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Abstract—In this paper, the performance of several visual
features is evaluated in automatically recognizing landmarks
(monuments, statues, buildings, etc.) in pictures. A number
of landmarks were selected for the test. Pictures taken from
a test set were classified automatically trying to guess which
landmark they contained. We evaluated both global and local
features. As expected, local features performed better given
their capability of being less affected to visual variations and
given that landmarks are mainly static objects that generally
also maintain static local features. Between the local features,
SIFT outperformed SURF and ColorSIFT.

Keywords - Image indexing, image classification, recogni-
tion, landmarks.

I. INTRODUCTION

The amount of pictures taken by individuals has exploded
during the last decade due to the wide adoption of the
digital photography in the consumer market. However, many
of these pictures remain unannotated and are stored with
anonymous names on personal computers. Currently, there
are no tools and effective technologies to help users in
searching pictures by content, when they are not explicitly
annotated. Therefore, it is becoming more and more difficult
for users to retrieve even their own pictures.

A picture contains a lot of implicit conceptual information
that, if understood how to be automatically inferred and
used, can open up opportunities for new advanced appli-
cations. For instance, in addition to automatically create
annotations and descriptions, pictures could also be used as
queries on the web.

Given that smartphones equipped with cameras are be-
coming very popular nowadays, we can imagine that people,
for instance tourists, can search for information on the web
by simply pointing the camera of their smartphone on some
subject (a monument, a restaurant, a painting). Consider
in this respect the experimental service “Google Goggles”
[1] recently launched by Google, that allows you to obtain
information about a monument through your smarthphone
using this paradigm.

Note that, even if many smartphones and cameras are
equipped with a GPS and a compass, the geo-reference
obtained with this is not enough to infer what the user is
actually aiming at. Content analysis of the picture is still

needed to determine more precisely the user query or the
annotation to be associated with a picture.

In this respect, many researcher have been investigating
the use of classification techniques as for instance, Support
Vector Machines [2], k-Nearest Neighbor (k-NN) classifiers
[3], boosting [4], etc., with visual information, with the
purpose of automatically recognize visual content.

Content based retrieval and content based classification
techniques typically are not directly applied to images con-
tent. Rather, matching and comparisons between low level
mathematical descriptions of the images visual appearance,
in terms of color histograms, textures, shapes, point of
interests, etc., are used. Different visual features represent
different visual aspects of an image. All together, different
visual features, contribute, not exhaustively, to represent
the complete information contained in an image. A single
feature is generally able to carry out just a limited amount
of this information. Therefore, its performance varies in
dependence of the specific dataset used and the type of
conceptual information one wants to recognize.

The goal of this paper is to identify the best visual features
or combination of visual features that provides us with the
best performance with the above mentioned task. In this
respect, as better described in the reminder of the paper, we
identified 12 landmarks, and we manually built the training
sets for them by identifying a congruous number of pictures
representing them.

A classification algorithm was tested with these land-
marks, using various visual features. We measured the
performance of the classification algorithm to correctly rec-
ognize the landmark in a test set, varying the visual features
used.

The rest of the paper is organized as follows. We briefly
discuss related work next. In Section III we present the
features used in the experiments, while in Section IV we
describe the experimental enviroment. Finally, we present
and discuss the results in Section V.

II. RELATED WORK

In [5], the MPEG-7 Visual Descriptors have been com-
pared in terms of effectiveness for a general purpose Content
Based Image Retrieval (CBIR). The results are interesting



because real users were involved. However, the task pro-
posed to the user was related to generic similarity search
and not to recognition. Image classification based on MPEG-
7 visual descriptors is addressed in [6]. The approach is
very different from ours, since the authors choose to use a
single learning algorithm which takes as input a single rep-
resentation that combines the contributions of the individual
MPEG-7 descriptors. In [7], various MPEG-7 descriptors
have been used to build classifier committees. The focus of
this paper is not on comparing the features but on using all
of them at the same time. The committees have been tested
on a slabs of stones dataset.

The first approach to recognizing location from mobile
devices using image-based web search was presented in [8].
Two image matching metrics were used: energy spectrum
and wavelet decompositions. Local features were not tested.

In [9], Google presented its approach to building a web-
scale landmark recognition engine. Most of the work re-
ported was used to implement the Google Goggles service.
The approach makes use of the SIFT feature without com-
paring the performance of this feature with others.

An important survey of local features detectors is [10].
However, the various local features are not compared. In this
paper we decided to use for each local feature the detector
proposed by the authors of each feature.

III. VISUAL FEATURES

In order to perform our evaluation we choose various
global and local visual features. Specifically, we evaluated
the performance of the 5 MPEG-7 [11] visual features
(Color Layout, Color Structure, Edge Hystogram, Homoge-
neous Textures, Scalable Colour), the Scale invariant Feature
Transform (SIFT) [12], the ColorSIFT [13], and the Speeded
Up Robust Features (SURF) [14]. In the following we give
a brief description of their principles.

A. MPEG-7

MPEG-7 visual descriptors consist of a set of 5 different
global descriptors of the low level visual content of an image
[11]. These 5 descriptors are mathematical representations of
different statistical measures that can be computed analyzing
the structure and placement of the colored pixel in an image.
In particular:
• Scalable Color is an histogram of the colors of the pixel

in an image, when colors are represented in the Hue
Saturation Value (HSV) space

• Color Structure expresses local color structure in an
image by use of a structuring element that is comprised
of several image samples

• Color Layout is a compact description of the spatial
distribution of colors in an image

• Edge Histogram descriptor describes edge distribution
with a histogram based on local edge distribution in an
image, using five types of edges

• Homogeneous Texture descriptor characterizes the
properties of the texture in an image.

For extracting the MPEG-7 visual descriptors we made
use of the MPEG-7 eXperimental Model (XM) Reference
Software [15].

B. SIFT
The Scale Invariant Feature Transformation (SIFT) [12] is

a representation of the low level image content that is based
on a transformation of the image data into scale-invariant
coordinates relative to local features. Local feature are low
level descriptions of keypoints in an image. Keypoints are
interest points in an image that are invariant to scale and ori-
entation. Keypoints are selected by choosing the most stable
points from a set of candidate location. Each keypoint in an
image is associated with one or more orientations, based
on local image gradients. Image matching is performed by
comparing the description of the keypoints in images. For
both detecting keypoints and extracting the SIFT features
we used the public available software developed by David
Lowe [16].

C. ColorSIFT
ColorSIFT local features [13] are an extension of the

original SIFT definition to also take color into account.
Basically, the original SIFT definition describes the local
edge distribution around keypoints. The ColorSIFT extends
the description of a keypoint also to colors around it.
This is obtained by considering color gradients, rather than
just intensity gradients. For both, detecting keypoints and
extracting the Color SIFT features, we used the public
available software developed by Jan-Mark Geusebroek [17].
Between the various proposals they made, we tested the
colour-based SIFT invariant to shadow and shading effects
which performed best in the experiments reported in [13].

D. SURF
The basic idea of Speeded Up Robust Features (SURF)

[14] is quite similar to SIFT. SURF detects some keypoints
in an image and describes these keypoints using orientation
information. However, the SURF definition uses a new
method for both detection of keypoints and their descrip-
tion that is much faster still guaranteeing a performance
comparable or even better than SIFT. Specifically, keypoint
detection relies on a technique based on a approximation
of the Hessian Matrix. The descriptor of a keypoint is
built considering the distortion of Haar-wavelet responses
around the keypoint itself. For both, detecting keypoints and
extracting the SURF features, we used the public available
noncommercial software developed by the authors [18].

IV. EVALUATION SETTINGS

A. The Dataset
The dataset is composed of 1227 photos of landmarks

located in Pisa. The photos have been crawled from Flickr



Figure 1. Example images taken from the dataset

the well known on-line photo service. The dataset we built
is publicly available. The IDs of the photos used for these
experiments together with the assigned label and extracted
features can be downloaded from [19]. The following is the
list of labels assigned to the photos and the number of photos
belonging to each class. In Figure 1 we reported an example
for each class in the same order as they are reported in the
below list:
• Leaning Tower (119 photos) – leaning campanile
• Duomo (130 photos) – the cathedral of St. Mary
• Battistero (104 photos) – the baptistery of St. John
• Camposanto Monumentale (exterior) (46 photos)
• Camposanto Monumentale (field) (113 photos)
• Camposanto Monumentale (portico) (138 photos)
• Chiesa della Spina (112 photos) – Gothic church
• Palazzo della Carovana (101 photos) – historic building
• Palazzo dell’Orologio (92 photos) – historic building
• Guelph tower (71 photos)
• Basilica of San Piero (48 photos) – church of St. Peter
• Certosa (53 photos) – the charterhouse
For the task of building and evaluating a classifier for

the dataset classes, we divided the dataset in a training set
consisting of 921 photos (approximately 80% of the dataset)
and a test set consisting of 226 (approximately 20% of the
dataset). The image resolution used for feature extraction
is the standard resolution used by Flickr i.e., maximum
between width and height equal to 500 pixels. However,
for some specific experiments reported in the following we
used lower resolution versions of the photos i.e., a maximum
between width and height equal to 240 pixels.

B. Classification technique

Given a set of documents D and a predefined set of classes
(also known as labels, or categories) C = {c1, . . . , cm},

single-label document classification (SLC) [20] is the task
of automatically approximating, or estimating, an unknown
target function Φ : D → C, that describes how documents
ought to be classified, by means of a function Φ̂ : D → C,
called the classifier, such that Φ̂ is an approximation of Φ.
In the experiments we present, a set of manually annotated
documents has been partitioned into two subsets: the training
set and the test set. The training set will be used in order to
generate the classifiers Φ̂ by means of a supervised learning
method, while the test set will be used in order to test the
effectiveness (i.e., accuracy, precision, recall and F1) of the
generated classifiers.

The well-known single-label distance-weighted k-NN
technique assigns a label in two steps. First it executes a
k-NN search between the objects of the training set. The
result of such operation is a list of labeled documents di
belonging to the training set ordered with respect to the
decreasing values of the similarity s(dx, di) between dx and
di. The label Φs(dx) assigned to the document dx by the
classifier is the class cj ∈ C that maximizes the sum of the
similarity between dx and the documents di in the k-NN
results list χk(dx) labeled cj . Formally the predicted class
is:

Φ̂s(dx) = arg max
cj∈C

∑
di∈χk(dx) : Φ(di)=cj

s(dx, di) (1)

C. Similarity measures

For each feature used in the experiments we need a
measure that evaluates the similarity between two photos.
For the MPEG-7 visual descriptors we used the distances
suggested by the MPEG Group in [15]. Let d(dx, dy) be the
distance, we defined the similarity between to objects as:

s(dx, dy) = 1− w ∗ d(dx, dy) (2)

where w is a fixed number that guarantees that w ∗
d(x, y) < 1 for any dx and dy .

In the experiments we also tested the weighted sum
distance of these 5 MPEG-7 Visual Descriptors used in
the Search in Audiovisual using Peer-to-Peer Information
Retrieval (SAPIR) FP6 European research project [21].
More information about this combination can be found in
[22].

The result of the comparison of two images dx and dy
using local features (e.g., SIFT, ColorSIFT and SURF) is
typically the number of keypoints in dx that have a match
in dy . We translate this information in a similarity function
dividing the number of matches by the number of keypoints
in dx. In other words we used the ratio of keypoints in dx
that do have a match in dy as the similarity between dx and
dy for all the local features used for the experiments (i.e.,
SIFT, ColorSIFT and SURF).



The algorithms used for matching the keypoints for the
various local features are the ones suggested by the features
authors and that are also used in their public available
implementations. In particular both SIFT and ColorSIFT
performs a 2-NN search between the keypoints in dy for
any keypoint in dx. A match is identified if the 1st result in
the 2-NN has a distance from the query keypoint less than
0.6 times the distance of the 2nd result. SURF matching
algorithm is very similar except that the distance of the 1st
nearest neighbor must be less than 1/

√
2. More information

can be found in [12], [13], [14].

D. Performance measures

For evaluating the effectiveness of the classifiers in clas-
sifying the documents of the testset we use the micro-
averaged accuracy and micro- and macro-averaged preci-
sion, recall and F1.

Micro-averaged values are calculated by constructing a
global contingency table and then calculating the measures
using these sums. In contrast macro-averaged scores are cal-
culated by first calculating each measure for each category
and then taking the average of these. In most of the cases
we reported the micro-averaged values for each measure.
However, macro-averaged values for the best settings are
reported in Figure 5.

Precision is defined as the ratio between correctly pre-
dicted and the overall predicted documents for a specific
class. Recall is the ratio between correctly predicted and
the overall actual documents for a specific class. F1 is the
harmonic mean of precision and recall.

Note that for the single-label classification task, micro-
averaged accuracy is defined as the number of documents
correctly classified divided by the total number of documents
in the test set and it is equivalent to the micro-averaged
precision, recall and F1 scores.

V. RESULTS

As explained in Section IV-B, the single-label distance-
weighted k-NN technique has a parameter k. This parameter
should be set during the training phase and kept fixed during
the performance evaluation on the test set. However, in this
paper we do not want to evaluate the specific technique but
the relative performance of the various features using the
same classification technique. In particular we do not want
to test a specific training algorithm. Thus, we decided to
report the performance measures we obtained for various
k. In this way we can analyze the optimal performance (in
the k range considered) and the stability changing the k
parameter.

In Figure 2 we report the micro-averaged accuracies
obtained for some MPEG-7 Visual Descriptors and their
weighted sum combination used in the SAPIR Project
(see IV-C). The best performance is obtained using the
EdgeHistogram visual descriptor. The color-based features
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Figure 2. Micro-averaged accuracy of the classifier for various k and
various global features (i.e., MPEG-7 Visual Descriptors and each weighted
sum combination used in the SAPIR project)
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Figure 3. Micro-averaged accuracy of the classifier for various k and
various local features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70 80 90 100

A
cc
u
ra
cy

k

SIFT SURF ColorSIFT

Figure 4. Micro-averaged accuracy of the classifier for various k and
various local features. These experiments have been conducted using the
low resolution version of the images



(i.e., ColorLayout, ColorStructure, ScalableColor) have very
similar performance while HomogenousTexture obtained the
worst values of accuracy. The weighted-sum combination of
these visual descriptor performs slightly worst than EdgeHis-
togram alone. Even if for big values of k the SAPIR metric
is preferable, the best accuracy for the various k is higher
for EdgeHistogram alone.

The accuracy obtained for the local features are reported
in Figure 3. As expected, all of them perform significantly
better than the global features. In fact, the dataset used is
specific for landmarks recognition and they are supposed
to work well for general recognition tasks. What was not
obvious is that SIFT (the oldest) perform better than the
others. Both SURF and ColorSIFT are basically extensions
of the SIFT but for this specific task they are less effective
than SIFT. Even if in this paper we will not consider the
computational cost, it is worth to mention that SURF is less
computationally expensive than SIFT while ColorSIFT is
even more demanding than SIFT.

Given the good results reported in Figure 3, we decided
experimenting the same features on images with a lower
resolution. We then extracted the same features from a lower
resolution (i.e., max between width and height equal to 240
pixels) versions of the photos in the dataset. The results
obtained, reported in Figure 4, show that the performance
of SURF are more influenced by the resolution of the images
even if their performance are still better then ColorSIFT.

Finally, we report in Figure 5 a complete summary of
the performance obtained by each feature for the optimal
k. The global features show a significant variance in the
performance obtained for the various classes. Note that the
macro- and micro-averaged results do not differ significantly
and the previous considerations based on the micro-averaged
accuracy would not change considering the macro F1.

VI. CONCLUSIONS

In this paper we have performed a systematic evaluation
of several visual features, considering as application the task
of automatically recognizing known landmarks in a picture.
The application was implemented as a classification task
where every known landmark was identified by a class. We
decide that a landmark is contained in a picture if the picture
belongs to the class associated with the landmark.

The experiments that we carried out demonstrated the
superiority of the local features over the global features.
Specifically, the best results were obtained using the SIFT
features that, even if proposed years before the other local
features, is a bit better than SURF and ColorSIFT. However,
we should mention that, even if we did not report any result
concerning efficiency, algorithms for SURF are significantly
faster than SIFT both when features have to be extracted
and when they have to be matched.
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