Cauchy–Schwarz inequality in two dimension is: (a1b1 +a2b2)2 ≤ (a21 +a22)(b21 +b22) ∀a1, b1, a2, b2 ∈ R, which implies

(a1b1 + a2b2) ≤
√

(a21 + a22)
√

(b21 + b22) ∀a1, b1, a2, b2 ∈ R
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5.4. n-Simplex Projection

5.4.3 Experiments
We now investigate the use of the n-Simplex projection. Since the lower-bound is a metric, in Sec-
tion 5.4.3.1 we perform some tests to measure its distortion with respect to the original distance. We
then show results obtained using the n-simplex projection for the indexing and searching task (Sec-
tion 5.4.3.2). Finally, in Section 5.4.3.3, we “visualize” the convergence of n-simplex upper and lower
bounds using real-word high dimensional vectors.

5.4.3.1 Measuring Distortion

In Section 2.4.8, we introduced the concept of distortion of a metric space transformation f : (D, d) →
(D′, d′) as the smallest value D such that, for some scaling factor r

∀o1, o2 ∈ D, d′(f(o1), f(o2)) ≤ d(o1, o2) ≤ D · r · d′(f(o1), f(o2)).

An approximation (D′, d′) of the space (D, d) with distortion equals to one is practically equivalent to
the space (D, d) for metric search tasks.

We have measured the distortion for a number of different transformation functions and metric mea-
sures. In particular, we compared the n-Simplex projection with the following “dimensionality reduc-
tion” transformations:

PCA - The Principal Component Analysis [148] is a popular technique for unsupervised dimensionality
reduction in vector spaces. It provides a linear transformation of k-dimensional to n-dimensional
euclidean vectors (n ≤ k) that best preserves the variance of the input data. Specifically, PCA
projects the data along the direction of its first n principal components, which are the eigenvectors
of the covariance matrix of the (centered) input data.

JL - According to the Johnson-Lindenstrauss Flattening Lemma (see e.g. [178, pag. 358]) it is possible
to linearly embed a finite set of m euclidean vectors of `k2 into a n-dimensional Euclidean space
(n < m) with a “small” distortion. Specifically the Lemma asserts that for any m-points of `k2
and every 0 < ε < 1 there is a mapping into `n2 that preserves all the interpoint distances within
factor 1 + ε, where k = O(ε−2 logm). The embedding given in the original proof of Johnson
Lindenstrauss lemma [147] is particularly simple to implement by using a random matrix of size
n× k where rows are chosen as a random n-tuple of orthonormal vector in Rk.

LMDS - For general metric space, perhaps the best known projection technique is the metric Multidi-
mensional Scaling (MDS), which aims to preserve inter-point distances. Given m objects and the
distances δi,j between those objects, MDS finds a set on m points {x1, . . . ,xm} in a Euclidean
space Rn such that `n2 (xi,xj) is close as possible to δi,j . The coordinates of the point xi are com-
puted using a spectral analysis of the matrix of the squared interpoint distances. When the number
m of data points is large the classical MDS is too expensive in practice due to a requirement for
O(m2) distance computations and spectral decomposition of am×mmatrix. The Landmark MDS
(LMDS) [85] is a fast approximation of MDS. LMDS uses a set of n landmark points (pivots) to
compute n × m distances of the data points from the pivots. It applies classical MDS to these
points and uses a distance-based triangulation procedure to project the remaining data points 8.

The PCA and JL can be used only in Euclidean space, the LMDS can be used in any metric space, while
our n-Simplex projection can be used in metrics with the n-point property. Moreover, we observe that in
LMDS the use of a projection learned on some landmark points to project the rest of the input data has
many analogies with our n-Simplex projection.

Summary results on SISAP Colors benchmark are shown in Figure 5.27 for both Euclidean (left-
hand figure) and Jenson-Shannon (right-hand figure) distance. In each case, the X-axis represents the
number of dimensions used for the representation, with the distortion plotted against this. For Euclidean
distance, there are two entries for n-Simplex: one for randomly-selected reference points, and the other

8 If Xn ∈ Rn×n is the output of MDS on the pivot set, the embedding of a new point s into Rn is computed as xs =

−
1

2
X+
n (δ2s − δ2µ), where (δ2s)i = d(s, pi), (δ2µ)j =

1

n

∑n
i=1 d(pi, pj), and X+

k is the pseudo inverse of Xn.
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Figure 5.27: Distortion measurements for various dimensionality reduction strategies for the SISAP
Colors dataset. The left figure gives measurements for Euclidean distance, the right for Jensen-
Shannon distance where only LMDS and n-Simplex are applicable. The Colors dataset has 112
physical dimensions.

where the choice of reference points is guided by the use of PCA. In the latter case we select the first n
principal components (eigenvectors of the covariance matrix) as pivots.

It can be seen that n-Simplex outperforms all other strategies except for PCA, which is not applicable
to non-Euclidean spaces. LMDS is the only other mechanism applicable to general metric spaces9; this is
a little more expensive than n-Simplex to evaluate, and performs relatively badly. The comparison with
JL is a slightly unfair, as the JL lemma applies only for very high dimensions in an evenly distributed
space; we have also tested such spaces, and JL is still outperformed by n-Simplex, especially at lower
dimensions.

The distortion we show here is only for the lower-bound function of n-Simplex. We have measured
the upper-bound function also, which gives similar results. Unlike the lower-bound, the upper-bound is
not a proper metric; however, for non-metric approximate search it should be noted that the mean of the
lower- and upper-bound functions give around half the distortion plotted here.

The implications of these results for exact search should be noted. For Euclidean search, the distor-
tion has dropped to almost one at between 20 and 30 dimensions, implying the possibility of accurate
search using data which is less than one-quarter of the original size. For Jensen-Shannon, more dimen-
sions will be required, but the cost of the `2 metric required to search the compressed space is around
one-hundredth the cost of the original metric. In the next section, we present experimental results con-
sistent with these observations.

5.4.3.2 Exact search: Indexing with n-Simplex

The Euclidean metric on the surrogate space obtained with the n-simplex projection is a lower bounding
of the original distance, so exact search for any range query can be performed in the surrogate space in
order to select a set of candidate results to be subsequently refined using the original distance. More-
over, the upper-bound can also be exploited during the search to avoid unnecessary (original) distance
evaluations.

An exact search mechanism relied on the n-Simplex projection can be viewed as similar to LAESA
(see Section 2.4.7.5) in that there exists an underlying data structure which is a table of numbers, n per
original object, with the intention of using this table to exclude candidates which cannot be within a
given search threshold.

Figure 5.28 shows an illustration of the tables used in LAESA and in n-Simplex search. In both cases,
n reference objects are chosen from the space and used to represent the data objects. For LAESA, each

9In [85] the authors note it works better for some metrics than for others; in our understanding, it will work well only for spaces
with the n-point property.
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5.4. n-Simplex Projection

dim→

obj↓

1 ⋯ n

𝒔𝟏 𝑑(𝑠1, 𝑝1) 𝑑(𝑠1, 𝑝𝑛)

𝒔𝟐 𝑑(𝑠2, 𝑝1) 𝑑(𝑠2, 𝑝𝑛)

⋮

𝒔𝒎 𝑑(𝑠𝑚, 𝑝1) 𝑑(𝑠𝑚, 𝑝𝑛)

dim→

obj↓

1 ⋯ n

𝒔𝟏 (𝜙𝑛(𝑠1))1 (𝜙𝑛(𝑠1))𝑛

𝒔𝟐 (𝜙𝑛(𝑠2))1 (𝜙𝑛(𝑠2))𝑛

⋮

𝒔𝒎 (𝜙𝑛(𝑠𝑚))1 (𝜙𝑛(𝑠𝑚))𝑛

LAESA n-Simplex

Comparison between  𝑞 and 𝑠𝑖 :

ℓ∞ 𝑑 𝑞, 𝑝1 , ⋯ , 𝑑(𝑞, 𝑝n) , 𝑑 𝑠𝑖 , 𝑝𝑖 , ⋯ , 𝑑(𝑠𝑖 , 𝑝𝑛)

𝑞 𝑑(𝑞, 𝑝1) 𝑑(𝑞, 𝑝𝑛) 𝑞 (𝜙𝑛(𝑞))1 (𝜙𝑛(𝑞))𝑛

Comparison between  𝑞 and 𝑠𝑖:

ℓ2
𝑛 𝜙𝑛 𝑞 , 𝜙𝑛(𝑠𝑖)

Both can be computed “iteratively” (without checking the entire row) to 
exclude objects with distances bigger than the search threshold

Figure 5.28: Example of tables built for LAESA and n-Simplex to search a set of m objects. In the
depicted example, n reference objects are used to built both the representations.

row of the table is filled with the distances from a data object to all the reference points. For n-Simplex,
each row is filled with the n Cartesian coordinates of the apex φn(s) built over the (n− 1)-dimensional
simplex formed from the reference points. We remind that the apex is calculated only using the distances
of the data object from the reference points. At query time, the distances from the query to each reference
object are calculated. In the case of LAESA, the metric for comparison is Chebyshev (`∞): that is, if any
pairwise difference |d(si, pj) − d(q, pj)| is greater than the query threshold, the object si from which
that row was derived cannot be a solution to the query. For n-Simplex, the metric used is `2: that is if
the apex represented in a row is further than the query threshold from the apex generated from the query,
again the object from which that apex was derived cannot be a solution to the query.

In both cases, there are two ways of approaching the table search. It can be performed sequentially
over the whole table, in which case either metric can be terminated within a row if the threshold is
exceeded, without continuing to the end of the row. Alternatively, the table can itself be reindexed using
a metric index. Although this compromises the amount of space available for the table itself, it may
avoid many of the individual row comparisons. We also note that our surrogate space has the four-point
property since it is a Euclidean space, so in the context of re-indexing the Hilbert Exclusion property
may be used.

In all cases, the result is a filtered set of candidate objects which is guaranteed to contain the correct
solution set. In general, this set must be re-checked against the original metric, in the original space. For
n-Simplex the upper-bound condition is checked first; if this is less than the query threshold, then the
object is guaranteed to be an element of the result set with no further check required.

Any such mechanism will perform differently over datasets with different characteristics. To give
useful comparisons with other studies in the literature, we apply the techniques to the SISAP Colors
[101], using three different supermetrics: Euclidean, Cosine, and Jensen-Shannon. We chose this dataset
because (a) it has only positive values and is therefore indexable by all of the considered metrics, and (b)
it shows an interesting non-uniformity, in that its intrinsic dimensionality [66] for all metrics is much less
than its physical dimensionality (112). It should thus give an interesting “real world" context to assess
the relative value of the different mechanisms.
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Chapter 5. Improving Supermetric Search through Finite Isometric Embeddings

Results As done in the experiments of the previous sections, when using the Euclidean distance to
search the SISAP Colors, we used three benchmark thresholds that return the 0.01%, 0.1%, and the 1%
of the data, respectively. For the Jenson-Shannon and Cosine metrics, we chose thresholds that return
around 0.01% of the data. In all cases, the first 10% of the objects are used to query the remaining 90%.
Pivots are randomly-selected both for LAESA and n-Simplex approach.

For each metric, we tested different mechanisms with different allocations of space: 5 to 50 numbers
per data element, thus the space used per object is between 4.5% and 45% of the original. All results
reported are for exact search, that is the initial filtering is followed by re-testing within the original space
where required. Five different mechanisms were tested, as follows:

sequential LAESA each row of the table is scanned sequentially, each element of each row is tested
against the query and that row is abandoned if the absolute difference is greater than the threshold.

reindexed LAESA the data in the table is indexed using a Monotonous Bisector Tree (MBT), searched
using the Chebyshev metric and hyperbolic exclusion 10.

sequential n-Simplex each row of the table is scanned sequentially, for each element of each row the
square of the absolute difference is added to an accumulator, the row is abandoned if the accumu-
lator exceeds the square of the threshold, and the upper-bound is applied if the end of the row is
reached before re-checking in the original space.

reindexed n-Simplex the data in the table is indexed using a MBT using the Hilbert exclusion property,
and searched using the Euclidean metric; the upper-bound is applied for all results, before re-
checking in the original space.

MBT the original space is indexed using a MBT with the Hilbert exclusion property.

The MBT is used as, in the previous section, this has been found to be the best-performing simple
indexing mechanism for use with Hilbert Exclusion. Each approach returns two lists of object identifier:
1) identifiers of objects that are known to be in the solution set, 2) identifiers of “candidate” objects that
need to be checked against the original metric space. Therefore, in all cases the results set is exact.

For each mechanism we measure the elapsed time, the number of original-space distance calculations
performed and, in the case of the re-indexing mechanisms, the number of reindexed space calculations.
Please note that the reindexed space calculations are relative to `∞ for LAESA and `2 for n-Simplex.
Also in this case the all the used code is available at the Metric Space Framework [6] for independent
testing. The tests were run by Prof. Richard Connor on a 2.8 GHz Intel Core i7, running on an otherwise
bare machine without network interference. The code is written in Java, and all datasets used fit easily
into the Java heap without paging or garbage collection occurring.

Table 5.5 shows the elapsed time for Euclidean distance, also reported in Figure 5.29 in graphical
form. Interestingly, reindexed n-Simplex consistently and significantly outperforms normal MBT at
between 15 and 25 dimensions, depending on the query threshold. It is also interesting to see that, as the
query threshold increases, and therefore scalability decreases, the sequential n-Simplex takes over as the
most efficient mechanism, again with a “sweet spot" at 15 dimensions.

Table 5.6 and Figure 5.30 show the same experiment performed with Cosine and Jensen-Shannon
distances. In the case of Jenson-Shannon, the extra relative cost saving from the more expensive metrics
is very clear, with relative speedups of 4.5 and 8.5 times respectively. In the Jensen-Shannon tests, the
relatively very high cost of the metric evaluation to some extent masks the difference between sequential
and reindexed n-Simplex, but we note that the former maintains scalability while the latter does not.

Finally we report the actual number of distance measurement made for Euclidean (Table 5.7), Cosine
and Jensen-Shannon (Table 5.8) searches. We report the number of distance calls required in both the
original and reindexed spaces. Note that original-space calls are the same for both sequential and rein-
dexed mechanisms and include the distance computations needed to refine the candidate result set and
the distance calculations between objects and reference points. The index calls are the number of metric
calls made during the index search, so `2 distances for the n-Simplex and `∞ for LAESA. Interestingly

10The Hilbert exclusion cannot be used with Chebyshev metric.
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Table 5.5: Elapsed Times - SISAP Colors, Euclidean distance.
All times are in seconds, for executing 11268 queries over 101414 data. The MBT performance are
independent from the number n and the value reported is the mean obtained over several running.
Lseq is the sequential LAESA. Lrei is the reindexed LAESA. Nseq is the sequential n-Simplex. Nrei
is the reindexed n-Simplex.

t0.01% = 0.051768 t0.1% = 0.082514 t1% = 0.131163

Dims Lseq Lrei Nseq Nrei MBT Lseq Lrei Nseq Nrei MBT Lseq Lrei Nseq Nrei MBT
5 18.6 28.0 13.8 5.8 5.5 33.4 80.9 22.4 29.0 18.1 56.2 201.6 34.9 70.4 54.4

10 17.7 22.1 15.0 3.3 30.3 67.9 20.3 14.7 58.1 220.3 25.5 50.6
15 16.3 15.2 14.6 3.0 26.7 59.7 20.2 12.1 45.8 159.5 24.4 44.7
20 19.0 16.3 18.9 3.3 28.2 56.6 19.4 11.5 46.8 189.3 27.8 48.3
25 22.5 16.9 20.4 3.4 27.4 56.8 22.3 13.4 45.5 167.5 26.2 40.1
30 20.9 16.8 20.4 3.5 28.6 57.3 24.5 13.6 45.9 181.2 28.5 45.1
35 22.0 16.4 21.3 3.9 28.7 65.0 22.5 13.9 43.9 163.0 31.2 44.9
40 23.1 17.3 22.1 4.0 28.8 55.9 22.8 14.3 49.4 180.5 34.2 46.1
45 22.5 18.7 22.2 4.4 32.0 61.5 27.7 15.0 48.5 169.8 37.1 44.9
50 21.3 17.1 18.9 4.5 32.0 59.0 24.0 15.5 55.2 207.6 34.5 45.3
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Figure 5.29: Elapsed Times - SISAP Colors, Euclidean metric. (Results from Table 5.5).
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Table 5.6: Elapsed Times - SISAP Colors, with Cosine and Jensen-Shannon distances.
All times are in seconds, for executing 11268 queries over 101414 data. The MBT performance are
independent from the number n and the value reported is the mean obtained over several running.
Lseq is the sequential LAESA. Lrei is the reindexed LAESA. Nseq is the sequential n-Simplex. Nrei
is the reindexed n-Simplex.

Cosine (t0.01% = 0.042) Jensen-Shannon (t0.01% = 0.135)
Dims Lseq Lrei Nseq Nrei MBT Lseq Lrei Nseq Nrei MBT

5 10.3 4.5 8.8 1.0 3.1 248.4 335.5 61.9 65.5 124.8
10 9.8 3.4 10.4 0.8 155.3 233.2 29.0 29.3
15 12.7 2.4 11.7 0.7 103.5 163.2 22.3 17.2
20 16.5 2.8 16.7 0.7 95.7 162.8 23.8 14.7

25 17.9 2.8 17.7 0.8 87.2 155.6 25.9 16.1
30 18.1 2.6 17.4 0.9 67.7 130.4 27.0 16.5
35 17.7 3.1 17.1 1.1 69.6 136.3 27.9 17.2
40 18.1 3.0 18.1 1.0 62.4 131.2 27.8 17.1
45 17.4 2.7 18.2 1.1 61.1 133.4 29.7 18.4
50 17.6 3.5 17.3 1.4 58.3 130.4 30.6 18.6
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Figure 5.30: Elapsed Times - SISAP Colors with Cosine and Jensen-Shannon distances. (Results from
Table 5.6)
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Table 5.7: SISAP Colors, Euclidean distance - Distance calculations performed in original and reindexed space per query. Original-space calls are the same for
both sequential and reindexed mechanisms.

Euclidean t0.01% Euclidean t0.1% Euclidean t1%
Original Dist. Calls Index Dist. Calls Original-Distance Calls Index Dist. Calls Original Dist. Calls Index Dist. Calls

Dims L N MBT Lrei Nrei L N MBT Lrei Nrei L N MBT Lrei Nrei
5 2747 380 1484 5275 1756 7971 2204 4628 12299 5482 23491 9267 13901 26300 16190

10 1333 54 4397 1230 4983 401 10738 4231 21748 2412 27375 13337
15 567 37 3239 1131 3278 200 9998 3777 13098 1258 21140 12094
20 510 32 3415 1150 2766 93 9600 3858 14264 1208 23774 12895
25 430 35 3149 1179 2996 86 9495 4097 10825 423 21317 12321
30 370 37 3022 1207 2359 88 8625 4055 12048 325 21932 12562
35 342 36 2848 1310 2186 59 9183 4226 8964 159 20480 12593
40 329 40 2948 1289 1891 50 7984 4097 10383 91 21506 13067
45 306 45 2822 1315 1769 48 8211 4411 8817 70 19641 13596
50 271 50 2567 1328 1680 52 7697 4319 9723 67 20996 13502

Table 5.8: SISAP Colors, Cosine and Jensen-Shannon distances - Distance calculations performed in original and reindexed space per query. Original-space calls
are the same for both sequential and reindexed mechanisms.

Cosine (t0.01% = 0.042 Jensen-Shannon (t0.01% = 0.135)
Original Dist. Calls Index Dist. Calls Original Dist. Calls Index Dist. Calls

Dims L N MBT Lrei Nrei L N MBT Lrei Nrei
5 12770 2291 5971 18400 6910 258 46 354 755 259

10 7805 578 19660 6317 116 31 649 229
15 4618 161 15458 4990 70 25 504 220
20 3892 105 15846 4804 79 25 560 209
25 3652 90 14879 4865 84 30 494 215
30 2533 79 13832 4698 73 30 457 220
35 2592 79 13559 4855 78 35 498 268
40 2142 76 13484 4635 83 40 481 266
45 1945 77 13737 4887 78 45 426 276
50 1827 78 12630 4871 89 50 443 337
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the n-Simplex reach very good performance in small dimensions. For example, by 50 dimensions al-
most perfect accuracy is achieved for the Euclidean search with threshold t0.01%: on average only 50
original-space calculations per query are made to search the dataset. Since we used 50 pivots, and the
distance query-pivots are used to compute the apex point, this means that the result set is not rechecked
using the original distance. But in fact, even at 10 dimensions almost every apex value can be deter-
ministically determined as either a member or otherwise of the solution set based on its upper and lower
bounds. At 20 dimensions, only 10 elements of the 101414-element dataset have bounds which straddle
the query threshold. This indeed reflects the fact that for n ≥ 20 the n-simplex lower bound is practically
equivalent to the Euclidean distance to search Colors data, as the distortion between these two distance
measures is one (as shown in earlier Figure 5.27).

Equally interesting is the number of reindexed distance measurements: for n-Simplex, these are
generally less than for the original space. This seems to hold for all the tested metrics and thresholds.
The implication seems to be that the reindexed metric has better scalability properties than the original,
although this deserves further investigation.

5.4.3.3 Upper and Lower Bound Convergence

In Section 5.4.2 we formally prove that upper and lower bounds on the original distance provided by the
n-simplex projection converge to the original distance for a high value of n. Here we show an example of
that convergence. We consider a scatter plot representing the relationship between the original distance
and the upper and lower bounds on the n-simplex surrogate space for the various value of n in order
to explore the correlation between these two quantities. For this test we consider the MIRFlickr [135]
dataset (previously used in Chapters 3 and 4) for two main reasons

1. we want to inspect the case of a “real-word” dataset with possibly very high dimensional features
to better appreciate the convergence of the distance bounds;

2. the MIRFlickr presents a significant number of near-duplicate images for which it would be inter-
esting to analyse the behaviour of the distances in the surrogates space.

We used the state-of-the-art CNN features to represent the images. Specifically, as in the experiments
of Section 3.2.3.1, we used the pre-trained HybridNet [276] model and we extracted the output of the
first fully-connected layer (fc6) after applying the ReLU activation function. The resulting features are
4, 096-dimensional vectors.

The MIRFlickr dataset contains several couples of near-duplicate images each derived from the same
digital source after applying some transformations, where the notion of “transformation” includes “any
operation which has been performed using a standard image editor with the intent of making cosmetic
changes” [79]. Connor et al. [79] deeply investigate the identification of the MIRFlickr near-duplicate
images, and one main outcome of their research has been the publication of a set of nearly 2,000 near
duplicate clusters for the MIRFlickr dataset. To discover the near-duplicate images they applied a number
of different metrics to a number of different image features (based on MPEG-7 [52, 264] and Perceptual
Hashing [196]) to identify candidate near-duplicates which are then validated by a human annotator. The
list of the resulting 2, 407 pairs of near duplicates is publicly available [72].

We projected the CNN-features extracted from MIRFlickr into the n-simplex space for n = 32, 64,
128, 256, 512, 1024, 2048, 4096. We considered 5, 000 pairs of randomly selected objects and the 2, 407
pairs of near-duplicate images. For each n and for each pair of objects we plot the n-simplex lower
and upper bounds as a function of the original distance. The resulting scatter plot is shown in Figure
5.31. We can observe that as n increases both the distance bounds converge to the actual distances and
that the lower bound start showing a strong correlation (> 0.7) with the actual distance for n > 500.
Moreover, as expected in such high dimensional space, the original distances between randomly selected
points are all concentrated around the mean distance value. We measured the IDim [66] of the original
space as µ2/(2σ2) and we found out that it is near to 310 (µ = 1.27 and σ = 0.051). Interestingly,
we observe that for the randomly selected points the convergence of the upper bound seems to be faster
than the lower bound, while the inverse happens for the near-duplicates. We expect the latter effect since
the upper bound is not a metric (identical object may have non zero “distance”) and it is likely that it
badly approximate the actual distance between very close objects. These facts together prompted us to
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Figure 5.31: Correlation between the original distance and either upper-bound (upb) and lower-bound
(lwb) obtained in the surrogate space.
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Figure 5.32: Correlation between the original distance and the measure (UpperBound+ LowerBound)/2
obtained in the surrogate space.
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5.5. Summary

investigate the convergence of the (no metric) measure obtained as the average between the upper and the
lower bounds, indicated as dmean in the following. Results are shown in Figure 5.32. In the considered
example, we observe that 1) the convergence of dmean to the original distance is very fast for pairs of
random points; 2) dmean is always lower or equal to the original distance for randomly selected points;
3) dmean is almost always greater or equal to the original distance for near duplicate points. Moreover,
for relatively small number of n (where the upper bound badly approximate small distances) the cloud
of point-distances related to the near duplicates appears almost completely separated from those related
to random points. So it seems that the heuristic dmean(φn(s1), φn(s2)) > d(s1, s2), where φn is the n-
simplex projection, might be used to identify very close objects, as the near duplicates. It is worth noting
the near-duplicate couples used in these experiments were founded using image features completely
different from the CNN feature, which makes our results more interesting.

Even if these results are preliminary we decided to report them since they might have important
implication for identifying near-duplicates in domains where it is not clear which distance threshold
should be used for the duplicate detection.

5.5 Summary

This Chapter was devoted to presents several theoretical and experimental results that we obtained in the
context of the metric search.

We have demonstrated that many common metric spaces have geometric properties stronger than
the triangle inequality: namely, the four- and n-point properties, which are expressed in term of finite
isometric embeddings in Euclidean space. We have shown how these stronger geometric guarantees
allow more effective metric indexing.

By using the four-point property we have derived the Hilbert exclusion condition, which significantly
improves the performance of exact search for any search mechanism based on hyperplane partitioning
on supermetric spaces. We believe that it is an important result in the metric search field.

We have also shown how the four-point property could, in principle, be used to construct arbitrary
partition in a 2D plane into which data objects are projected, due to a lower-bound property that we have
derived from the four-point property. In this respect, we have proposed the Linear Regression Tree that
is a flexible data structure whose partition and exclusion conditions are tailored, at each node, to suit the
distribution of the data objects.

By using the n-point property we have derived a novel projection mechanism into n-dimensional
Euclidean space. We have proved that our n-simplex projection determines lower and upper bounds on
unknown distances between any two data objects when the only knowledge available is their respective
distances to a fixed set of reference objects within the original space. Moreover, we have proved that by
increasing the number of dimensions, these bounds converge to the true distance. There are a number of
ways in which the n-simplex projection can be used towards an efficient search for suitable spaces. We
have so far examined only one in detail, where a Euclidean space is extracted and used to pre-filter exact
search. For similarity search, the engineering tradeoffs are good: we have shown significant reductions
in data size and metric cost with little loss of accuracy, leading to a significant overall improvement
in exact search performance. Over the benchmark SISAP Colors dataset, for some different metrics,
this technique gives the best-recorded performance for exact search. Finally, we have shown how our
projection can be used for dimensionality reduction also in non-Euclidean space, which turns out to be
very useful when dealing with very costly metrics like Jenson-Shannon and Quadratic Form distances.
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CHAPTER6
Conclusions

The recent explosion of digital visual data engenders the need of scalable Content-Based Image Retrieval
systems to organize and search image collections on the basis of their visual contents. In this thesis, we
have investigated and proposed efficient and effective algorithms to support various stages of a CBIR
system, namely the representation of the image visual content through image features, the processing
and indexing of the image features, and the image search using the query-by-example paradigm. For the
latter stage, we adopt the metric search approach, which is suitable for a large number of applications
and data types.

After a general introduction (Chapter 1) that points out objectives and main contributions of this
thesis, in Chapter 2 we have provided the background on image representations as well as principles for
indexing and searching in metric space.

Next, in Chapter 3 we have focused on efficient and effective image features for content-based search.
We have started our study by addressing the question of effectiveness: we have compared state-of-the-art
image features through an extensive experimental evaluation in an applicative context, which is related
to recognize and retrieve objects of cultural heritage. We have shown that very high effectiveness can
be achieved by combining aggregations of image local features (e.g. FV encoding of SIFTs) and recent
CNN features. However, we have also pointed out that the boosting in the retrieval performance obtained
with this features combination does not meet the need of efficient feature extraction. In fact, one main
issue is that aggregations of local features have been defined and used almost exclusively with SIFT-like
features, whose extraction process is costly with respect to the CNN features extraction (e.g. more than 1
second for the former, and less than 300ms for the latter, if using a CPU implementation). To overcome
this issue we have focused on efficiency, which is of primary importance when dealing with a very large
archive or when response time to a query must be very fast. In this respect, we have considered cases
in which binary local features are extracted and used to describe images since their extraction process
is up to two orders faster than that of non-binary features. In particular, in order to find a good trade-
off between efficiency and effectiveness, we have provided a comparative analysis of aggregations of
binary local features on benchmarks for image retrieval. To the best of our knowledge, such comparative
analysis was missing in the research literature before our study. Moreover, we have proposed a new
approach for aggregating binary vectors, named BMM-FV, which has proved to be more effective than
other state-of-the-art aggregations of binary features. Nevertheless, we have observed that aggregation
methods on binary local descriptors are more efficient but less effective than aggregation methods on
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Chapter 6. Conclusions

non-binary local descriptors. In order to improve the effectiveness, we have shown that the combination
of CNN features and aggregations of binary features achieves high retrieval performance that is in line
with that obtained by combining CNN and FV built upon the SIFTs. The advantage of the former
approach is great in term of efficiency, due to the faster feature extraction.

In Chapter 4 we have proposed the Blockwise Surrogate Text Representation (BSTR) and the Deep
Permutations, which are two promising approaches for processing some state-of-the-art image descrip-
tors (e.g. VLAD and CNN features) in order to efficiently/effectively index them. In particular, the
BSTR encodes compound metric objects into textual representations, which allows similarity search to
be performed using off-the-shelf text search engine. We have shown that our approach is notably ef-
fective to index VLAD image features, for which we obtain a retrieval performance on a benchmark
dataset that is even better than that obtained using the original VLAD vectors. Also the results in term
of response times are good; however, one drawback of our technique is the memory occupation which
is higher than that required by similar approaches, such as STR [109]. The Deep Permutations, instead,
revealed to be a very efficient and effective technique for encoding deep features into permutations to be
subsequently indexed using any permutation-based approach. Each “deep permutation” is computed by
ordering the vector values of a deep feature rather than measuring the distances between the feature and
a set of pivots (as traditionally done in permutation-based approach). Therefore, our approach results to
be a very efficient way for building a permutation representation. Moreover, we experimentally proved
that our Deep Permutations achieves very high effectiveness.

Finally, in Section 5 we have focused on similarity search on metric space. In particular, we have
investigated a class of metric spaces, which we have called supermetrics, that have geometric guaranties
stronger than that derived by the triangle inequality. For those spaces, we have presented a number of
theoretical and experimental results related to metric indexing and searching. We have observed that
many properties and distance bounds defined for metric spaces can be re-read in the light of finite iso-
metric embeddings into Euclidean spaces. Using the four-point property we have derived the Hilbert
exclusion condition that we have proved to be weaker than the hyperbolic exclusion, which is actually
used in quite all the metric indexes based on hyperplane partitioning. The weakness of the Hilbert ex-
clusion guarantees more effective pruning of the search space, and so lead to save distance computations
at query time. Therefore, the efficiency of every index that uses the hyperbolic exclusion can be notably
increased by using our Hilbert exclusion. Moreover, we have shown how the four-point property can
be used to project all the points of a supermetric space into a 2D Euclidean plane, where the distance
between the projected points is a lower bounding of the original distance. We have referred this em-
bedding to as tetrahedral projection and we have shown that this allows defining novel partitioning and
indexing approaches. One drawback of our techniques is that they can be applied only to supermetric
spaces. However, we have proved that many common metric spaces are supermetrics, as for example
spaces of any dimensions with the Euclidean, Jenson-Shannon, Cosine and Quadratic Form distances.
We have also shown that most of the supermetrics used in applications have the stronger n-point property,
which allowed us to investigates a novel projection procedure that generalizes the tetrahedral projection.
Specifically, we have defined the n-Simplex projection that embeds a space with the n-point property into
an n-dimensional Euclidean space by using as knowledge only the distances between data objects and a
set of n pivots. We have proved that the n-Simplex projection provides arbitrarily tight lower and upper
bounds on distances between data objects. This is particularly useful when dealing with very costly
metrics like Jenson-Shannon and Quadratic Form distances; in facts, our projections allows working in
a space governed by the cheaper Euclidean distance. Finally, we have experimentally shown that our
n-Simplex projection can be profitably used for dimensionality reduction (also in non-Euclidean space)
as well as for indexing and searching tasks.

6.1 Future Work

In this thesis, we have developed foundations for supermetric search and proposed several techniques to
support content-based image search, however, there is a number of theoretical and applicative aspects
that can be further explored. The most promising ones are presented below, organized by the relevant
topic.
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6.1. Future Work

Aggregations of binary features. Recent works based on CNNs suggest that techniques for aggregating
binary local features (see Section 3) could be further applied to deep features. In fact, on one
hand, local features based on CNNs, aggregated with traditional VLAD and FV approaches, have
been proposed to obtain robustness to geometric deformations [254, 269]. On the other hand,
binarizations of global CNN features have been also proposed in [157, 168]. So a future research
direction may be applying our BMM-FV approach over binary deep local descriptors leveraging
on the local and binary approaches mentioned above. Moreover, we note that our BMM-FV is
a general technique for encoding a set of binary vectors into a single descriptor by computing
statistical summaries of the given data. Therefore, we believe that there are other applicative
contexts that could further exploit our encoding schema.

Deep Permutations. In Section 4.2 we proposed the Deep Permutations to encode deep features, but we
tested it only on CNN features. A future work is investigating the use of this approach to represent
and index other kinds of deep features, as partially done in [119] and [22] that recently applied our
technique to represent and index RNN features [112] and R-MAC features [113,247], respectively.
Moreover, different approaches to handle the presence of negative or zero-values in the vectors
could be further investigated as alternative to our “zeros-to-l” and “noReLu” approaches (Section
4.2). Finally, we observe that the idea of creating the permutation by ordering the vector values
could generalize to other multidimensional features. We believe this is an input for future research
investigations.

Supermetric search and n-point property. The study presented in Chapter 5 is the first step towards en-
hancing our understanding of similarity search on supermetric space. However, many issues wor-
thy of further investigation.

In [128, 172] the family of Ptolemaic metrics, i.e. metrics that satisfy the Ptolemy’s inequality
(d(x, v)d(y, u) ≤ d(x, y)d(u, v) + d(x, u)d(y, v) for all objects x, y, u, v) were studied in the
context of metric search. In particular, it has been shown that the Ptolemy’s inequality allows de-
riving distance bounds with filtering power higher than that obtained using the triangle inequality.
We now observe that every supermetric space is also a Ptolemaic space, but the distance bounds
obtained by our approaches are different from that obtained with the Ptolemy’s inequality. These
observations raise questions in need of further investigation: Are the supermetric spaces or the
spaces with n-point property equivalent to Ptolemaic spaces? Is it possible to derive mechanisms
using both the properties (Ptolemy’s inequality and four-point property) to further increase the effi-
ciency of supermetric indexing? Conversely, which property does provide tighter distance bounds?
These topics and related issues are deferred to future work.

One limitation of our study is that it treats only the exact search scenario using range queries. We
are currently in the process of investigating the use of the four-point property and the n-Simplex
projection to performs approximate similarity search, also using k-NN search queries. We also
observe that the distance bounds obtained with the tetrahedral projection, or more generally with
the n-Simplex projection, might be integrated into existing approximate search algorithms. To this
respect, we are planning to use them on the MI-File [36].

An additional interesting aspect that we have left for future work is analysing the impact of the
choice of the reference objects in the n-Simplex projection with the aim of minimizing the dis-
tortion of the distance bounds for a fixed value of n. In facts, several pivot selection techniques
(e.g. k-means [171], k-medoids [151], BPP [24], FFT [111], and PSIS [60]) could be tested in
conjunction with our approach, or even a new pivot selection technique could be defined in order
to optimize our filtering conditions.

Our experiments on Section 5.4.3.3 suggest that the distance bounds obtained with the n-Simplex
projection could be a useful aid for the problem of the near-duplicates detection. We plan to further
inspect this conjecture.

Finally, we believe that our tetrahedral and 3-Simplex projections could be further exploited for
visualization tasks in 2D and 3D spaces, respectively. In particular, different projections could be
used to visualize different portions (or clusters) of the data, also choosing the reference points used
to projects the objects in a dynamic way in order to “visually navigate” a given dataset.
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APPENDIXA
BMM-FV Computation

In the following we explicitly derive the score vector and the approximation of the Fisher Information
Matrix used to define our BMM-FV (Section 3.2.2). Throughout this appendix we have used [[·]] notation
to represent the Iverson bracket which equals one if the arguments is true, and zero otherwise.

A.1 Score vector computation

In the following, we have reported the computation of the score function GX
λ , defined as the gradient

of the log-likelihood of a data X with respect to the parameters λ of the generative model p(·|λ), in the
case where a Bernoulli Mixture Model is used. We considered a multivariate Bernoulli mixture with K
components and parameters λ = {wk, µkd, k = 1, . . . ,K, d = 1, . . . , D}:

p(xt|λ) =

K∑
k=1

wkpk(xt) (A.1)

where

pk(xt) =

D∏
d=1

µxtd

kd (1− µkd)1−xtd (A.2)

and
K∑
k=1

wk = 1, wk > 0 ∀ k = 1, . . . ,K. (A.3)

Under the independence assumption, the Fisher score with respect to the generic parameter λk is

expressed as: GXλk
=
∑T
t=1

∂ log p(xt|λ)

∂λk
=
∑T
t=1

1

p(xt|λ)

∂

∂λk

[∑K
i=1 wipi(xt)

]
.

To avoid enforcing explicitly the constraints in (A.3), we used the soft-max formalism [154,226] for
the weight parameters: wk = exp(αk)/

∑K
i=1 exp(αi).

157



“main” — 2018/5/6 — 19:17 — page 158 — #184i
i

i
i

i
i

i
i

Appendix A. BMM-FV Computation

To compute
∂

∂λk

[∑K
i=1 wipi(xt)

]
, we first observe that

∂wi
∂αk

=
∂

∂αk

[
exp(αi)∑K
j=1 exp(αj)

]

=
exp(αk)

(∑K
j=1 exp(αj)

)
[[i = k]]− exp(αi) exp(αk)(∑K

j=1 exp(αj)
)2

= wk[[i = k]]− wkwi

(A.4)

and

∂pi(xt)

∂µkd
=

∂

∂µkd

[
D∏
l=1

µ
xtl
kl (1− µkl)1−xtl

]
[[i = k]]

= ([[xtd = 1]]− [[xtd = 0]])

 D∏
l=1
l 6=d

µ
xtl
kl (1− µkl)1−xtl

 [[i = k]]

= ([[xtd = 1]]− [[xtd = 0]])

(
pk(xt)

µ
xtd
kd (1− µkd)1−xtd

)
[[i = k]]

= pk(xt)

(
(1− µkd)[[xtd = 1]]− µkd[[xtd = 0]]

µkd(1− µkd)

)
[[i = k]]

= pk(xt)

(
xtd − µkd

µkd(1− µkd)

)
[[i = k]].

(A.5)

Hence, the Fisher score with respect to the parameter αk is obtained as

GXαk
=

T∑
t=1

K∑
i=1

pi(xt)

p(xt|λ)
∂wi
∂αk

(A.4)
=

T∑
t=1

K∑
i=1

pi(xt)

p(xt|λ)
wk ([[i = k]]− wi)

=

T∑
t=1

(
pk(xt)

p(xt|λ)
wk −

K∑
i=1

pi(xt)

p(xt|λ)
wkwi

)
=

T∑
t=1

(
γt(k)− wk

K∑
i=1

γt(i)

)

=

T∑
t=1

(γt(k)− wk)

(A.6)

and the Fisher score related to the parameter µkd is

GXµkd
=

T∑
t=1

∂ log p(xt|λ)
∂µkd

=

T∑
t=1

1

p(xt|λ)
∂

∂µkd

[
K∑
i=1

wipi(xt)

]

=

T∑
t=1

wk
p(xt|λ)

∂pk(xt)

∂µkd

(A.5)
=

T∑
t=1

wkpk(xt)

p(xt|λ)

(
xtd − µkd

µkd(1− µkd)

)

=

T∑
t=1

γt(k)

(
xtd − µkd

µkd(1− µkd)

)
.

(A.7)

A.2 Approximation of the Fisher Information Matrix

Our derivation of the FIM is based on the assumption (see also [208, 226]) that for each observation
x = [x1, · · · , xD] ∈ {0, 1}D the distribution of the occupancy probability γ(·) = p(·|x, λ) is sharply
peaking, i.e. there is one Bernoulli index k such that γx(k) ≈ 1 and ∀ i 6= k, γx(i) ≈ 0. This assumption
implies that

γx(k)γx(i) ≈ 0 ∀ k, i = 1 . . . ,K, i 6= k

γx(k)2 ≈ γx(k) ∀ k = 1, . . . ,K

158



“main” — 2018/5/6 — 19:17 — page 159 — #185i
i

i
i

i
i

i
i

A.2. Approximation of the Fisher Information Matrix

and then
γx(k)γx(i) ≈ γx(k)[[i = k]], (A.8)

where [[·]] is the Iverson bracket.
The elements of the FIM are defined as:

[F λ]i,j = Ex∼p(·|λ)

[(
∂ log p(x|λ)

∂λi

)(
∂ log p(x|λ)

∂λj

)]
. (A.9)

Hence, the FIM F λ is symmetric and can be written as block matrix

F λ =

[
F α,α F µ,α
F>µ,α F µ,µ

]
.

By using the definition of the occupancy probability (i.e. γx(k) = wkpk(x)/p(x|λ)) and the fact that pk
is the distribution of a D-dimensional Bernoulli of mean µk, we have the following useful equalities:

Ex∼p(·|λ) [γx(k)] =
∑

x∈{0,1}D
γx(k)p(x|λ)=wk (A.10)

Ex∼p(·|λ) [γx(k)xd] =wkµkd (A.11)

Ex∼p(·|λ) [γx(k)xdxl] =wkµkd (µkl[[d 6= l]] + [[d = l]]) (A.12)

Ex∼p(·|λ)

[
∂ log p(x|λ)

∂αk

]
(A.6)
= Ex∼p(·|λ) [γx(k)− wk] =0 (A.13)

Ex∼p(·|λ)

[
∂ log p(x|λ)

∂µid

]
(A.7)
= Ex∼p(·|λ)

[
γx(k)(xd − µkd)
µkd(1− µkd)

]
=0. (A.14)

It follows that F λ may approximated by a diagonal block matrix, because the mixing blocks F µkd,αi

are close to the zero matrix:

Fµkd,αi = Ex∼p(·|λ)

[(
∂ log p(x|λ)

∂µkd

)(
∂ log p(x|λ)

∂αi

)]
(A.6)−(A.7)

= Ex∼p(·|λ)

[
γx(k)

(xd − µkd)
µkd(1− µkd)

(γx(i)− wi)
]

(A.8)
≈ Ex∼p(·|λ)

[
γx(k)(xd − µkd)
µkd(1− µkd)

]
([[i = k]]− wi)

(A.14)
= 0.

The block F µ,µ can be written as KD ×KD diagonal matrix, in fact:

Fµid,µkl

(A.9)
= E

[(
∂ log p(x|λ)

∂µid

)(
∂ log p(x|λ)

∂µkl

)]
(A.7)
= Ex∼p(·|λ)

[
γx(i)γx(k)

(xd − µid)
µid(1− µid)

(xl − µkl)
µkl(1− µkl)

]
(A.8)
≈ Ex∼p(·|λ)

[
γx(k)(xd − µkd)(xl − µkl)
µkdµkl(1− µkd)(1− µkl)

]
[[i = k]]

(A.10)−(A.12)
=

wk(µkdµkl[[d 6= l]] + µkl[[d = l]]− µkdµkl)
µkdµkl(1− µkd)(1− µkl)

[[i = k]]

=
wk(µkd[[d 6= l]] + [[d = l]]− µkd)

µkd(1− µkd)(1− µkl)
[[i = k]]

=
wk

µkd(1− µkd)
[[i = k]][[d = l]].

(A.15)

The relation (A.15) points that the diagonal elements of our FIM approximation arewk/µkd(1−µkd) and
the corresponding entries in Lλ (i.e. the square root of the inverse of FIM) equal

√
µkd(1− µkd)/wk.

159



“main” — 2018/5/6 — 19:17 — page 160 — #186i
i

i
i

i
i

i
i

Appendix A. BMM-FV Computation

The block related to the α parameters is F α,α = (diag(w)−ww>) wherew = [w1, · · · , wK ], in fact:

Fαk,αi

(A.9)
= Ex∼p(·|λ)

[(
∂ log p(x|λ)

∂αk

)(
∂ log p(x|λ)

∂αi

)]
(A.6)
= Ex∼p(·|λ) [(γx(k)− wk)(γx(i)− wi)]

(A.8)
≈ Ep(·|λ) [γx(k)[[i = k]]− γx(k)wi − γx(i)wk + wiwk]

(A.10)−(A.11)
= (wk[[i = k]]− wiwk) .

The matrix F α,α is not invertible (indeed F α,α[1, · · · , 1] = 0) due to the dependence of the mixing
weights (

∑K
i=1 αi =

∑K
i=1 wi = 1). Since there are only K − 1 degrees of freedom in the mixing

weight, as proposed in [226], we can fix αK equal to a constant without loss of generality and work with
a reduced set of K − 1 parameters: α̃ = [α1, . . . , αK−1].

Taking into account the Fisher score with respect to α̃, i.e.

GX
α̃ = ∇α̃ log p(X|λ) = [GXα1

, . . . , GXαK−1
] = G̃X

α ,

the corresponding block of the FIM is F α̃,α̃ = (diag(w̃) − w̃w̃>), where w̃ = [w1, . . . , wK−1]. The
matrix F α̃,α̃ is invertible, indeed it can be decomposed into a product of an invertible diagonal matrix
D = diag(w̃) and an invertible elementary matrix 1 E(e, w̃,−1) = I − ew̃>, where e = [1, · · · , 1];
its inverse is

F−1
α̃,α̃ = diag(w̃)−1

(
I +

1∑K−1
i=1 wi − 1

ew̃>

)
=

(
diag(w̃)−1 +

1

wK
ee>

)
.

It follows that

Kα̃(X,Y ) = (GX
α̃ )>F−1

α̃,α̃G
Y
α̃ =

(
(GX

α̃ )>diag(w̃)−1GY
α̃ +

1

wK
(e>GX

α̃ )(e>GY
α̃ )

)
=

K∑
k=1

GX
αk
GY
αk

wk

where we used e>GZ
α̃ =

∑K−1
k=1

∑
z∈Z (γz(k)− wk) = −

∑
z∈Z (γz(K)− wK) = −GZαK

.

By defining GXαk
=

1
√
wk

∑
x∈X (γx(k)− wk) , we finally obtain Kα̃(X,Y ) =

(
GXα
)>

GYα . Please

note that we don’t need to explicitly compute the Cholesky decomposition of the matrix F−1
α̃,α̃ because

the Fisher Kernel Kα̃(X,Y ) can be easily rewritten as dot product between the feature vector GXα and
GYα .

1 An elementary matrix E(u,v, σ) = I − σuvH is non-singular if and only if σvHu 6= 1 and in this case the inverse is
E(u,v, σ)−1 = E(u,v, τ) where τ = σ/(σvHu− 1). More details on this topic can be found in [134].
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