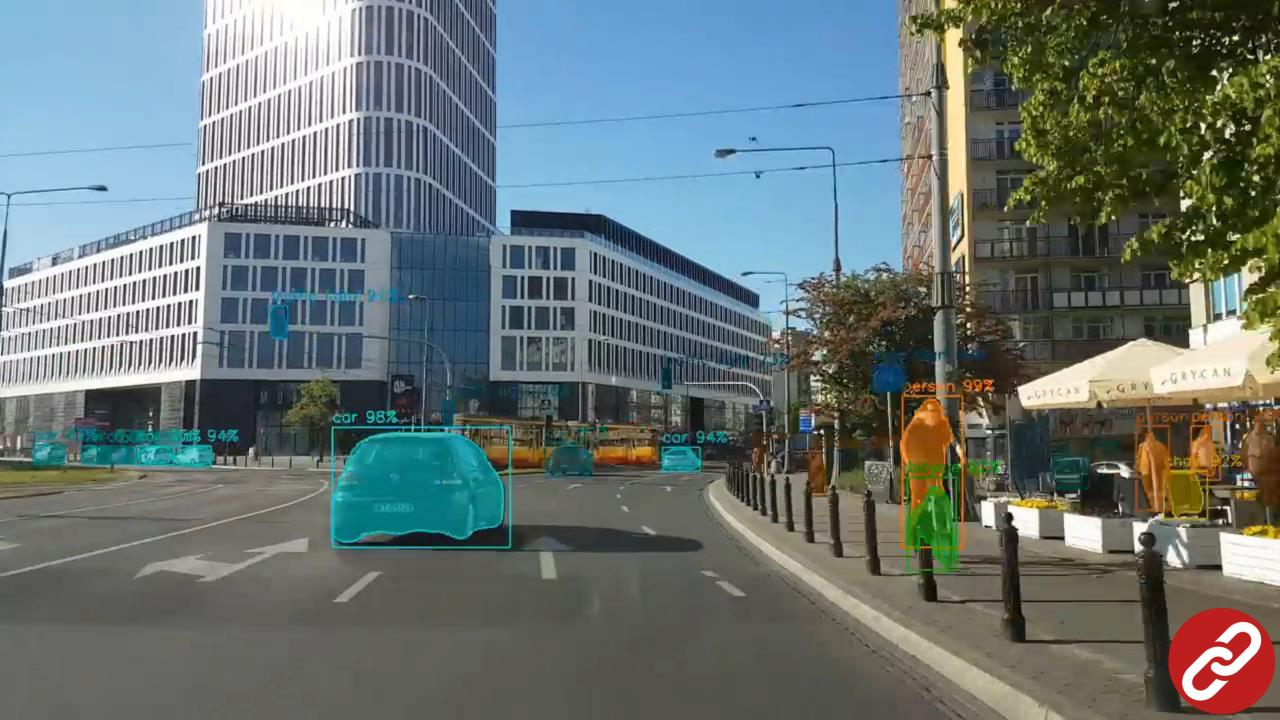
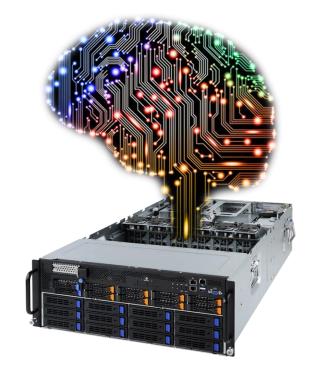


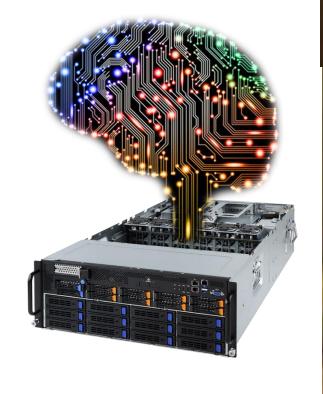
ATTACKING DEEP NEURAL NETWORKS WITH ADVERSARIAL IMAGES

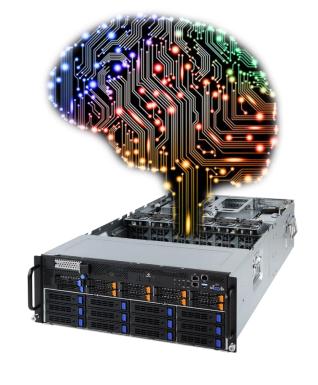
Fabrizio Falchi

ISTI, CNR, Pisa, italy www.fabriziofalchi.it





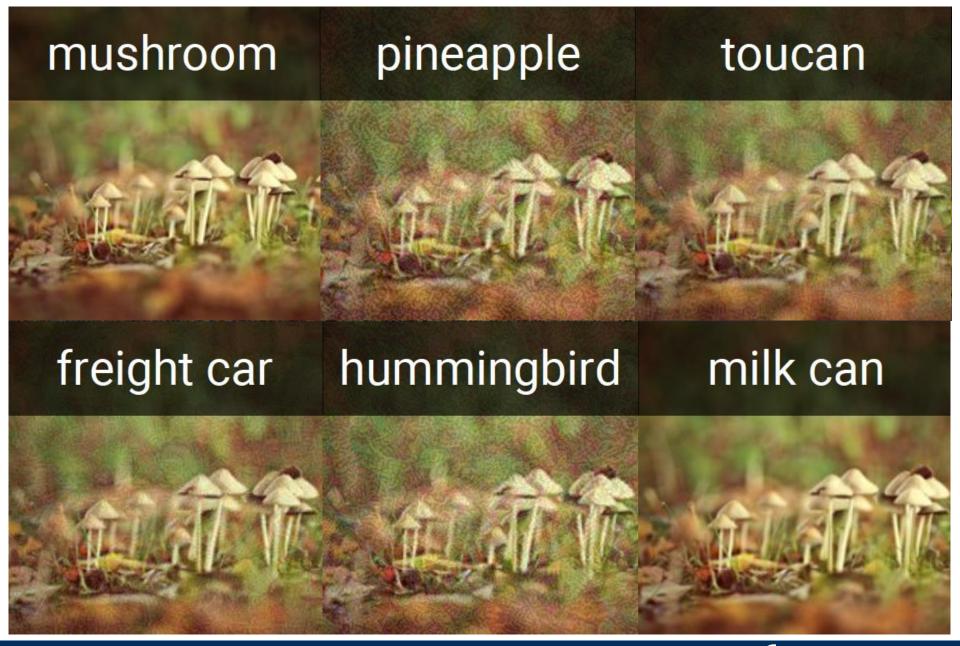




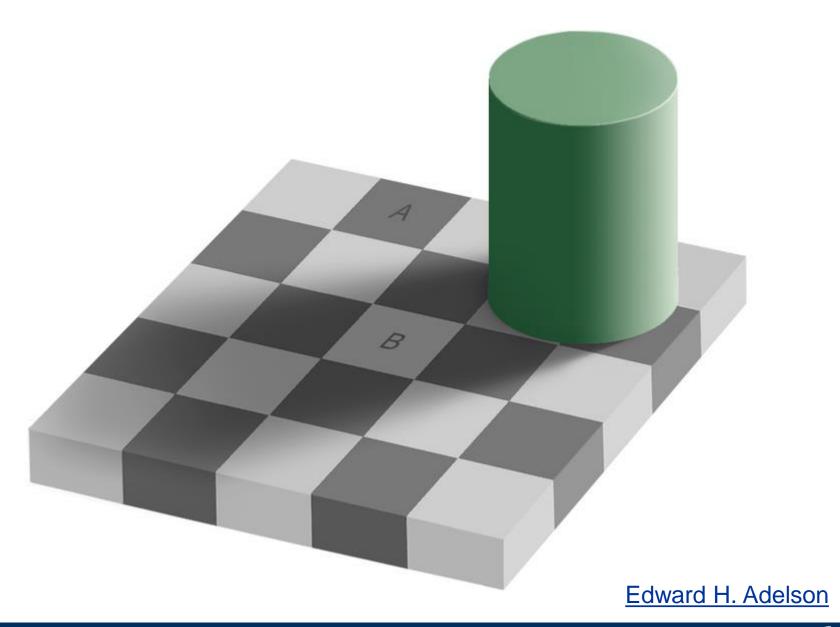




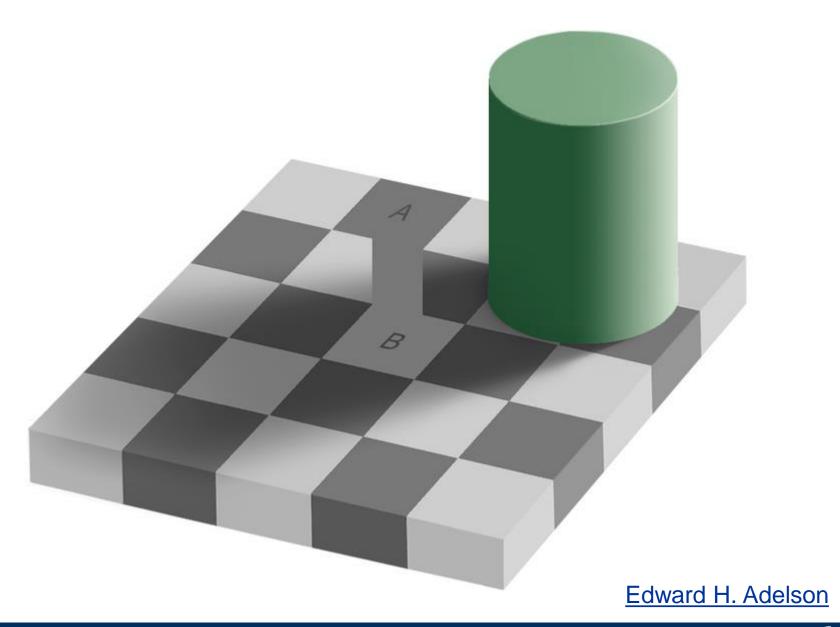
ADVERSARIAL EXAMPLES



ILLUSIONS



ILLUSIONS



DUBROVNIK

DUBROVNIK - DEEP DREAM

KNOW YOUR ENEMY

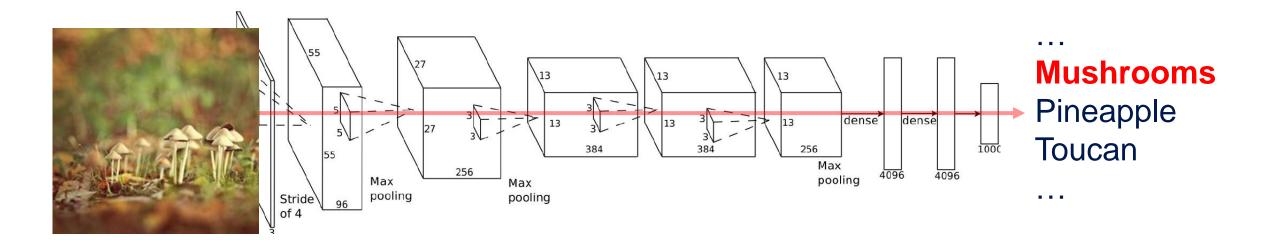
Goal

Knowledge

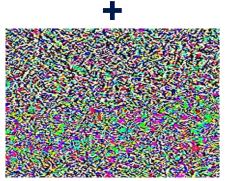
Capability

ADVERSARY'S GOAL

GENUINE IMAGES

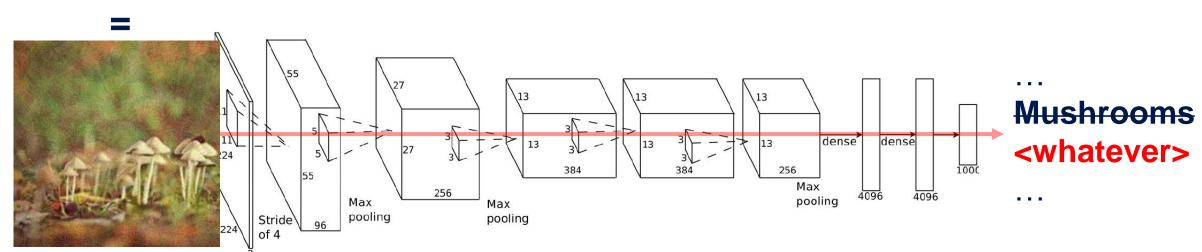


Non-Targeted Attack

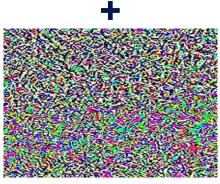


Goal

NON-TARGETED

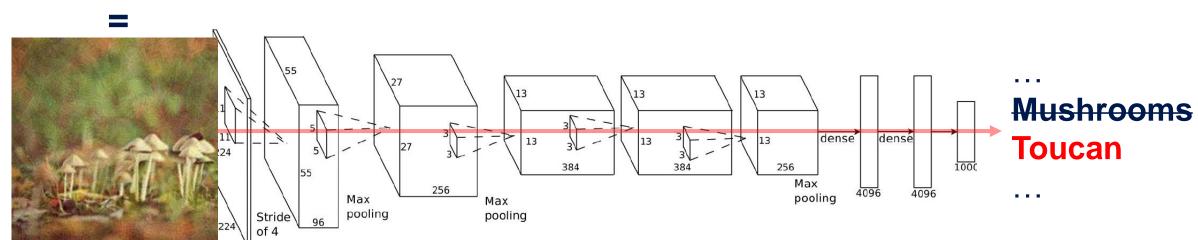


TARGETED ATTACK



Goal

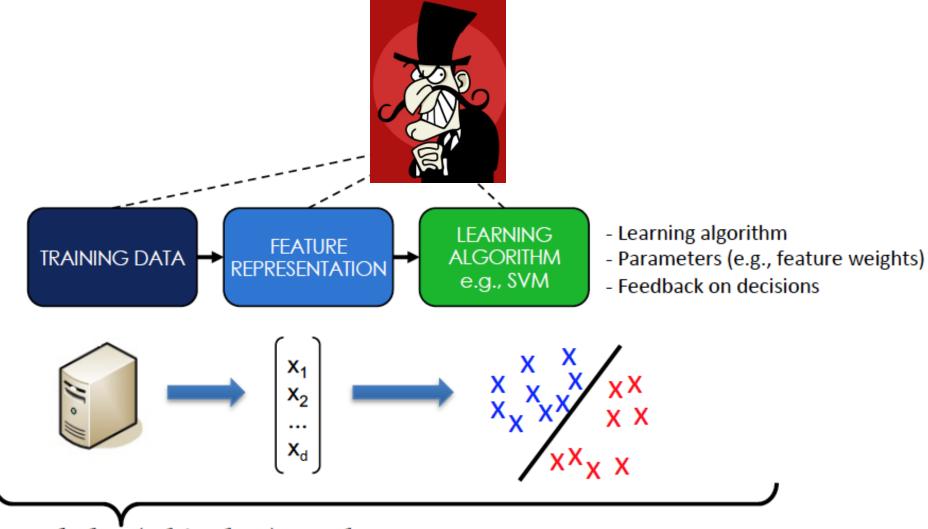
TARGETED



Goal

Knowledge

Capability



Perfect-knowledge (white-box) attacks

upper bound on the performance degradation under attack

Slide credit: Biggio

ATTACKING DEEP NEURAL NETWORKS

- Attacks are possible:
 - if you have the model [1,2]
 - if you have access to input and output only! [3]

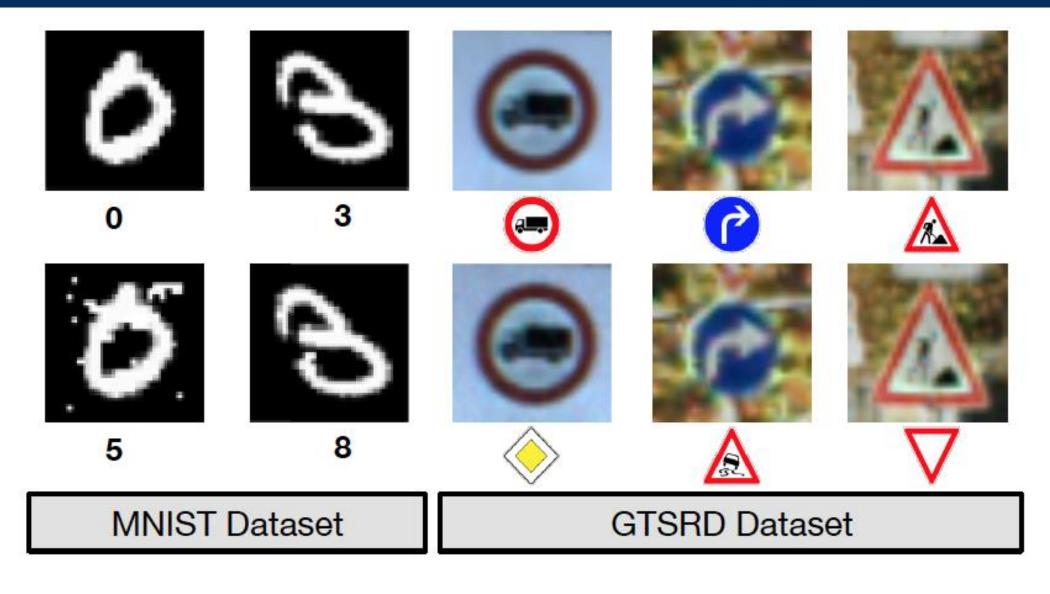
88.94%

96.19%

- [1] Szegedy, Christian, et al. "Intriguing properties of neural networks." arXiv preprint arXiv:1312.6199(2013).
- [2] Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." arXiv preprint arXiv:1412.6572 (2014).
- [3] Papernot, Nicolas, et al. "Practical black-box attacks against deep learning systems using adversarial examples." arXiv preprint arXiv:1602.02697 (2016).

Error Rate:

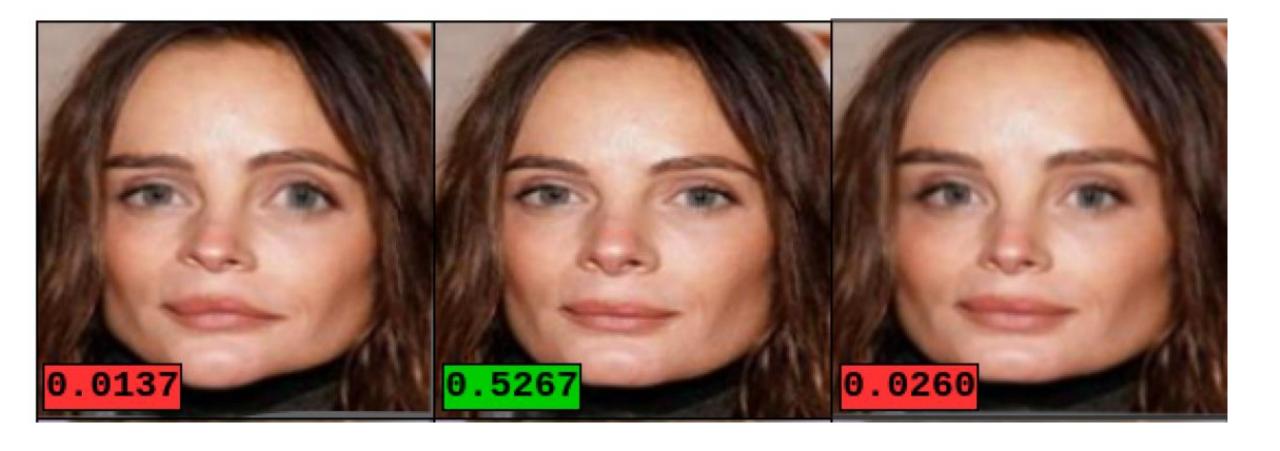
BLACK BOX ADVERSARIAL EXAMPLE ATTACKS



Practical Black-Box Attacks against Machine Learning Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik, Ananthram Swami

ATTACKING FACE RECOGNITION SYSTEMS

ADVERIAL FACES



ADVERSARIAL FACES



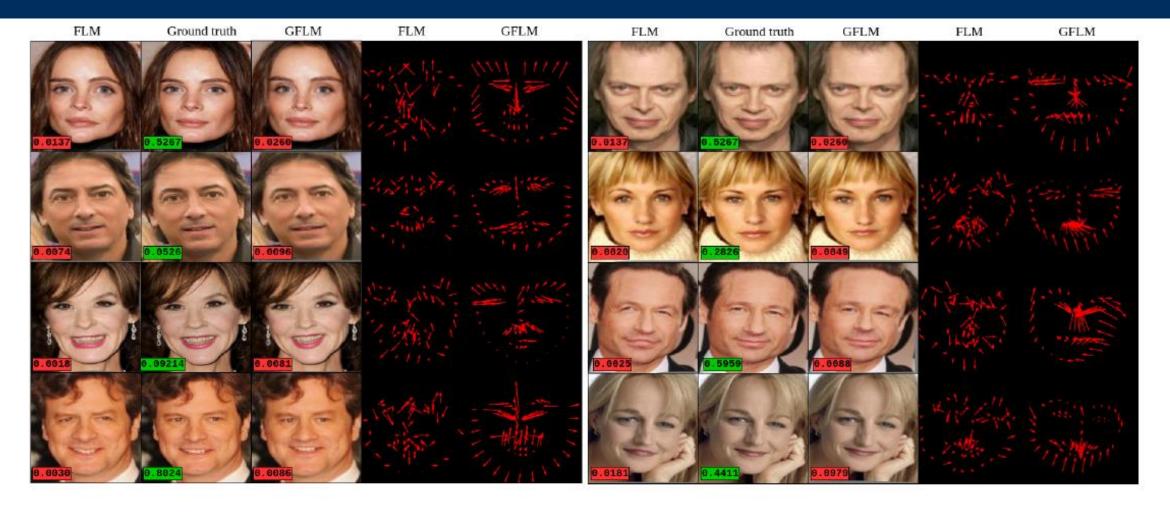


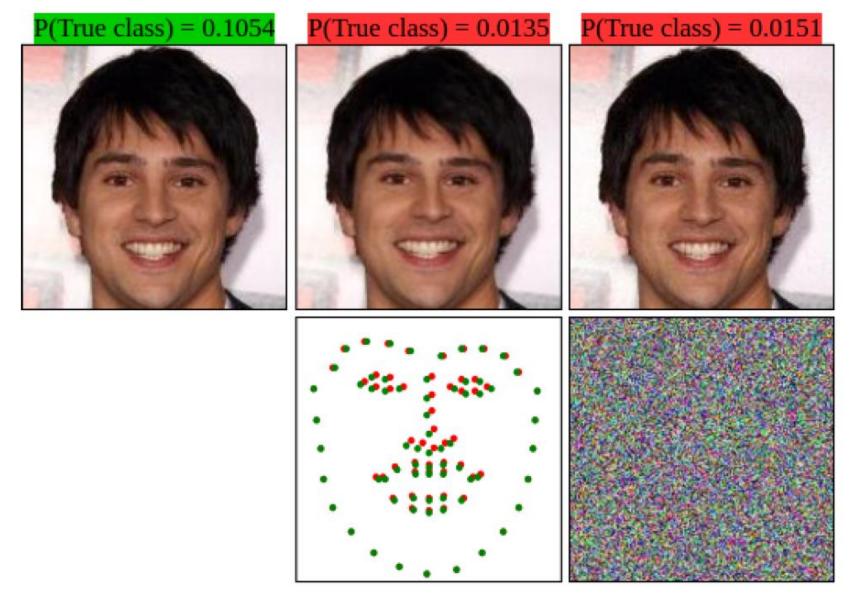
Figure 5. Examples of the adversarial faces generated using FLM and GFLM. For each subject, five images are shown including the original face image (middle face), the result of GFLM (right face), the result of FLM (right image), displacement field f for GFLM (left field) and displacement field f for FLM (right field). Tags on the bottom left of images show the probability of the true class. Green and red tags denote the correct and incorrect classified samples respectively.

ADVERSARIAL FACES

 $P(True\ class) = 0.1054$

 $P(True\ class) = 0.0135$

 $P(True\ class) = 0.0151$



Fast Geometrically-Perturbed Adversarial Faces Ali Dabouei, Sobhan Soleymani, Jeremy Dawson, Nasser M. Nasrabadi

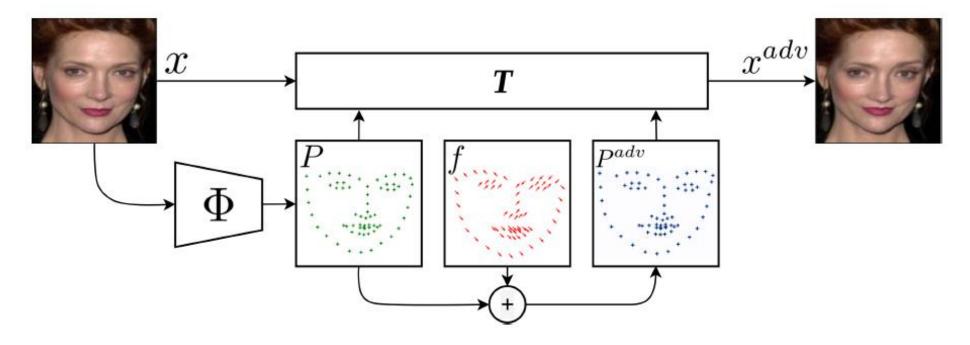


Figure 2. The proposed method optimizes a displacement field f to produce adversarial landmark locations P^{adv} . The spatial transformation T transforms the input sample to the corresponding adversarial image x^{adv} such that $\Phi(x^{adv}) = \Phi(x) + f$, and a state-of-the-art face recognition model g miss-classifies the transformed image x^{adv} .

ATTACKING IN REAL WORLD

ADVERSARIAL IMAGE

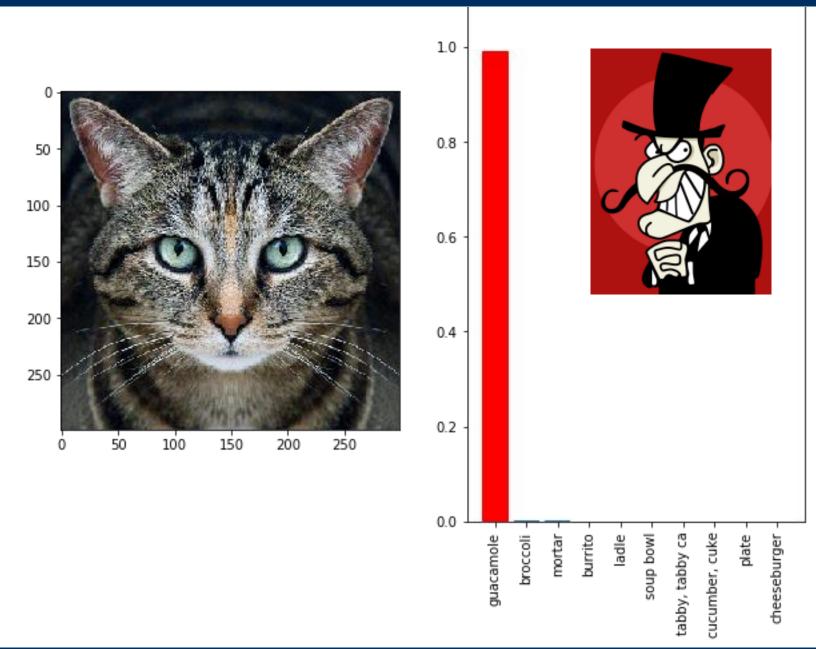


Photo: labsix

ROTATE ADVERSARIAL IMAGE

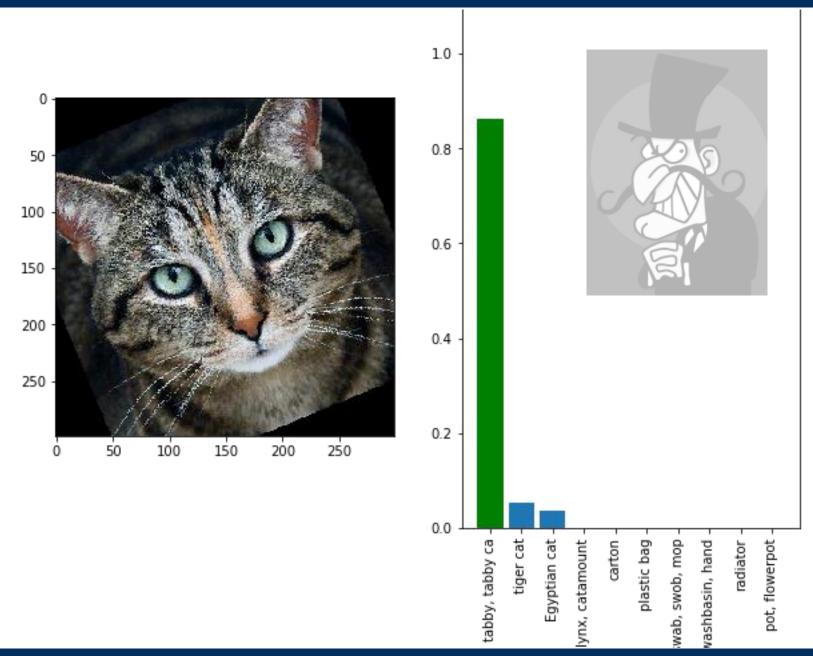
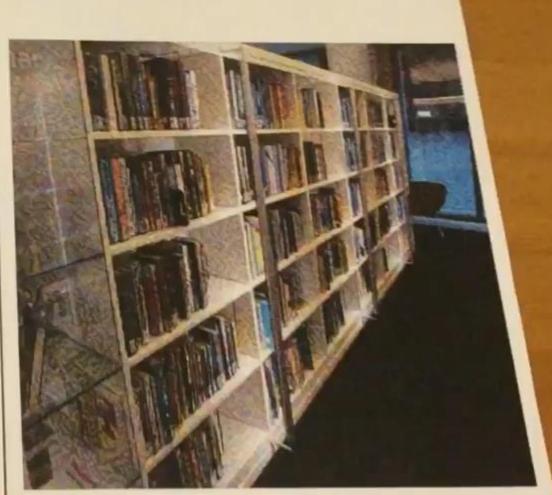


Photo: labsix



Adversarial Examples In The Physical World Kurakin A., Goodfellow I., Bengio S., 2016

Subtle Poster	Subtle Poster Right Turn	Camouflage Graffiti	Camouflage Art (LISA-CNN)	Camouflage Art (GTSRB-CNN)
STOP		STOP	STOP	STOP
STOP		STOP	STOP	STOP
L (STOP)		STOP	STOP	STOP

Robust Physical-World Attacks on Deep Learning Models Eykholt, Evtimov, Fernandes, Bo Li, Rahmati, Xiao, Prakash, Kohno, Song

Fig. 4: An example of digital dodging. Left: An image of actor Owen Wilson, correctly classified by VGG143 with probability 1.00. Right: Dodging against VGG143 using AGN's output (probability assigned to the correct class: < 0.01).

Adversarial Generative Nets: Neural Network Attacks on State-of-the-Art Face Recognition Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, Michael K. Reiter

ATTACKING DNN IN REAL WORLD

Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, Michael K. Reiter

ATTACKING DNN IN REAL WORLD

Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, Michael K. Reiter

ATTACKING DNN IN REAL WORLD

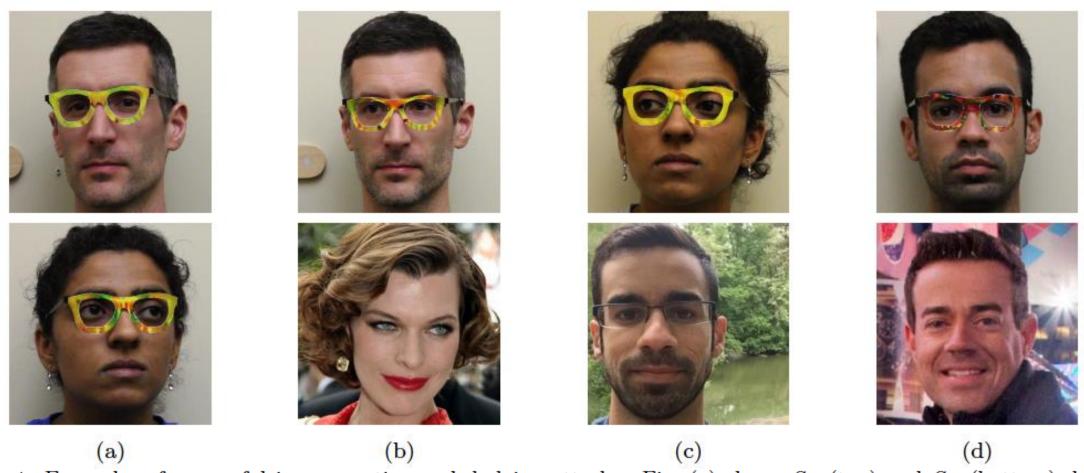
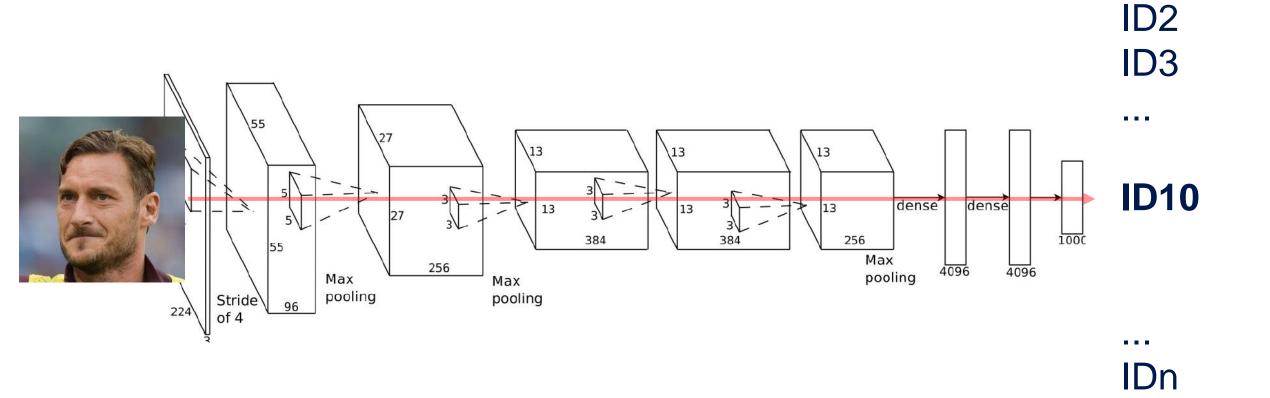


Figure 4: Examples of successful impersonation and dodging attacks. Fig. (a) shows S_A (top) and S_B (bottom) dodging against DNN_B . Fig. (b)–(d) show impersonations. Impersonators carrying out the attack are shown in the top row and corresponding impersonation targets in the bottom row. Fig. (b) shows S_A impersonating Milla Jovovich (by Georges Biard / CC BY-SA / cropped from https://goo.gl/GlsWlC); (c) S_B impersonating S_C ; and (d) S_C impersonating Carson Daly (by Anthony Quintano / CC BY / cropped from https://goo.gl/VfnDct).

Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, Michael K. Reiter

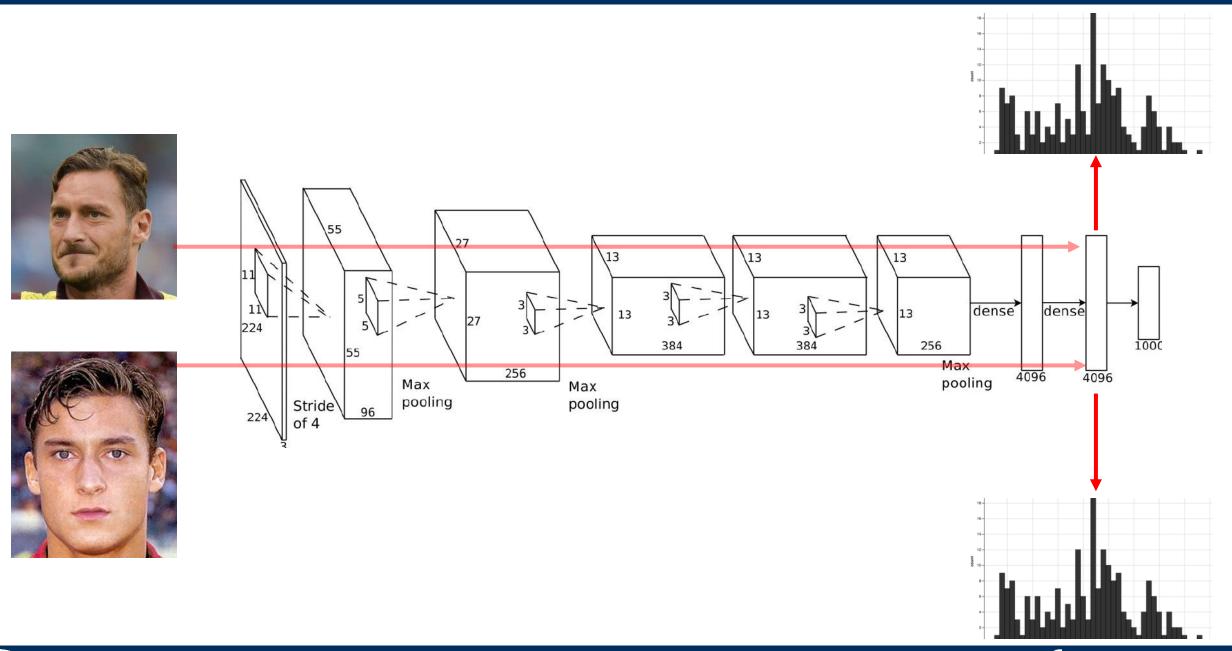
ATTACKING FACE VERIFICATION SYSTEMS

FACE RCOGNITION

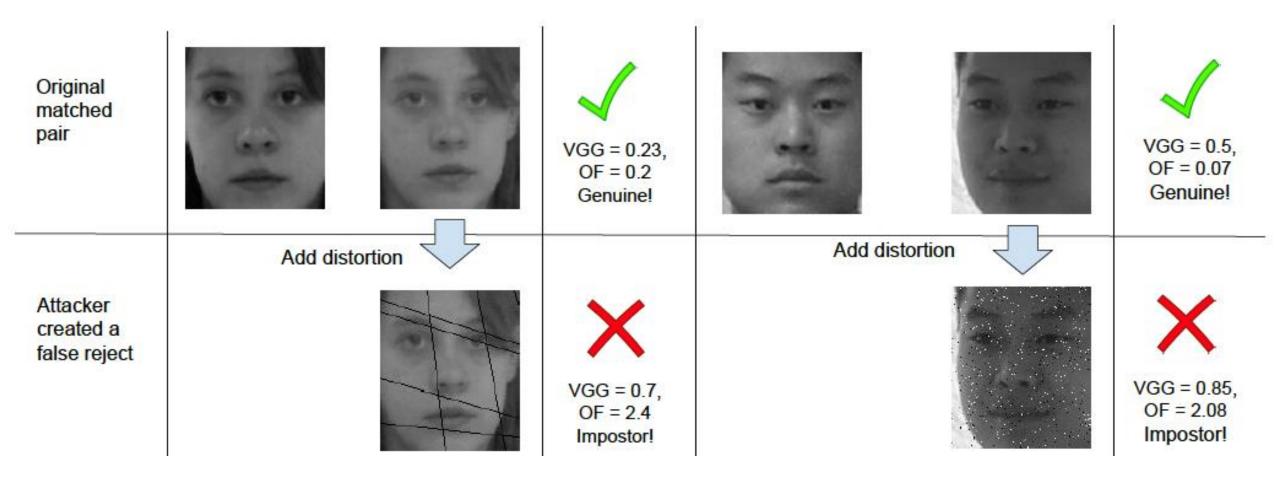


ID1

FACE VERIFICATION

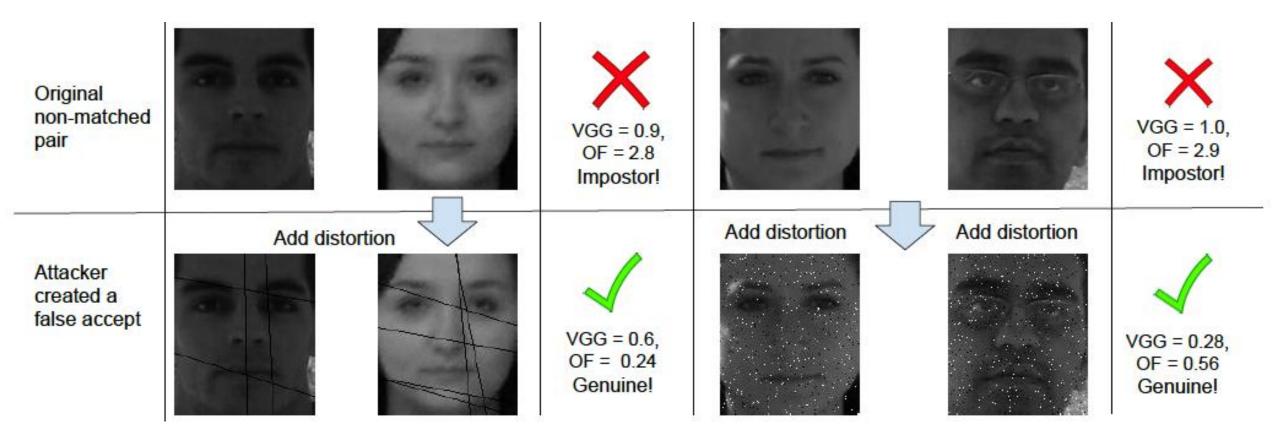


FACE VERIFIATION



Unravelling Robustness of Deep Learning based Face Recognition Against Adversarial Attacks Goswami, Ratha, Agarwal, Singh, Vatsa

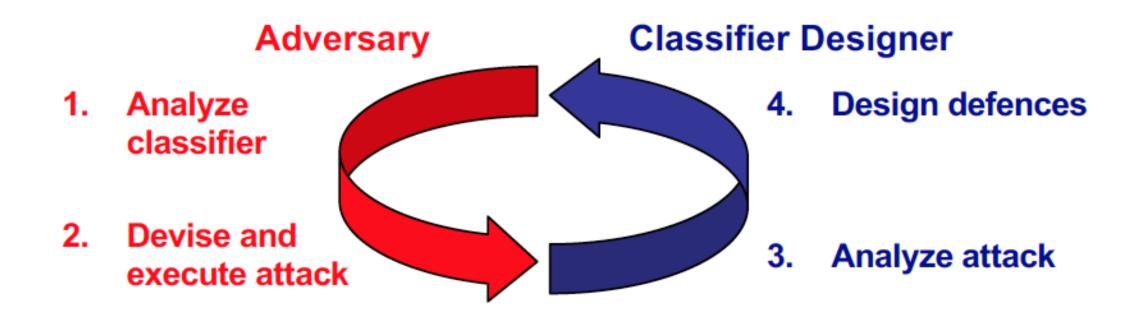
FACE VERIFIATION



Unravelling Robustness of Deep Learning based Face Recognition Against Adversarial Attacks Goswami, Ratha, Agarwal, Singh, Vatsa

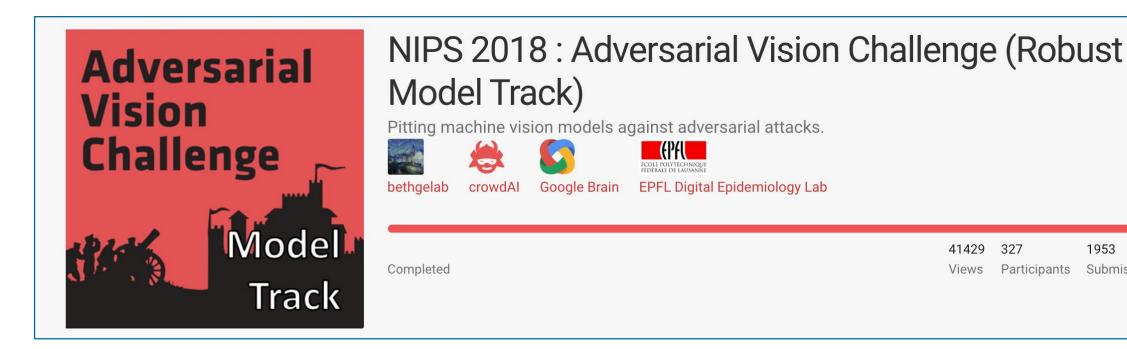
ADVERSARY-AWARE MACHINE LEARNING

ADVERSARY-AWARE MACHINE LEARNING



Machine learning system should be aware of the arms race with the adversary

Security evaluation of pattern classifiers under attack Biggio, Fumera, Roli



Competition tracks

There will be three tracks in which you and your team can compete:

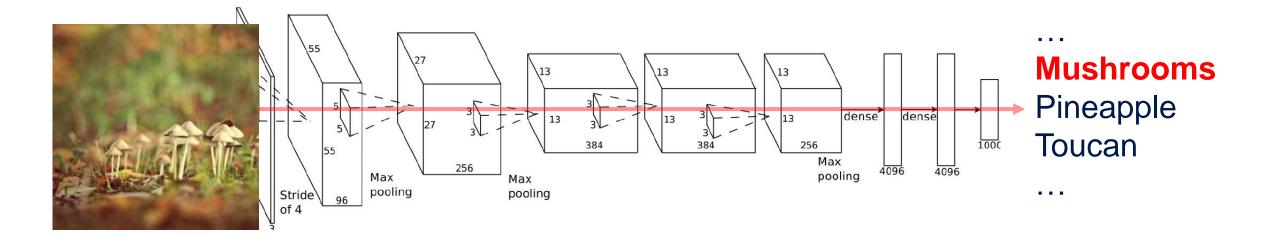
- Robust Model Track
- Untargeted Attacks Track
- Targeted Attacks Track

1953

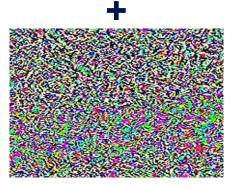
Submissions

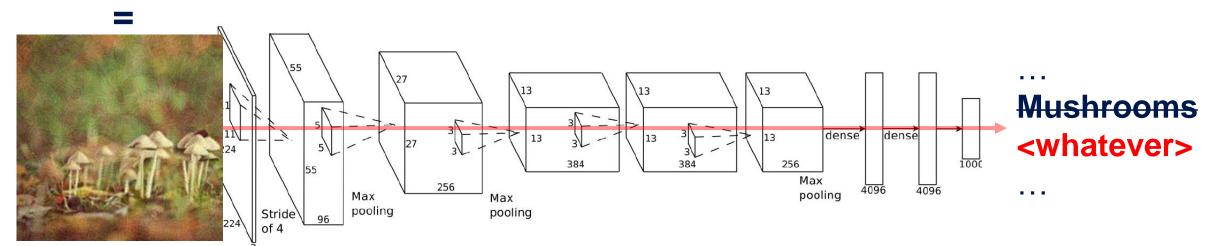
ADVERSARIAL EXAMPLE DETECTION

GENIUNE IMAGES

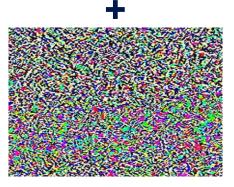


Non-Targeted Attack

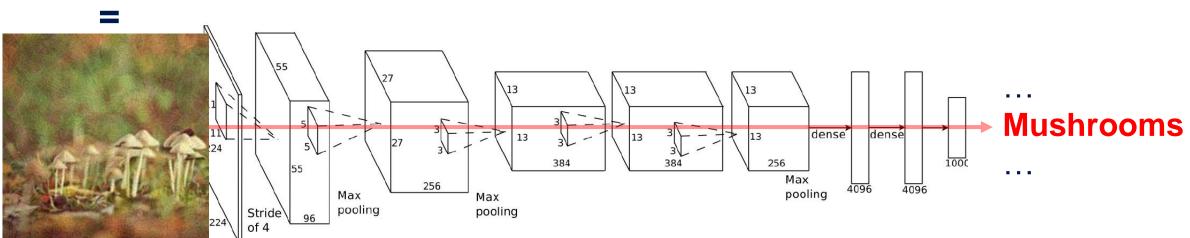




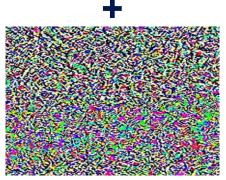
DEFENSE



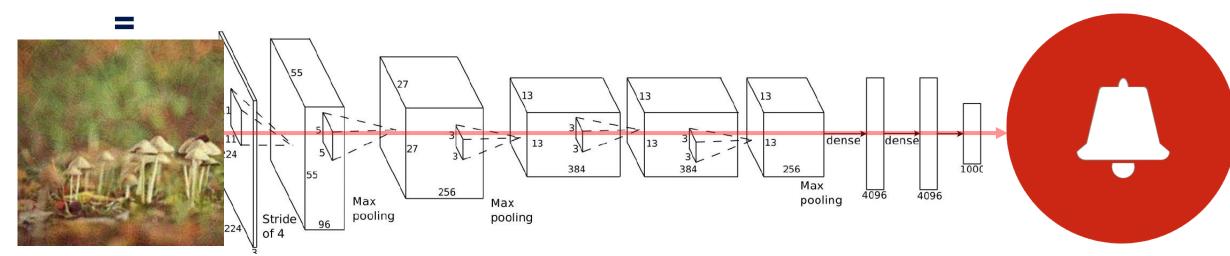
Increase robustness



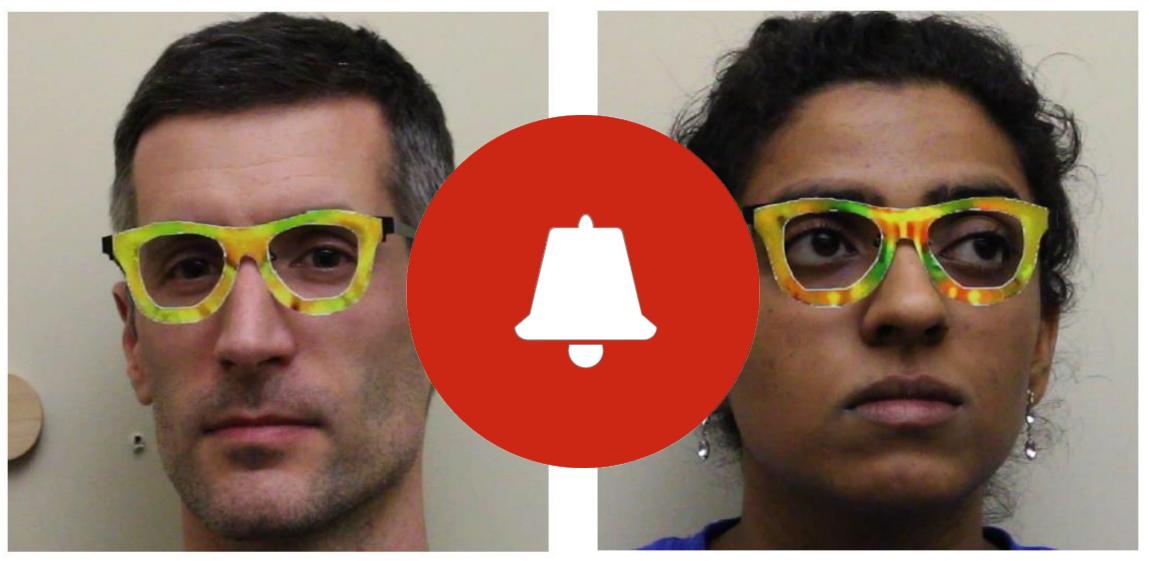
DETECTION



Attack detection



ADVERSARIAL EXAMPLES DETECTION

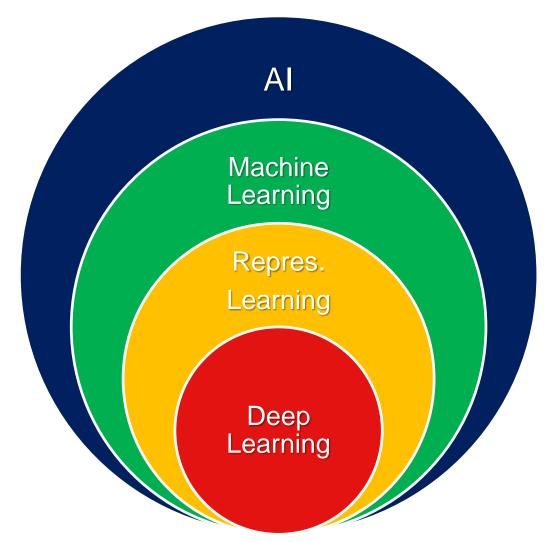


Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, Michael K. Reiter

OUR APPROACH

DEEP LEARNING (FROM NATURE)

Yann LeCun, Yoshua Bengio & Geoffrey Hinton



DEEP LEARNING (FROM NATURE)

Yann LeCun, Yoshua Bengio & Geoffrey Hinton

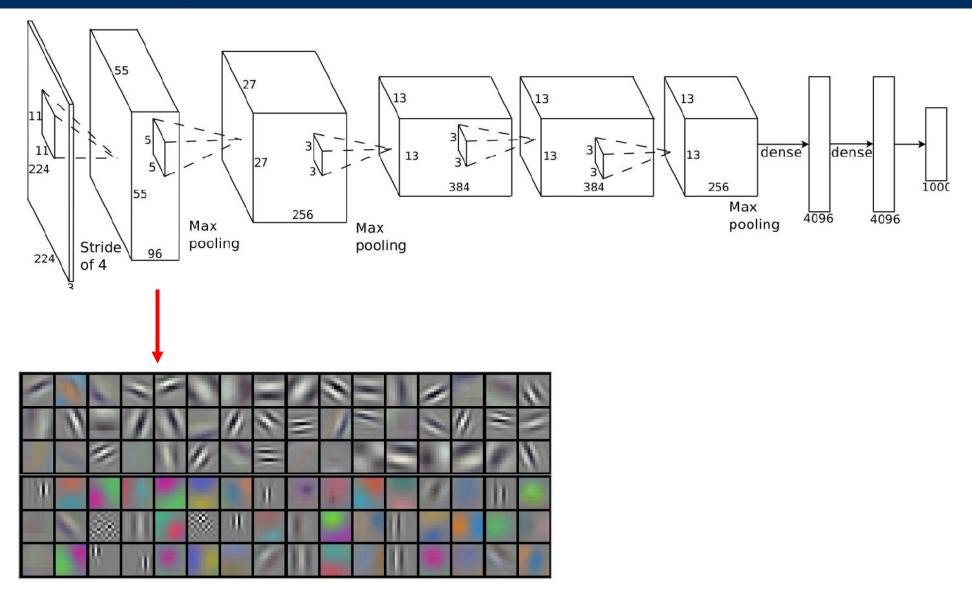
Representation learning methods that

allow a machine to be fed with raw data and to automatically discover the representations needed for detection or classification.

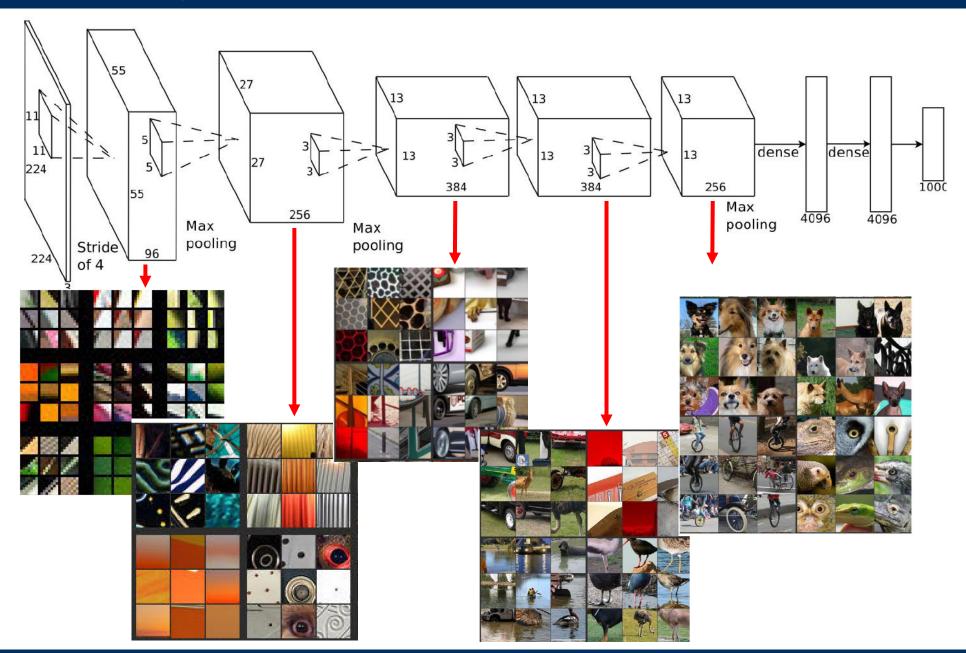
Deep-learning are representation learning methods

- o with **multiple levels** of representation, obtained by
- o composing simple but **non-linear modules** that each
- transform the representation at one level into a representation at a higher, slightly more abstract level.

MULTIPLE LEVELS OF ABSTRACTION



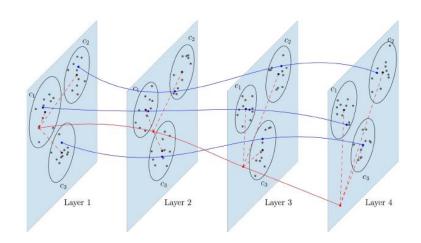
MULTIPLE LEVELS OF ABSTRACTION



OUR APPROACH

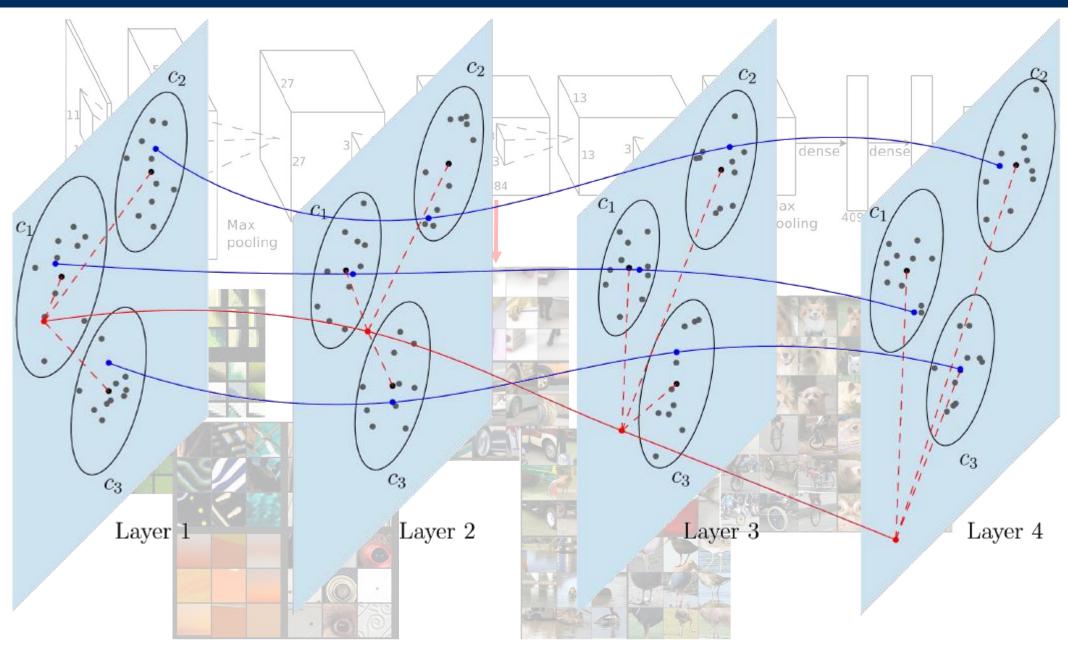
A detection scheme for adversarial images based on internal representation (aka deep features) of the neural network classifier.

- **Main intuition**: look at the evolution of features, i.e. the path formed by their positions in the feature spaces, during the forward pass of the network.
- Claim: The trajectories traced by authentic inputs and adversarial examples differ and can be used to discern them.



Adversarial examples detection in features distance spaces F. Carrara, R. Becarelli, R. Caldelli, F. Falchi, G. Amato **ECCV WOCM Workshop 2018**

MULTIPLE LEVELS OF ABSTRACTION



OUR APPROACH: RESULTS

ResNet-50 pretrained on ILSVRC'12 Attacked Model

Crafting Algorithms L-BFGS, FGSM, BIM, PGD, MI-FGSM

1000 Class (C)entroids / (M)edoids from ILSVRC train set Emb. Pivots

Emb. Distance Function L2 / cosine similarity (cos)

16-length 1000-dim sequences, TRAIN / VAL / TEST = 12k / 1k / 3k Emb. Size

MLP (2-layer, 100 and 1 neurons) / <u>LSTM</u> (100-dim) Detector

zero-knowledge (attacker not aware of detector) Threat Model

Method	L-BFGS	FGSM	BIM	PGD	MI-FGSM	macro-AUC
LSTM + M + cos	.854	.996	.997	.997	.997	.968
LSTM + M + L2	.743	.996	.998	.998	1.000	.947
MLP + M + cos	.551	.992	.996	.995	.998	.907
MLP + M + L2	.681	.976	.998	.999	1.000	.931
LSTM + C + cos	.709	.811	.784	.784	.930	.804
LSTM + C + L2	.482	.854	.819	.816	.872	.769
MLP + C + cos	.388	.694	.881	.878	.962	.761
MLP + C + L2	.626	.820	.990	.989	1.000	.885

EASY TO IDENTIFY ADVERSARIAL IMAGES

Adversarial Image	Generation	Actual Class	Fooled Class	Nearest Neighbor	kNN score
	L-BFGS	bikini, two-piece	pomegranate		0.01
ILENA BAIGONDETT SCOLLATA 1985 C	FGS	brassiere, bra, bandeau	Chihuahua		0.01
	FGS	revolver, six-gun, six- shooter	mousetrap		0.00
	L-BFGS	assault rifle, assault gun	Border terrier		0.00

HARD TO IDENTIFY ADVERSARIAL IMAGES

Adversarial Image	Generation Algorithm	Actual Class	Fooled Class	Nearest Neighbor	kNN score
	FGS	chime, bell, gong	barometer		0.13
	L-BFGS	basenji	Arctic fox, white fox, Alopex lagopus		0.13
	FGS	Greater Swiss Mountain dog	Bernese mountain dog	6	0.11
	FGS	jeep, landrover	pickup, pickup truck		0.11

OTHER DETECTION APPROACHES

• Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods [2017] Nicholas Carlini, David Wagner

On Detecting Adversarial Perturbations [2017]
Jan Hendrik Metzen, Tim Genewein, Volker Fischer, Bastian Bischoff

• Trace and detect adversarial attacks on CNNs using feature response maps [2018] Mohammadreza, Friedhelm, Thilo

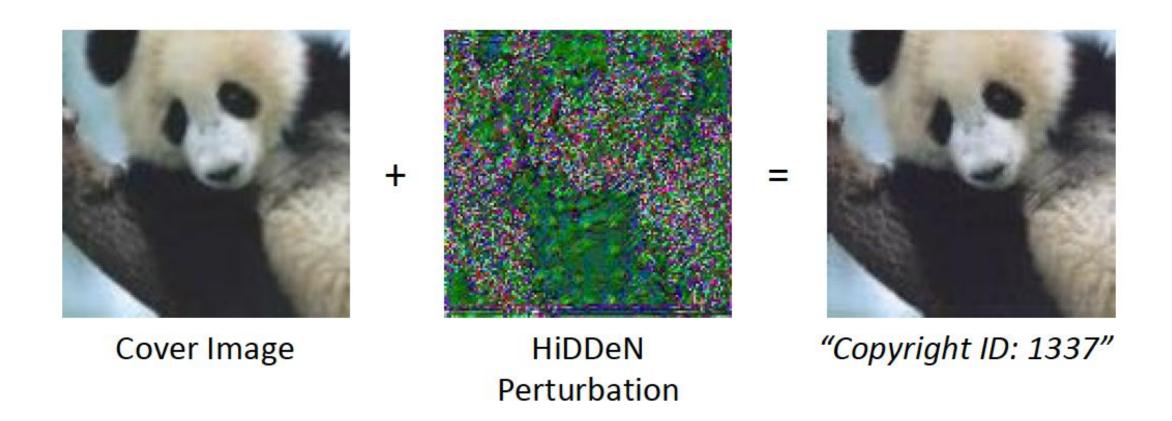
• Adversarial examples detection in features distance spaces [2018] F. Carrara, R. Becarelli, R. Caldelli, F. Falchi, G. Amato

RELATED TOPICS

DETECTING FACE MORPHING ATTACKS

Detection of Face Morphing Attacks by Deep Learning C. Seibold, W. Samek, A. Hilsmann, P. Eisert

ADVERSARIAL EXAMPLES DETECTION



HiDDeN: Hiding Data With Deep Networks Jiren Zhu, Russell Kaplan, Justin Johnson, Li Fei-Fei

THANKS!

Questions are welcomed

Fabrizio Falchi fabrizio.falchi@cnr.it

CONCLUSIONS

- Machine Learning and Deep Learning in particular can be attacked
 - Slightly modifying images but also in real world
 - Even if our neural network is a black box for the enemy
- Many approaches have been proposed to make DL more robust
- Adversarial examples detection is its early stages
- We need adversary-aware machine learning