
Searching 100M Images by Content Similarity

Paolo Bolettieri1, Fabrizio Falchi1, Claudio Lucchese1, Yosi Mass2,
Raffaele Perego1, Fausto Rabitti1, Michal Shmueli-Scheuer2

1 ISTI-CNR, Pisa, Italy
2 IBM Haifa Research Lab, Israel

Abstract. In this paper we present the web user interface of a scalable
and distributed system for image retrieval based on visual features and
annotated text, developed in the context of the SAPIR project. Its ar-
chitecture makes use of Peer-to-Peer networks to achieve scalability and
efficiency allowing the management of huge amount of data and simulta-
neous access by a large number of users. Describing the SAPIR web user
interface we want to encourage final users to use SAPIR to search by
content similarity, together with the usual text search, on a large image
collection (100 million images crawled from Flickr) with realistic response
time. On the ground of the statistics collected, it will be possible, for the
first time, to study the user behavior (e.g., the way they combine text
and image content search) in this new realistic environment.

1 Introduction: the SAPIR Project

Non-text data, such as images, music, animations, and videos is nowadays a large
component of the Web. However, web tools for performing image searching, as
the ones provided by Google, Yahoo! and MSN Live Search, simply index the
text associated with the image.

Image indexing methods based on content analysis or pattern matching (i.e.
features, such as colors and shapes) are usually not exploited at all. In fact,
for this kind of data the appropriate search methods are based on similarity
paradigms (e.g. range queries and nearest neighbor queries) that are computa-
tionally more intensive than text search. The reason is that conventional inverted
indexes used for text are not applicable for such data.

The European project SAPIR (Search on Audio-visual content using Peer-
to-peer Information Retrieval)1 aims at breaking this technological barrier by
developing a large-scale, distributed Peer-to-Peer infrastructure that will make it
possible to search for audio-visual content by querying the specific characteristics
(i.e., features) of the content. SAPIR’s goal is to establish a giant Peer-to-Peer
network, where users are peers that produce audiovisual content using multiple
devices (e.g., cell phones) and service providers will use more powerful peers that
maintain indexes and provide search capabilities

1 http://www.sapir.eu/



“A picture is worth a thousand words” so using an image taken by a cell phone
to find information about e.g. a monument we bump into or singing a melody
as a search hint for a full song, combined with optional metadata annotations
and user and social networking context will provide the next level of search
capabilities and precision of retrieved results.

2 SAPIR Architecture

Although many similarity search approaches have been proposed, the most generic
one considers the mathematical metric space as a suitable abstraction of sim-
ilarity [14]. The metric space approach has been proved to be very important
for building efficient indexes for content based similarity searching. A survey
of existing approaches for centralized structures (e.g. M-tree), can be found in
[14]. However, searching on the level of features eploiting similarity paradigms,
typically exploiting range queries and nearest neighbor queries, exhibits linear
scalability with respect to the data search size.

Recently scalable and distributed index structures based on Peer-to-Peer net-
works have also been proposed for similarity searching in metric spaces and are
used in the context of the SAPIR project - i.e. GHT*, VPT*, MCAN, M-Chord
These index structures have been proved to provide scalability for similarity
search adding resources as the dataset grows (see [2] for a comparison of their
performances). Peer-to-Peer architectures are convenient approach and a com-
mon characteristic is the autonomy of the peers with no need of central coordi-
nation or flooding strategies. Since there are no bottlenecks, the structures are
scalable and high performance is achieved through parallel query execution on
individual peers.

In SAPIR also text is indexed using a Peer-to-Peer architecture called MIN-
ERVA [3]. In MINERVA each peer is considered autonomous and has its own
local search engine with a crawler and a local index. Posting meta-information
into the Peer-to-Peer network the peers share their local indexes. This meta-
information contains compact statistics and quality-of-service information, and
effectively forms a global directory. The Peer-to-Peer engine uses the global di-
rectory to identify candidate peers that are most likely to provide good query
results. More information about MINERVA can be found in [3].

An IR-style query language for multimedia content based retrieval has been
developed for SAPIR. It exploits the XML representation of MPEG-7 and it is
an extension of the ”ML Fragments” query language that was originally designed
as a Query-By-Example for text-only XML collections. Detailed information can
be found in [10].

In SAPIR it is also possible to perform complex similarity search combining
result lists obtained using distinct features, GPS information and text. To this
aim, state of the art algorithms for combining results are used (e.g., [6]). In
Section 4 combined search algorithms and functions are described.

In SAPIR the possibility of retrieving the results of content-based queries
from a cache located in front of the system has also been investigated [8]. The



aim is to reduce the average cost of query resolution, thus boosting the overall
performance. The used cache is very different from a traditional cache for WSEs.
In fact, our cache is able to return an answer without querying the underlying
content-based index in two very different cases: (a) an exact answer when exactly
the same query was submitted in the past, and its results were not evicted from
the cache; (b) an approximate answer composed of the closest objects currently
cached when the quality of such approximated answer is acceptable according
to a given measure. For further information see [8].

For the scope of improving throughput and response time, during the SAPIR
project a metric cache was developed [7]. Unlike traditional caching systems, the
proposed a caching system might return a result set also when the submitted
query object was never seen in the past. In fact, the metric distance between the
current and the cached objects is used to drive cache lookup, and to return a set
of approximate results when some guarantee on their quality can be given.

3 Dataset: CoPhIR

The collection of images we used consists of a set of 100 million objects randomly
selected from the CoPhIR collection2. CoPhIR is the largest publicly available
collection of high-quality images metadata. Each contains five MPEG-7 visual
descriptors (Scalable Color, Color Structure, Color Layout, Edge Histogram, Ho-
mogeneous Texture), and other textual information (title, tags, comments, etc.)
of about 60 million photos (still increasing) that have been crawled from the
Flickr photo-sharing site3.

Since no collection of this scale was available for research purpose, we had
to tackle the non-trivial process of image crawling and descriptive feature ex-
traction using the European EGEE computer GRID. In particular, we had the
possibility to access the EGEE (Enabling Grids for EsciencE) European GRID
infrastructure4 provided to us by the DILIGENT IST project5.

4 Combined Search: Algorithms and Functions

Queries in SAPIR can combine both image and text. Top-k queries are used to
find the best results that match both a given image and a given text. Given a
query it is possible to get from the image index and from the text image a list of
objects sorted by descending order of relevance to the appropriate query. Top-k
queries are usually done by merging those lists into a single ranked result list
using some aggregate function over the objects’ scores from the different lists.

2 http://cophir.isti.cnr.it - CoPhIR stands for COntent-based Photo Image Re-
trieval

3 http://www.flickr.com
4 http://www.eu-egee.org/
5 http://www.diligentproject.org/



4.1 Merge algorithms

The state-of-the-art solution for merging several lists (also known as the top-
k problem) is the family of Fagin’s TA (Threshold Algorithm) and NRA (No
Random Access) algorithms [5]. Although these algorithms have been proved
to be instance optimal, their running time can degrade into complete scans of
the input lists. Moreover, we show that their basic form is not appropriate for
a P2P setting since they may consume high network bandwidth. In this section
we describe briefly those algorithms and then describe various optimizations and
extensions we developed in SAPIR, in particular:

– P2P Optimizations to TA
– P2P Optimizations to NRA
– Filtered algorithm

P2P Optimizations to TA Inspired by the state-of-the-art algorithms, we
implemented Fagin’s TA [5] algorithm with several extensions and optimizations.
The TA algorithm defines the notion of sorted and random accesses. In sorted
access, the next object in the descending order of scores is retrieved from the list
associated, whereas, random access retrieves the score of a random given object
from the list. A TA algorithm performs a mixture of sorted and random accesses
to the lists. At any time during the execution of such an algorithm, there is
complete knowledge of the already seen objects. Given m lists, the algorithm
starts with sorted access to list i, ”sees” object o, and then performs random
accesses to the remaining lists to fetch o’s score, thus having the complete score
for o. In addition, the TA maintains the score of the object at the current cursor
position for every list i (denoted as highi). An object whose aggregated score is
within the best k already seen objects becomes part of the top-k set. The TA
terminates when the object with the lowest score in the top-k set is higher than
the threshold value defined as the aggregated score of the highi’s.

We now discuss different optimizations and improvements that we applied
on top of the TA algorithm.

Sorted access in Batches The TA as described above considers only costs
for sorted and random accesses. However, in a peer-to-peer (P2P) environment,
one should not ignore the network and communication overhead. Specifically,
the overhead comprises the network latency incurred by message rounds and
the network bandwidth consumption incurred by the data exchange among the
peers. The abovementioned TA execution in a P2P environment will generate
communication message to get the next object as well as performing the random
accesses, which can result in high overheads. Thus, the first optimization we
applied is to reduce the network overhead by a ”fetch in batches” execution. As
suggested in [12], to reduce network communication, successive Result Objects
can be batched into one message; instead of getting only one object every time
that the peer contacts a list, it will receive B sorted objects. To support the
batched execution in the SAPIR implementation, one of the parameters for the
query execution is the batchSize, the size of the result list that a peer wants to
fetch.



Random Access in batches In the original TA, the random accesses are
done immediately when a new object is seen, means that a communication mes-
sage is send to the list after each new object. As discussed above, these commu-
nication overheads are expensive. Thus, in our implementation, for each list, the
random accesses requests are batched into one array and only one communica-
tion message is sent.

P2P Optimizations to NRA We now discuss the NRA algorithm [5]. The
main assumption in this algorithm is that no random accesses to the lists are al-
lowed; thus, with sorted only access it needs to determine the k best results. The
NRA starts with sorted access to the different lists, in each step it sees the next
object. Thus, at any time during the execution some objects may have been only
partially seen in a subset of lists, so there is some uncertainty about the final
score of the object. The algorithm therefore keeps, for each seen object d, two
values to bound its final score: worstScore(d) and bestScore(d). worstScore(d)
is computed as the sum of the seen scores of d, assuming a score of 0 for the re-
maining dimensions, and serves as a lower bound for d’s final score. bestScore(d)
is computed as the sum of worstScore(d) and the highi values of lists where d
has not yet been seen, where highi is the value at the current scan position of
list i, bestScore(d) is therefore an upper bound for d’s final score. Objects are
then kept in two sets: The k objects with the currently highest worstScores form
the current top-k answers, and the remaining objects reside in the candidates
set. The algorithm can safely stop when the object with the highest bestScore
of the candidates set has a bestScore that is smaller than the worstScore of the
object with the min worstScore from the top-k set. Similar to the TA case, we
applied the ”Sorted access in Batch” optimization to the NRA. In addition we
applied two more optimizations: Bounded Candidate List and Update Upper
Bound Once which are described in the following subsections.

Bounded Candidates List As described above, every object o that does
not qualify for the top-k set (worstScore(o) < worstScore(d) where d is the
object with the min score from the top-k set ) and could not be eliminated
(bestScore(o) > worstScore(d)), is inserted into the candidates set. However,
many of these objects have a very low probability to be qualified for the top-k.
Keeping all the objects in the candidates set means maintaining a very large set.
The cost of maintaining such a set is O(n) which is not suitable for an online
algorithm [13]. Thus, as suggested in [13] we can limit the size of the set and
keep only the r (typical r could be 200) best candidates.

Update Upper Bound Once The bestScore(d) value is based on the scores
for the unseen lists at the current position (highi). When the NRA algorithm
scans the next row, the bestScore of all the relevant objects need to be updated.
Again, such updates could impose very high overheads on an online algorithm.
It is worth noting, that when the query processor gets the results in batches, it
can exploit this situation as follows - whenever an object is seen in one of the
lists, it is then immediately probed in the other lists with negligible cost. To
update the bestScore efficiently, if the object appears in the remaining lists, the



worstScore and bestScore are updated. However, if not, then the worstScore is
set to 0, and the bestScore is set to the lowest score of the list.

Filtered Algorithm The main purpose of this merge algorithm is to improve
the efficiency by considering only the results that were returned by one of the
indices and then re-rank or filter out the results by the other index. For example
the query can be first sent to the image index and then the returned results are
sent to the text index to check if the queried text appears in each of the results.
This algorithm does not allow the text to introduce results that did not already
appear in the image list.

4.2 Aggregate functions

The majority of top-k techniques assume monotonic aggregation functions. Us-
ing monotone aggregation functions is common in many practical applications,
especially in web settings [11]. Thus, many top-k processing scenarios involve
linear combinations of multiple scoring predicates. Specifically, in SAPIR we
have implemented the following functions: Sum, Weighted Sum, Fuzzy AND
and Fuzzy OR.

The following aggregation functions were implemented in SAPIR.

– Sum:
n−1∑
i=0

xi

– Weighted Sum:
n−1∑
i=0

wi · xi

– Fuzzy AND:
n−1
min
i=0

(wi · xi)

– Fuzzy OR:
n−1
max
i=0

(wi · xi)

– Weighted AND:
{∑n−1

i=0 wi · xi, if ∀xi, xi 6= 0
0, else

}
where n is the number of lists, xi and wi are the score and the weight of

object x in list i correspondingly. It is worth noting that for the Fuzzy AND we
only considered the image score.

The main purpose of supporting different aggregation functions is to give the
user high flexibility and sometimes improve the effectiveness as follows.

The AND operations namely, fuzzy and weighted AND, are stricter in the
sense that they require that the object will appear in all lists. Objects that ap-
pear in both lists basically have more ”evidence” so that the probability that
it is a good object increases. This is very important in the presence of merging
content-based and metadata. Previous works [9, 4] suggested that only content-
based image search is not effective enough because of the gap between visual
feature representations and metadata such as user tagging and extracted se-
mantic concepts. Thus a combination of content based search with associated



Fig. 1. SAPIR demo homepage

metadata is expected to yield the best results. Nevertheless, when the user has
only a broad idea about the results that she wants and if she can tolerate more
fuzziness, then aggregation function such as Weighted Sum and Sum might be
more adequate.

5 Guided tour of the tool

For both testing and demonstration, we developed a web user interface to search
between indexed images. In the following we briefly describe the web user inter-
face which is public available at http://sapir.isti.cnr.it/.

In Figure 1 we report a snapshot of the dynamic web page that is used as
starting point for searching. From that page it is possible to perform a fulltext
search, a similarity search starting from one of the random selected images, a
similarity search starting from an image uploaded by the user or a combined
search.

In Figure 2 we report a typical results page from which it is possible to: go
back to the home page, access the advanced options described before open a



Fig. 2. Results page

window from which it is possible to start with a new query, lunch a new text
query. For each result two text links are reported just over the image:

– similar : can be used to perform a similarity search with the given result
as query. The similarity is evaluated comparing the five MEPG-7 visual
descriptor used in CoPhIR. The weight of each descriptor has been fixed
following the work reported in [1].

– adv search: can be used to access a pop-up window from which it is possible
to perform a combined search using both the result as query for similarity
and any given text combination as shown below:

For each result displayed the following information is reported:

– the image title



– score: a red bar visually reports the score assigned to each result
– and buttons are used to link respectively to Flickr maps and Googlemaps

whenever the geographic position during the take is present
– clicking on the result image itself it is possible to access the related Flickr

page
– below these buttons we report the author’s name
– the location name is reported
– the image tag
– comments can be found following the comments link
– the image description

Finally, at the bottom of the page there is button that can be used to see
the next results in order of relevance to the query

The setting of the combined image and text search can be configured in the
Advanced option screen. In particular it is possible to set:

1. imageWeight: the weight to give to the image
2. textWeight: the weight to give to the text
3. aggFunc: the aggregate function to be used (for details see Section 4.2)

In the SAPIR demo homepage, a link is reported that can be used as a
bookmarklet. Adding the bookmarklet to the browser bookmarks, it is possible
to use any given image found on any web page as query. In Figure 3a we show
the results botained for a text search using Google Images. Clicking on the
bookmarklet the images that are on the displayed webpage are reported in a
separate page (see Figure 3b). Clicking on one of them, the selected one is used
as query and then the results are displayed in Figure 3c.

6 Main Research Results and Future Work

Making this tool available to a large community of user will be important for
two main reasons

– From the point of view of search engine technology, it will be the first time
that a prototype system based on similarity search for multimedia data is
actually used by many users concurrently on such a large image and text
collection. We will collect information on the weakness and strength of the
system under realistic load.



(a)

(b)

(c)

Fig. 3. Bookmarklet usage example



– From the point of view on user experience in searching, it will be the first time
that a population of user will have the possibility to make their search using
the search by content similarity paradigm (together the usual text search) on
a large image collection with realistic response time. We will collect statistics
on user behavior (access logs), such as the way they combine text and image
content search. This is the first time such experience can be studied in a
realistic environment.
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